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Abstract

In this thesis, we begin with a brief introduction to some relevant number

theory and to digital signature schemes (DSS). We explain how information

about the discrete Lambert map (DLM) [2] relates to DSS security. Next

we introduce results from p-adic analysis. We summarize the results from

previous work on the DLM and extend these results to p = 2. In the main

part of this thesis we explain our results counting fixed points and two-cycles

of the DLM. That is, for a fixed prime p and a nonzero integer g where p - g

and e is a positive integer, we will count the number of fixed points or solutions

to xgx ≡ x (mod pe) and the number of two cycles or simultaneous solutions

to xgx ≡ y (mod pe) and ygy ≡ x (mod pe) where x and y range through

appropriate sets of integers. This work is a continuation of work started by

Holden and Robinson in [7] and their students from the 2014 Mount Holyoke

summer REU program: Anne Waldo and Caiyun Zhu [10], Yu Liu [8], and

Abigail Mann and Adelyn Yeoh [9].
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Introduction

The goal of this thesis is to investigate the number of solutions to the con-

gruence xgx ≡ x (mod pe) and also simultaneous solutions to the congruences

xgx ≡ y (mod pe) and ygy ≡ x (mod pe), where p is a fixed prime, g and e are

fixed integers greater than zero, p - g, m = ordp(g), and 1 ≤ x, y ≤ pem. How-

ever, before we discuss the answers and their proofs, we must introduce some

important number theoretical results, discuss the motivation for the problem,

introduce p-adic analysis, and review previous results.

In section 1, we present the number theory results that are needed to prove

the main theorems in this thesis. In section 2, we introduce the ElGamal digital

signature scheme as the motivation for analyzing the solutions to the discrete

Lambert map and, hence, as motivation for the main problems which we solve

in this thesis. In section 3, we will introduce p-adic numbers and Hensel’s

Lemma as well as the (p− 1)st roots of unity in Zp and some key notation for

our theorems. In section 4, we recall Anne Waldo and Caiyun Zhu’s solution to

counting solutions to xgx ≡ c (mod pe) [10] and Yu Lui’s solution to counting

collisions of the discrete Lambert map, xgx ≡ ygy (mod pe) [8]. We note that

both these results were for odd primes only and we extend these theorems to

the case where p = 2. In section 5, we discuss our solution to the problem

of counting the fixed points and two cycles of the discrete Lambert map for

all primes p. Finally, we conclude with a discussion of questions for further

research in this area.
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1. Some important basic theorems in number theory

We begin with the basic definitions, propositions, lemmas, and theorems

from number theory which will be needed later in this thesis. All the proofs

are very straightforward, and so we only include a few of them.

Definition 1.1 (Primes). A prime is a positive number greater than 1 that

only has positive integer divisors that are 1 and itself.

For example, 2, 3 and 17 would be primes. However, −3, 1, 6 = 3 · 2, and

3.1 are not primes.

Definition 1.2 (Integer division). Let a and b be any integers. We say that

b divides a and write that b | a, if there exists an integer c such that a = bc.

Example 1.3. Let a = 6 and b = −2. We say that b divides a, or b | a,

because c = −3 exists such that a = bc.

Example 1.4. Let a = 0 and b = −6. We say that b divides a, or b | a,

because c = 0 exists such that a = bc. Thus we see that any integer divides 0.

However, 0 does not divide any nonzero integer since the equation a = 0c has

no integer solution for c when a is nonzero.

Proposition 1.5. Let m, a, b ∈ Z. If m | a and m | b, then m | a+ b.

Proof. Since m | a and m | b, then there exist k, l ∈ Z such that a = m · k and

b = m · l. Thus, a + b = m · k + m · l = m(k + l). So, by the definition of

integer division, since k + l ∈ Z, then m | a+ b. �

Definition 1.6 (Integer congruence). Letm be a positive integer. Let a, b ∈ Z.

We say that a is congruent to b modulo m, if m divides a−b, that is if m | a−b.

We write this relation between a and b more concisely as a ≡ b (mod m).
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Following are six basic propositions whose proofs use the definition of con-

gruence modulo m.

Proposition 1.7 (Congruence is an equivalence relation). Let m be a positive

integer. Let a, b, c ∈ Z. Then, a ≡ a (mod m). If a ≡ b (mod m), then b ≡ a

(mod m). If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

Proof. The first two parts can be easily shown, so we will only show the third.

If a ≡ b (mod m) and b ≡ c (mod m), then, by definition, m | a − b and

m | b− c. Thus, m | a− b+ b− c = a− c, by Proposition 1.5. So, by definition,

a ≡ c (mod m). �

Proposition 1.8. Let m be a positive integer. Let a, b, c, d ∈ Z. If a ≡ b

(mod m) and c ≡ d (mod m), then a+ c ≡ b+ d (mod m).

Proposition 1.9. Let m be a positive integer. Let a, b, c ∈ Z. If a ≡ b

(mod m) and c ≡ d (mod m) then ac ≡ bd (mod m).

Proof. Note if a ≡ b (mod m), then m | a−b. Note that m | (a−b)c = ac−bc.

Thus, ac ≡ bc (mod m). Similarly one can show bc ≡ bd (mod m). Thus,

using Proposition 1.7, ac ≡ bd (mod m). �

Proposition 1.10. Let m be a positive integer. Let a, b ∈ Z. Let d be a

positive integer such that d | m. If a ≡ b (mod m), then a ≡ b (mod d).

Proof. If a ≡ b (mod m), then m | a− b, meaning there exists c ∈ Z such that

a− b = m · c. Since d | m, there exists e ∈ Z such that m = d · e. Therefore,

a − b = m · c = d · e · c = d(e · c), where e · c ∈ Z. Therefore, by definition

of Integer Division, d | a − b. Thus, a ≡ b (mod d), by definition of Integer

Congruence. �

Proposition 1.11. Let m be a positive integer. Let a, b ∈ Z. Let c be a

positive integer. If a ≡ b (mod m), then ac ≡ bc (mod mc)
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Following are some less basic and still very important properties pertaining

to congruences.

Lemma 1.12. Let m be a positive integer. Let a, b ∈ Z. Let c be a positive

integer. If a ≡ b (mod m), then ac ≡ bc (mod m).

Proof. If a ≡ b (mod m), then m | a− b. Note that

ac − bc = (a− b)(ac−1 + ac−2b+ · · ·+ abc−2 + bc−1).

Thus, m | ac − bc. Therefore, ac ≡ bc (mod m). �

Definition 1.13 (Greatest Common Divisor). Note that gcd(a, b) stands for

the greatest common divisor of a and b, that is c such that c | a, b and if

d | a, b, then d | c. Note we will always define the greatest common divisor to

be positive.

Lemma 1.14 (Bezout’s Lemma). Let a, b ∈ Z such that a and b are not both

zero. Then there exists integers m,n such that ma+nb = gcd(a, b). Moreover,

if there exists m,n such that ma+nb = c for some integer c, then gcd(a, b) | c.

Proof. See section 3.3 of [12] for more. �

Example 1.15. Consider gcd(12, 18). Note 6 | 12 and 6 | 18. The only other

numbers which divide 12 and 18 are 1,−1, 2,−2, 3,−3,−6, which all divide 6.

Thus, gcd(12, 18) = 6. Note, gcd(12, 18) 6= −6, since we define the greatest

common divisor to be positive.

Lemma 1.16. Let m be a positive integer. Let a ∈ Z. Let c = gcd(a,m).

Then gcd(a
c
, m
c

) = 1.

Proof. By definition of c, c | a and c | m. By Bezout’s Lemma, there exists

integers x, y such that c = ax + my. Thus, 1 = a
c
x + m

c
y, where a

c
and m

c
are

integers. So, by Bezout’s Lemma, gcd(a
c
, m
c

) = 1. �
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Lemma 1.17. Let m be a positive integer. Let a, x, y ∈ Z. Then ax ≡ ay

(mod m) if and only if x ≡ y (mod m
gcd(m,a)

).

Proof. Note that by definition gcd(m, a) divides both a and m. So we know

that there exist integers b, n such that m = n · gcd(m, a) and a = b · gcd(m, a).

Note, by Proposition 1.16, gcd(n, b) = 1.

To show sufficiency we assume that x ≡ y (mod n), so that n | x − y or

x−y = nk for some k ∈ Z. Now, gcd(m, a)(x−y) = gcd(m, a)nk = mk by the

definition of n. So b · gcd(m, a)(x − y) = bmk. By definition of b, this means

a(x− y) = bmk. Thus, m | a(x− y) = ax− ay. Thus, ax ≡ ay (mod m).

Now, consider ax ≡ ay (mod m). Then, m | ax − ay or ax − ay = mk for

k ∈ Z. Thus, b gcd(m, a)(x− y) = a(x− y) = mk. So, by the definition of n,

b gcd(m, a)(x − y) = n gcd(m, a)k. Thus, b(x − y) = nk. Since, gcd(n, b) = 1

this means n | (x− y). Therefore, x ≡ y (mod m
gcd(m,a)

). �

Before we introduce more helpful properties, we make a remark and give

two more definitions.

Remark 1.18. Note that if gcd(m, a) = 1 then an inverse of a modulo m

exists. That is an x such that ax ≡ 1 (mod m). This follows from Bezout’s

Lemma. We denote the inverse as a−1. The inverse of al can be denoted as

a−l. Thus negative exponents are defined. For more information please see

[13], the section on cyclic groups.

Example 1.19. Consider 2 modulo 5. Note gcd(2, 5) = 1. Also 2·3+5·(−1) =

1. Thus, 2 · 3 ≡ 1 (mod 5) and 3 is the inverse of 2 modulo 5, so that 2−1 ≡ 3

(mod 5).

Definition 1.20 (Order of an integer modulo m). Let m and a be integers

such that gcd(m, a) = 1 and m is positive. The order of a modulo m is the

smallest positive integer, n, such that such that an ≡ 1 (mod m). We write
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the order of a modulo m concisely as n = ordm(a). Note that such an n will

always exist. See section 9.1 and 6.3 of [12] for more detail.

Example 1.21. Consider 2 modulo 5. Note gcd(2, 5) = 1. We see that 21 ≡ 2

(mod 5), 22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5), and 24 ≡ 1 (mod 5). Thus, the

order of 2 modulo 5 is 4 or ord5(2) = 4.

Now, consider 3 modulo 8. Note gcd(3, 8) = 1. We see that 31 ≡ 3 (mod 8)

and 32 ≡ 1 (mod 8). Hence the order of 3 modulo 8 is 2 or ord8(3) = 2.

Remark 1.22. Note that for a 6≡ 1 (mod m) then ordm(a) > 1 and since

a · aordm(a)−1 ≡ aordm(a) ≡ 1 (mod m), the inverse of a modulo m will be

aordm(a)−1.

The following is a result pertaining to the order of an integer a modulo m.

Proposition 1.23. Let m and a be integers such that m > 0 and gcd(m, a) =

1. If at ≡ 1 (mod m) for some t ∈ Z then ordm(a) | t.

Proof. Note that by dividing by ordm(a) we can find a quotient k and remain-

der c such that t = c + k · ordm(a) for 0 ≤ c < ordm(a) and c, k ∈ Z. Then

1 ≡ at ≡ ac+k·ordm(a) ≡ acak·ordm(a) ≡ ac (mod m). Since 0 ≤ c < ordm(a) and

ac ≡ 1 (mod m), by the definition of order c = 0. Thus, ordm(a) | t. �

For the next definition, lemma, and theorem, we will be focusing on the case

when m = p, where p is a prime, for the sake of simplicity. While there are

similar results for m not a prime, for this paper the case when m is a prime

will suffice.

Definition 1.24 (Generators modulo p). Let p be a prime integer and a be

an integer such that gcd(p, a) = 1. Then we say that a is a generator modulo

p if ordp(a) = p− 1.
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Remark 1.25. Note, this that a being a generator modulo p is equivalent to

saying that for every integer g such that g 6≡ 0 (mod p) there exists a t ∈ Z

such that at ≡ g (mod p). See section 9.1 of [12] for more detail.

Example 1.26. Note that 2 is a generator modulo 5 because 21 ≡ 2 (mod 5),

22 ≡ 4 (mod 5), 23 ≡ 3 (mod 5), and 24 ≡ 1 (mod 5). Thus, 2 is a generator

modulo 5 because ord5(2) = 4 and {2t for t ∈ Z} = {1, 2, 3, 4}.

Theorem 1.27. Let p be a prime. Then there is always a generator modulo

p.

Proof. Please see [12] Corollary 9.8.1 in the section on primitive roots. �

The following results are some properties pertaining to the order of an ele-

ment and generators modulo p.

Lemma 1.28. Let p be a prime and a be an integer such that gcd(p, a) = 1.

Suppose a is a generator modulo p. Then s ≡ t (mod p − 1) if and only if

as ≡ at (mod p).

Proof. First, suppose as ≡ at (mod p). Then as−t ≡ 1 (mod p). By Proposi-

tion 1.23, ordp(a) | s− t . Since ordp(a) = p− 1, s ≡ t (mod p− 1).

Now, suppose s ≡ t (mod p− 1). Note p− 1 = ordp(a) and ordp(a) | s− t.

Thus, p − 1 | s − t. Therefore, as−t ≡ 1 (mod p) implying as−tat ≡ 1 · at

(mod p) and as ≡ at (mod p). �

Theorem 1.29 (Fermat’s Little Theorem). Let p be a prime and a be an

integer such that gcd(a, p) = 1. Then ap−1 ≡ 1 (mod p).

Proof. Note that by Theorem 1.27, there exists g, an integer modulo p, such

that g is a generator modulo p. Thus, there exists positive k such that a ≡ gk

(mod p). So ap−1 ≡ (gk)p−1 ≡ (gp−1)k ≡ 1 (mod p), by Definition 1.24. So

ap−1 ≡ 1 (mod p) �
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Here is a generalization of Fermat’s Little Theorem.

Theorem 1.30 (Euler’s Theorem). Consider integers a and n such that n > 0

Let φ(n) = |{d > 0 such that gcd(d, n) = 1}|. Then aφ(n) ≡ 1 (mod n).

Proof. Please see Section 6.2 of [12]. �

Now we will present one last and very important theorem, the Chinese

Remainder Theorem.

Theorem 1.31 (Chinese Remainder Theorem). Let m1, . . . ,mr be positive

integers such that gcd(mi,mj) = 1 for all i 6= j. Consider the system of

congruences

x ≡ a1 (mod m1), · · · , x ≡ ar (mod mr).

Then there will be one unique solution x to this system such that 0 ≤ x < M ,

where M = m1m2 · · ·mr.

Proof. First, let us construct a solution to this system to show there is one.

Let Mk = M
mk

. Note that gcd(Mk,mk) = 1. Thus, by Remark 1.18, Mk has a

multiplicative inverse modulo mk. We will call this inverse yk. Thus, Mkyk ≡ 1

(mod mk).

Then, construct the integer x so that

x = a1y1M1 + · · ·+ aryrMr.

For any fixed i and j where i 6= j we see that aiyiMi ≡ 0 (mod mj) since

mj |Mi. Thus,

x ≡ ajyjMj (mod mj)

x ≡ aj (mod mj).

Therefore, the x that we constructed is an integer solution to the system of

congruences.
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Now, let us show that x can be taken uniquely such that 0 ≤ x < M .

Suppose x and x′ are two integers that both satisfy the system of congruences.

We see that x ≡ x′ ≡ ai (mod mi). So mi | x− x′ for all 1 ≤ i ≤ r.

Since gcd(mi,mj) = 1 for all i 6= j, x−x′
m1m2

is an integer. Continuing

gcd(m1m2,m3) = 1, so x−x′
m1m2m3

is an integer. Following in the same man-

ner x−x′
m1···mr

= x−x′
M

is an integer. So M | x − x′. Thus, x ≡ x′ (mod M).

Thus, there is a unique solution x to the system of congruences such that

0 ≤ x < M . �

2. The ElGamal digital signature scheme and its connection to

the discrete Lambert map

Before we begin, note that the discrete Lambert map is the map x→ xgx.

Our analysis of the discrete Lambert function is motivated by the need to

test the security of digital signature schemes. Think of the signature card you

sign at your bank. A teller can compare it with your checks to verify that you

really signed a check. The idea of a digital signature is very similar, except it

is a number that verifies your identity and can be exchanged over the Internet.

Thus, like a real signature, a digital signature must be identifiable as yours,

without others being able to replicate it.

Thus, if Alice wanted to send a message to Bob, then the message must

have two parts, the actual message and the digital signature that verifies that

Alice is the person actually sending a specific message. Bob then must have

some method for verifying that the signature really is Alice’s. Suppose Frank

wanted to forge a message from Alice. We must make sure that the system

we create is such that Bob will be able to tell the message is not from Alice.

Note we will not be able to tell who sent it, just that Alice did not.

Before we introduce the ElGamal digital signature scheme, we must discuss

the message itself. For the message to be sent it must be in number form.
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There are many ways to create a number from a series of characters. One way

is to identify each character with a 2 digit number. For example “a” could

be identified with “01”, “b” with 02, and so on. The only problem with this

system is that if a letter that identifies with a number whose first digit is 0 is

at the beginning, then the zero will be dropped off. For example, if our word

was “ape”, then it would technically be turned into the number 011605, which

would usually be represented as the number 11605. So if we try to translate

back into English going from left to right, we do not know if the first letter

corresponds to 01 or to 11. Thus, when converting back into English we start

with the last two digits of the number-message and move from right to left.

So we know the last letter corresponds to 05 and must be “e”. The second

to last letter corresponds to 16 and must be “p”. Thus the first letter must

correspond to 1, which means it really was 01 and must be “a”.

From now on we will think of a message as a number instead of a list of

letters.

Returning to digital signature schemes, we will now discuss one such scheme,

the ElGamal digital signature scheme. Alice picks a large prime p. This prime

is assigned to her and will be public knowledge. She might use the same prime

for many messages. In addition, Alice picks a number g such that 1 ≤ g ≤ p−2

and ga 6≡ 1 (mod p) for all 0 < a < p− 1. Thus we know that g is a generator

modulo p and ordp(g) = p − 1. Alice will make public the p and g that she

has chosen.

Now, Alice must choose a fixed x such that 1 ≤ x ≤ p− 2. Alice must not

share what x is with anyone. However, she should compute h such that gx ≡ h

(mod p) and make h public along with p and g.

Now, Alice’s message must be turned into a number, M , such that 1 ≤M ≤

p − 1 and gcd(M, p − 1) = 1. If M is larger than p − 1, it can be split into

multiple message blocks. Her message M can also be made public.
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Next, Alice must randomly choose a number y such that 1 ≤ y ≤ p− 2 and

gcd(y, p − 1) = 1. Now, it is important to note that with every new message

y should change. In addition, y should be kept private.

Now, Alice should compute s1 and s2 where

s1 = gy (mod p)

and

s2 =
M − xs1

y
(mod p− 1).

Alice’s signature will be (s1, s2), which she should make public.

It is important to note that since gcd(y, p − 1) = 1, y has a multiplicative

inverse modulo p, so s2 is well defined.

To verify that M was really written by Alice, Bob should compute v1 and

v2 such that

v1 = hs1ss21 (mod p)

and

v2 = gM (mod p).

If Alice really created the message, then v1 = v2. To see that v1 should

equal v2 we give the following illustrative computation modulo p.

v1 ≡ hs1s1
s2 (mod p)

≡ (gx)s1(gy)s2 (mod p)

≡ gxs1gys2 (mod p)

≡ gxs1gy
M−xs1

y (mod p)

≡ gxs1gM−xs1 (mod p)

≡ gM (mod p).
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This calculation gives the flavor of why v1 should equal v2 if s1 and s2 were

calculated correctly.

In this way, if Alice sent the message, then Bob will believe she sent the

message. However, can Frank create a message with a signature that tricks

Bob into thinking Alice sent the message? One way to forge a message, would

be to create our own M , to fix s2, and solve for s1 such that

hs1s1
s2 ≡ gM (mod p)

holds for your M and s2 and Alice’s g and p. Then Bob would find that v1 = v2

and assume incorrectly that Alice sent the message.

Note that solving hs1s1
s2 ≡ gM (mod p) is equivalent to solving

hs1s2
−1

s1 ≡ gMs2−1

(mod p),

which is

s1(h
s2−1

)s1 ≡ gMs2−1

(mod p).

Setting a = hs2
−1

and b = gMs2−1
, Carl must solve s1a

s1 ≡ b (mod p).

Here we see the motivation for studying the discrete Lambert map. We

want to analyze the behavior of the discrete Lambert map so we will have a

more complete understanding of how easy it might be to forge a signature.

Now, you may be asking yourself about the pe we discussed before instead

of the p. It turns out there is a generalized ElGamal digital signature scheme

where Alice selects a number n instead of a prime p. So we would be interested

in s1a
s1 ≡ b (mod n). However, due to the Chinese Remainder Theorem, we

can solve a problem modulo n by breaking it up into the smaller problem of

solving the congruence modulo pe for all factors pe in the prime factorization

of n.

In [2] Chen and Lotts investigated xgx ≡ y (mod p). In [10] Waldo and

Zhu investigated xgx ≡ y (mod pe). In [3], Holden and Moree investigated
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two-cycles and fixed points of x→ gx. We wanted to compare their solutions

with ours. Our primary goal is to count simultaneous solutions to xgx ≡ y

(mod pe) and ygy ≡ x (mod pe) or two cycles of the discrete Lambert map.

To accomplish this goal we also need to count solutions to xgx ≡ x (mod pe)

or fixed points of the discrete Lambert map.

3. A brief introduction to p-adic analysis

In this chapter we will introduce the p-adic numbers and prove Hensel’s

Lemma, a crucial tool in p-adic analysis. The p-adic numbers will provide us

with a way to use the continuous ideas of calculus to solve discrete problems

involving solutions modulo pe.

The p-adic numbers are analogous to the real numbers. Indeed they arise

from the rational numbers in just the same way the real numbers arise.

In order to define both the real numbers and the p-adic numbers, we must

begin with an absolute value on the rational numbers.

Definition 3.1. An absolute value is a map from Q to the nonnegative rational

numbers with the following properties. For all a, b ∈ Q

(1) | a |≥ 0 and | a |= 0 if and only if a = 0

(2) | a · b |=| a | · | b |

(3) | a+ b |≤| a | + | b |

Definition 3.2. The usual absolute value on Q, which we will denote by | · |∞,

is defined as follows for a ∈ Q:

| a |∞=
{

a for a ≥ 0
−a for a < 0,

It can be verified that the usual absolute value has properties (1), (2), and (3)

above.
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The real numbers can be constructed from the rational numbers using the

usual absolute value and Cauchy sequences of the rational numbers.

Definition 3.3. A sequence of rational numbers {an} is a Cauchy sequence

with respect to some absolute value | · | if for any ε > 0 there exists a positive

integer N such that | ai − aj |< ε for all i, j > N .

Please note that every Cauchy sequence converges. See Theorem 10.11 of

[14] for more detail.

We will define an equivalence relation on Cauchy sequences below. When

we use the absolute value | · |∞, the equivalence classes will give us the real

numbers. The following example shows why we need equivalence classes.

We can define the real number π to be the limit of the sequence

{3, 3.1, 3.14, 3.141, 3.1415, . . . }.

Since we have methods for computing the next rational number in the se-

quences we also know that

{3.1, 3.11, 3.141, 3.1411, 3.14151, . . . }

also converges to the real number π. So when we write π = 3.1415 . . . we really

mean that we are taking 3.1415... to represent all Cauchy sequences that are

equivalent to {3, 3.1, 3.14, 3.141, 3.1415, . . . }.

Definition 3.4. Two Cauchy sequences, {an} and {bn} are said to be equiv-

alent if the sequence | an − bn |, with respect to the given absolute value,

converges to 0 as n→∞. For any absolute value, this creates an equivalence

relation on Cauchy sequences of rational numbers.

Remark 3.5. Since this relation is an equivalence relation, the Cauchy se-

quences of rational numbers will be partitioned into distinct non-overlapping

classes of equivalent sequences.
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Example 3.6. Consider the Cauchy sequences {an} = { 1
10n
} and {bn} = {0}.

These are equivalent with respect to | · |∞ because limn→∞ | 1
10n
− 0 |∞=

limn→∞
1

10n
= 0.

The real numbers are the equivalence classes of Cauchy sequences defined

using the usual absolute value. We usually use the decimal expansion to stand

for the whole equivalence class.

Just as we use the usual absolute value to construct the real numbers, we

will construct the p-adic numbers using Cauchy sequences of rational numbers,

but using the p-adic absolute value. In the p-adic case we will also find a

representative for each equivalence class.

To start we must define the p-adic valuation of a rational number.

Definition 3.7 (The p-adic valuation of an integer and of a rational number).

Let p be a prime number. Let a be an integer. Then vp(a), the p-adic valuation

of a is the highest power of p dividing a. Another way to state this is a = pvp(a)b

where p - b. By convention vp(0) =∞.

Let c be a rational number. We can write c = pn a
b

where a, b, n ∈ Z and

p - a, b. Then vp(c) = n. Note another way to define the p-adic valuation of

a rational number would be to write c = a
b

where a, b ∈ Z and then use the

definition of the valuation of an integer to say that vp(c) = vp(a)− vp(b).

Let us consider a few examples:

v5(100) = v5(5
2 · 4) = 2,

v3(5) = v3(3
0 · 5) = 0,

v7(
21

98
) = v7(7

−13

2
) = −1.

Using the definition of p-adic valuation, we define p-adic absolute value as

follows.
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Definition 3.8. The p-adic absolute value for a ∈ Q is defined as follows:

| a |p=
{

1
pvp(a)

: a 6= 0
0 : a = 0.

Examples:

| 100 |5 =
1

52
,

| 5 |3 =
1

30
= 1,

| 21

98
|7 =

1

7−1
= 7.

Using the definition, we can easily show that | · |p is an absolute value. In

fact, | · |p is what we call a non-archimedean absolute value because in addition

to the triangle property (3) of the absolute value holding, something stronger

is true for | · |p and x, y ∈ Q: | x+ y |p≤ max(| x |p, | y |p).

We can now define p-adic numbers in the same way we defined real numbers,

except that we use the absolute value | · |p. Thus p-adic numbers Qp are

equivalence classes of p-adic Cauchy sequences: Cauchy sequences of rational

numbers defined using the absolute value | · |p.

Note, as we use R to denote the real numbers, Q to denote the rational

numbers, and Z to denote the integers, we will use Qp to denote the p-adic

numbers. and Zp to denote the p-adic integers.

Now, this is a very abstract definition and we need an explicit representa-

tion for each equivalence class. After all, we can operate in R just thinking of

each real number as being represented by its decimal expansion. For example

π = 3.1415926 . . . , 1 = 1.000, and 1 = 0.999. Similarly there is an explicit

representation of each Cauchy sequence that we can use to visualize the el-

ements in Qp. This representation is called the p-adic expansion of a p-adic

number. For α ∈ Qp with vp(α) = −n

α = a−np
−n + a−n+1p

−n+1 + · · ·+ a−1p
−1 + a0 + a1p+ · · · ,
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where a−n 6= 0 and ai ∈ {0, 1, 2, . . . , p− 1}.

We can see that a p-adic Cauchy sequence of rational numbers of the form

{a−np−n, a−np−n+a−n+1p
−n+1, . . . , a−np

−n+· · ·+a−1p−1, a−np−n+· · ·+a−1p−1+

a0, a−np
−n+· · ·+a−1p−1+a0+a1p, . . . } where a−n 6= 0 and ai ∈ {0, 1, 2, . . . , p−

1} must converge to some p-adic number since it is clearly a p-adic Cauchy

sequence of rational numbers. We can represent this Cauchy sequence as the

infinite sum

α = a−np−n + a−n+1p
−n+1 + · · ·+ a−1p

−1 + a0 + a1p+ · · · ,

where a−n 6= 0 and ai ∈ {0, 1, 2, . . . , p − 1}. This infinite sum is called the

p-adic representation of α. If vp(a) ≥ 0 then its p-adic representation is of the

form

a0 + a1p+ a2p
2 + · · · ,

where ai ∈ {0, 1, 2, . . . , p− 1}. It is true that all p-adic Cauchy sequences are

equivalent to exactly one p-adic Cauchy sequence of this form (See Theorem

1.30 of [5] for more detail). So p−n(a−n + a−n+1p + · · · ) for vp(a) < 0 or

a0 + a1p + a2p
2 + · · · for vp(a) ≥ 0 will be our explicit p-adic representative

for every p-adic number.

Let us consider a few p-adic expansions for some sample rational numbers.

Example 3.9.

The 5-adic expansion of 620: 4 · 5 + 4 · 52 + 4 · 53 = .4445

The 3-adic expansion of 73: 1 · 30 + 0 · 31 + 2 · 32 + 2 · 32 = 1.0223

The 2-adic expansion of
25

16
: 1 · 2−4 + 0 · 2−3 + 0 · 2−2 + 3 · 2−1 + 1 · 20 = 10011.02

Note: we have used a decimal-like short hand to represent these expansions.
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Definition 3.10. We will define the ring of p-adic integers to be those p-adic

numbers such that their p-adic expansion is of the form

a0 + a1p+ a2p
2 · · · .

We will denote the p-adic integers as Zp. Note Z ⊂ Zp and Zp is an integral

domain. See Proposition 1.44 of [5] for more detail.

One last thing we will want to consider is polynomials over Qp. Suppose

we have a polynomial, say f(x) = x2 + 2, and we want to know if it has roots

in Qp. We have a very helpful lemma to help us answer this question in an

important special case.

Lemma 3.11 (Hensel’s Lemma). Let f(x) = c0 + c1x + c2x
2 + · · · + cnx

n be

a polynomial with coefficients in Zp and let f ′(x) = c1 + 2c2x+ · · ·+ ncnx
n−1

be the formal derivative of f(x). If there exists a ∈ Zp such that f(a) ≡ 0

(mod p) and f ′(a) 6≡ 0 (mod p), then there exists a unique b ∈ Zp such that

f(b) = 0 in Zp and b ≡ a (mod p).

Proof. We will proceed by constructing a root in Zp of the polynomial f(x)

which we call b. We construct its p-adic expansion so that b = b0 +b1p+b2p
2 +

· · · for bi ∈ {0, 1, . . . , p − 1}. We will construct b by inductively finding each

bi. At the k-th step we will have constructed a βk = b0 + b1p+ b2p
2 + · · ·+ bkp

k

such that f(βk) ≡ 0 (mod pk+1) and βk ≡ a (mod p). Since we can do this

for all k, we have produced a b = b0 + · · · + bkp
k + · · · such that f(b) ≡ 0

(mod pk) for all k.

For our base case when k = 0, we let β0 = a (mod p). Then f(β0) ≡ f(a) ≡

0 (mod p) and β0 = b0 ≡ a (mod p).

Now suppose there exists βk−1 = b0 + b1p+ b2p
2 + · · ·+ bk−1p

k−1 such that

f(βk−1) ≡ 0 (mod pk) and βk−1 ≡ b0 ≡ a (mod p).
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Consider the k-th case. First, note that f(βk−1) ≡ 0 (mod pk), so pk |

f(βk−1). So, if γk = f(βk−1)

pk
then γk ∈ Z. Also note that p - f ′(βk−1) since

f ′(βk−1) ≡ f ′(a) (mod p) and by hypothesis f ′(a) 6≡ 0 (mod p). Thus, by

Remark 1.18 , (f ′(βk−1))
−1 is well defined modulo p.

Now, let bk = −γk · (f ′(βk−1))−1 (mod p), which is well-defined. We can let

βk = b0 + b1p+ b2p
2 + · · ·+ bk−1p

k−1 + bkp
k which will be the unique solution

to f(βk) ≡ 0 (mod pk+1) where βk ≡ βk−1 ≡ a (mod p).

Finally, we verify our solution as follows

f(βk) = f(βk−1 + bkp
k)(1)

=
n∑
i=0

ci(βk−1 + bkp
k)i(2)

= c0 +
n∑
i=1

ci(β
i
k−1 + iβi−1k−1bkp

k + terms divisible by pk+1)(3)

≡
n∑
i=0

ciβ
i
k−1 + bkp

k

n∑
i=0

iβi−1k−1 (mod pk+1)(4)

≡ f(βk−1) + bkp
kf ′(βk−1) (mod pk+1)(5)

≡ f(βk−1)− γk(f ′(βk−1))−1pkf ′(βk−1) (mod pk+1)(6)

≡ f(βk−1)− γkpk (mod pk+1)(7)

≡ f(βk−1)−
f(βk−1)

pk
pk (mod pk+1)(8)

≡ 0 (mod pk+1),(9)

and see that f(βk) ≡ 0 (mod pk+1) and βk ≡ βk−1 ≡ a (mod p). Thus, our

induction step is complete and we have shown that b = b0 + · · · + bkp
k + · · ·

will exist such that f(b) = 0 in Zp and b ≡ a (mod p).
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The only thing left to show is that b is unique. Suppose it is not, then

suppose b and b′ satisfy the conditions such that b 6= b′. They both have p-

adic representations b = b0 + b1p + b2p
2 + · · · and b′ = b′0 + b′1p + b′2p

2 + · · · .

Let the first coefficient they differ in be the k-th. That is bi = b′i for i < k, but

bk 6= b′k. Let βk−1 = b0 + b1p+ · · ·+ bk−1p
k−1 = b′0 + b′1p+ · · ·+ b′k−1p

k−1.

Then we know we need f(βk−1 + bkp
k) ≡ f(βk−1 + bkp

k) ≡ 0 (mod pk+1).

From (5) above, this means f(βk−1) + bkp
kf ′(βk−1) ≡ f(βk−1) + b′kp

kf ′(βk−1)

(mod pk+1), which implies bkp
kf ′(βk−1) ≡ b′kp

kf ′(βk−1) (mod pk+1). Thus,

bkp
k ≡ bkp

k (mod pk+1). Therefore pk+1 | pk(bk − b′k). Thus, p | bk − b′k and

bk ≡ b′k (mod p). However 0 ≤ bk, b
′
k < p, so bk = b′k, which is a contradiction.

Thus, b = b′ and our solution must be unique. �

Now, we will use this lemma to introduce p-adic notation that is very im-

portant for our results.

We will show that in each ring of p-adic integers Zp there are (p−1) distinct

p-adic numbers x such that xp−1 − 1 = 0. These p-adic integers are called the

(p−1)st roots of unity. In each Zp one of those roots will always be 1. In fact,

these roots form a multiplicative group.

For example in Z2 there will just be one 2-adic integer such that x−1 = 0 and

it is x1 = 1. In Z3 there will two quadratic roots of one and they will be the 3-

adic integers x1 = 1 and x2 = 2+2·3+2·33+· · · satisfying x2−1 = 0. Note that

2+2·3+2·32+· · · = −1 in Z3. In Z5 there will four 4th roots of one, the 5-adic

integers satisfying x4−1 = 0, and they are x1 = 1, x2 = 2+1·5+2·52+1·53+· · · ,

x3 = 3 + 3 · 5 + 2 · 52 + 3 · 53 + 1 · 54 + · · · , and x4 = 4 + 4 · 5 + 4 · 52 + · · · .

Note in general that (p− 1) + (p− 1) · p+ (p− 1) · p2 + · · · = −1 in Zp since

1 + ((p− 1) + (p− 1) · p+ (p− 1) · p2 + · · · ) = 0.

Now, why are there (p− 1) distinct p-adic numbers x such that xp−1 − 1 =

0? Consider the polynomial f(x) = xp−1 − 1. Note that by Fermat’s Little
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Theorem, for any integer g modulo p such that p - g, f(g) = gp−1−1 ≡ 1−1 ≡ 0

(mod p). In addition f ′(g) = (p − 1)gp−2 6≡ 0 (mod p) because p - p − 1, g.

Thus, by Hensel’s Lemma for each g where 1 ≤ g ≤ p − 1 there exists a

unique a ∈ Zp such that f(a) = 0 and g ≡ a (mod p). That is, ap−1 = 1

and g ≡ a (mod p). For any g not divisible by p there is a corresponding

(p − 1)st root of unity. This means that there are at least p − 1 such roots,

one for each remainder class of g modulo p. By Hensel’s Lemma for each g its

corresponding (p− 1)st root of unity is unique. Since there are exactly p− 1

non-zero remainder classes modulo p, there are exactly p− 1 of these roots of

unity in Zp.

Definition 3.12 (The notation ω(g) and < g >). For odd primes p and for

g ∈ Z such that p - g, we will let ω(g) be the (p− 1)st root of unity in Zp such

that g ≡ ω(g) (mod p). This means that ω(g)p−1 = 1 in Zp. Note we will let

ord(ω(g)) be the order of ω(g) as an element in the finite group of (p − 1)st

roots of unity in Zp
When p = 2 we define ω(g) differently. For p = 2 and g ∈ Z such that p - g,

we will let ω(g) be the quadratic root of unity in 1 + 2Z2 such that g ≡ ω(g)

(mod 4). This means

ω(g) =

{
1 g ≡ 1 (mod 4)
−1 g ≡ 3 (mod 4)

Thus, ω(g)2 = 1 in 1 + 2Z2, and g ≡ ω(g) (mod 4). Note we will let ord(ω(g))

be the order of ω(g) in the multiplicative group {1,−1} of order 2

Example 3.13. Let p = 5 and g = 24. Then ω(24) = 4 + 4 · 5 + 4 · 52 + · · · .

This is because g ≡ 4 ≡ ω(24) (mod 5). Also, ω(24) + 1 = 0 in Zp so

ω(24)4 = (−1)4 = 1.

Let p = 5 and g = 7. Then ω(7) = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + · · · .

This is because g ≡ 2 ≡ ω(7) (mod 5). Also
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ω(7)4 ≡ (2)4 ≡ 1 (mod 5)

ω(7)4 ≡ (2 + 1 · 5)4 ≡ 1 (mod 52)

ω(7)4 ≡ (2 + 1 · 5 + 2 · 52)4 ≡ 1 (mod 53)

ω(7)4 ≡ (2 + 1 · 5 + 2 · 52 + 1 · 53)4 ≡ 1 (mod 54)

ω(7)4 ≡ (2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54)4 ≡ 1 (mod 55)

...

Thus, ω(7) ≡ 1 (mod pe) for all positive integers e. Thus, ω(7) = 1 in Zp.

Lemma 3.14. For odd primes p and for g ∈ Z such that p - g, let m = ordp(g).

Then, ord(ω(g)) = m.

Proof. Suppose ord(ω(g)) = n. We must show m = n. Recall that g ≡ ω(g)

(mod p). Thus, gx ≡ ω(g)x (mod p) for any integer x. Therefore, ω(g)m ≡

gm ≡ 1 (mod p). So n ≤ m. In addition, gn ≡ ω(g)n ≡ 1 (mod p). So m ≤ n.

Thus, m = n. �

Lemma 3.15. For p = 2 and for g ∈ Z such that p - g, let m = ord4(g). Then

ord(ω(g)) = m.

Proof. This proof is similar to the proof of Lemma 3.14. �

Note that for p = 2, ord(ω(g)) = 1 or 2 depending on whether ω(g) =

1 or − 1 respectively.
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4. Previous results from the 2014 Mount Holyoke REU and

their extension to the case where p = 2

Recall that the map that sparked our interest because of its relation to the

ElGamal DDS for a fixed integer g where p - g

x→ xgx (mod p)

was called the discrete Lambert map (DLM).

There are a few previous results related concerning the DLM. In [8], Liu

proves the following result.

Theorem 4.1. For an odd prime p and a positive integer g such that p - g,

let m = ordp(g). Then the number of collisions that are solutions to

xgx ≡ ygy (mod pe)

is equal to

m(m+ 1)(p− 1)

2
pe−1

for x and y ∈ {1, 2, 3, ..., pem}, p - x and p - y.

Next we have the analogous theorem to Theorem 4.1 for p = 2.

Theorem 4.2. Let p = 2 and let g be a positive integer such that p - g. Then

the number of collisions that are solutions to

xgx ≡ ygy (mod pe)

is equal to pe−1 for x and y ∈ {1, 2, 3, ..., pe}, p - x and p - y. If x 6= y the

number of solutions to

xgx ≡ ygy (mod pe)

is equal to 0.
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Proof. Case 1 : Let x = y. Then xgx = ygy so xgx ≡ ygy (mod pe). Note that

there are pe−1 values x and y can take such that x = y to solve the congruence,

because any odd value in {1, 2, . . . , pe} will work.

Case 2 : Let x 6= y. Suppose there is a solution (a, b) to the congruence.

That is aga ≡ bgb (mod 2e). This congruence is equivalent to aga−b ≡ b

(mod 2e). Thus, aga−b ≡ b (mod 2i) for all i ≤ e. This means aga−b ≡ b

(mod 21). Since 2 - g, then g ≡ 1 (mod 2) and a ≡ b (mod 2). So 2 | a − b.

Since φ(22) = 2, by Euler’s Theorem, ga−b ≡ 1 (mod 22). Thus, a ≡ b

(mod 22). Since φ(23) = 22, this implies ga−b ≡ 1 (mod 23). Again we find

a ≡ b (mod 23). Following in this manner, we find that a ≡ b (mod 2e). Thus,

since a, b ∈ {1, . . . , 2e}, a = b. This is a contradiction. Thus, there are no

solutions in this case.

�

In [10] Waldo and Zhu prove the following result.

Theorem 4.3. Let p be an odd prime. Let g and c be integers such that p - g

and p - c. Let m = ordp(g). Let x ∈ {1, . . . , pem | x 6≡ 0 (mod p)}. Then the

number of solutions to

xgx ≡ c (mod pe)

is m.

Next we have the analogous theorem to Theorem 4.3 for p = 2.

Theorem 4.4. Let p = 2. Let g and c be integers such that p - g and p - c.

Let x ∈ {1, . . . , pe | x 6≡ 0 (mod p)}. Then the number of solutions to

xgx ≡ c (mod pe)

is 1.
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Proof. First suppose that both xgx ≡ c (mod pe) and ygy ≡ c (mod pe) for

a fixed c. This means xgx ≡ ygy (mod pe). By Theorem 4.2, there are no

solutions to this congruence unless x = y. Thus, if there exists x such that

xgx ≡ c (mod pe), then x is unique in the given set.

Now, let us show that if p - c then there is at least one x such that xgx ≡ c

(mod pe). By hypothesis, we need only consider odd x ∈ {1, 3, . . . , pe − 1}.

Note that for c > pe − 1 then there exists c′ such that c ≡ c′ (mod pe). Thus,

if xgx ≡ c′ (mod pe), then xgx ≡ c (mod pe).

So we only consider odd c ∈ {1, 3, . . . , pe−1}. Note that there are only pe−1

elements in {1, 3, . . . , pe − 1}.

Consider any x in {1, . . . , pe | x 6≡ 0 (mod p)}. There are pe−1 such x. For

each x there exists some odd c in {1, 3, . . . , pe−1} such that xgx ≡ c (mod pe).

Since the sets of c and x are in one-to-one correspondence, for each c there

exists an x such that xgx ≡ c (mod pe).

Thus, for each c there is exactly one x such that xgx ≡ c (mod pe).

�

5. Counting fixed points and two-cycles of the discrete

Lambert map

In this section we want to count the number of fixed points and two cycles

of the discrete Lambert map.

Below is the definition of a fixed point.

Definition 5.1 (Fixed Points of the discrete Lambert map). Let p be a fixed

prime and g and e fixed positive integers such that p - g. A fixed point is a

solution, x, to

xgx ≡ x (mod pe)

such that 1 ≤ x ≤ pe−1(p− 1) and p - x.
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The definition of a two-cycle is given below.

Definition 5.2 (Two-Cycles of the discrete Lambert map). Let p be a fixed

prime and g and e be fixed positive integers such that p - g. A two-cycle is a

simultaneous solution, (x, y), to

xgx ≡ y (mod pe)

ygy ≡ x (mod pe)

such that 1 ≤ x, y ≤ pem, x 6≡ y (mod pe), m = ordp(g), and p - x, y.

To count the number of fixed points and two cycles for odd primes, we

first give some preliminary propositions that will help us count the number of

solutions to gx ≡ 1 (mod pe). This in turn will help us count the number of

fixed points. Then we will count the number of fixed points for an extended

range of x values. This will help us count the number of two cycles. Along

the way we will present an interesting result about order modulo pe.

We then repeat this process for p = 2.

Before we proceed we recall the formula for the number of k-combinations

or the number of ways to choose k unordered objects from n distinct objects,

where 0 ≤ k ≤ n. We will use the notation
(
n
k

)
for this quantity and recall

that it has the formula
(
n
k

)
= n!

k!(n−k)! .

Proposition 5.3. For any positive integer n, vp(n!) = n−sn
p−1 , where, to define

the integer sn, we write n in its p-adic expansion as a0+a1p+· · ·+at−1pt−1+atpt

and then we can define sn = a0 + a1 + · · ·+ at.

Proof. Please see Lemma 3.1 in [1]. �

For example, for n = 100, v5(100!) = 100−s100
5−1 . Since 100 = 0 + 0 · 5 + 4 · 52,

s100 = 4 and v5(100!) = 100−4
4

= 24. So we have that 524 | 100!, but 525 - 100!
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Next, we present a result that will help us count the number of solutions to

gx ≡ 1 (mod pe).

Proposition 5.4. Fix a prime p and a positive integer e. Let n and k be

integers such that k > 0 and 1 ≤ n ≤ pe−1(p − 1), then for 1 < i ≤ n,

vp(np
k) < vp

((
n
i

)
pki
)

if p is an odd prime or if p = 2 and k > 1.

Proof. Let r be the largest integer such that pr | n. Then the p-adic expansion

of n is n = arp
r + · · · + ae−1p

e−1 where ar > 0 since pr | n and 0 ≤ ai < p

for all indices i. We can note that vp(np
k) = r + k. So we need to examine

vp
((
n
i

)
pki
)

for 1 < i ≤ n.

Now we consider three cases.

Case 1 : Let r = 0. Then vp(np
k) = k and vp

((
n
i

)
pki
)
≥ ki. Since i > 1 we

have k = vp(np
k) < ki ≤ vp

((
n
i

)
pki
)
.

Case 2 : Let i ≥ pr and r ≥ 1. So 1 < pr ≤ i ≤ n. Then vp
((
n
i

)
pki
)
≥ ki ≥

kpr and vp(np
k) = r + k. So if we show r + k < kpr then this case is proven.

Consider the continuous functions f(r) = r + k and g(r) = kpr of r. For

r = 1 clearly f(1) < g(1) since, by hypothesis, either k ≥ 1 and p > 2 or k ≥ 2

and p = 2. Now note that 1 = f ′(r) and g′(r) = krpr−1. Thus f ′(r) < g′(r)

for r > 1. Thus g(r) increases more quickly than f(r). So f(r) < g(r) for

r ≥ 1 by essentially the mean value theorem. Thus, vp(np
k) < vp

((
n
i

)
pki
)
.

Case 3 : Let i < pr and r ≥ 1. So 1 < i ≤ pr ≤ n. Then i has a p-

adic expansion of i = cjp
j + · · · + cr−1p

r−1 where 0 6= cj, 0 ≤ j < r, and

0 ≤ ct ≤ p− 1 for all indices t.
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Note that

n− i = arp
r + · · ·+ ae−1p

e−1 − cjpj − · · · − cr−1pr−1

= −cjpj − · · · − cr−1pr−1 + arp
r + · · ·+ ae−1p

e−1

= (p− cj)pj + (p− 1− cj+1)p
j+1 + · · ·+ (p− 1− cr−1)pr−1

+ (ar − 1)pr + ar+1p
r+1 + · · ·+ ae−1p

e−1.

Note for all indices s that 0 ≤ as ≤ p−1 for r+1 ≤ s ≤ e−1 and 1 ≤ ar ≤ p−1

so 0 ≤ ar − 1 < p − 1. In addition, 0 ≤ cs ≤ p − 1 for j + 1 ≤ s ≤ r − 1 so

0 ≤ p − 1 − cs ≤ p − 1. Lastly, 1 ≤ cj ≤ p − 1 so 1 ≤ p − cj ≤ p − 1. Thus,

the expression for n− i above is a valid p-adic expansion.

Thus,

vp(n!) =
n− ae−1 − · · · − ar

p− 1

vp(i!) =
i− cr−1 − · · · − cj

p− 1

vp((n−i)!) =
n− i− ae−1 − · · · − ar + 1− (p− 1)(r − j − 1) + cr−1 + · · ·+ cj − p

p− 1
.

Therefore, by simplification we see that

vp(

(
n

i

)
) = vp(

n!

i!(n− i)!
) = vp(n!)− vp(i!)− vp((n− i)!)

=
(p− 1)(r − 1− j) + p− 1

p− 1

= r − 1− j + 1

= r − j

So in this case where i < pr we have that vp
((
n
i

)
pki
)

= r − j + ki when

vp(i) = j and vp(n) = r.

Note that kpj − j ≤ ki − j since i ≥ pj. Note as in Case 2, if j ≥ 1, then

k + j < kpj. Thus, k < kpj − j ≤ ki− j. If j = 0, then, since i > 1, we have

that k < ki = ki− j. Thus, k + r < ki− j + r. Thus, vp(np
k) < vp

((
n
i

)
pki
)
.
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�

In the next theorem we use Proposition 5.4 to count the number of solutions

to gx ≡ 1 (mod pe). The proof will help us to count the number of fixed points.

Before we continue, note that we will define N = p−1
m

. This is an integer

because m | p− 1 by Fermat’s Little Theorem and Proposition 1.23.

Theorem 5.5. Let p be an odd prime. Let g be fixed such that p - g. Take e

to be a positive integer. Further, we let m = ordp(g) and take N = p−1
m

. In

this situation we can count the number of solutions to gx ≡ 1 (mod pe) for

x ∈ {1, . . . , pe−1(p− 1)}.

If g ≡ ω(g) (mod pe) then there will be pe−1N solutions to gx ≡ 1 (mod pe).

Otherwise, let k be the positive integer 1 ≤ k < e such that g ≡ ω(g)

(mod pk) but g 6≡ ω(g) (mod pk+1). Then gx ≡ 1 (mod pe) will have pk−1N

solutions.

Proof. Case 1 : Suppose g ≡ ω(g) (mod pe). In this case, gx ≡ (ω(g))x

(mod pe). Thus, we only need to count the number of x in {1, . . . , pe−1(p−1)}

such that (ω(g))x ≡ 1 (mod pe).

For x to be a solution of the equation modulo pe, we need (ω(g))x ≡ 1

(mod p). This is by Proposition 1.10.

Since g ≡ ω(g) (mod p) and ord(ω(g)) is m, we know that for x to be a

solution m | x.

Now for x such that m | x, (ω(g))x ≡ 1 (mod pe) by definition of ω(g).

Thus, in this case, gx ≡ (ω(g))x ≡ 1 (mod pe) if and only if x ≡ 0 (mod m).

Thus, there are pe−1(p−1)
m

= pe−1N values for x where 1 ≤ x ≤ pe−1(p − 1) for

which gx ≡ 1 (mod pe).

Case 2 : We have g ≡ ω(g) (mod pk) but g 6≡ ω(g) (mod pk+1). Rewriting

gx we have gx = (ω(g))x
(

g
ω(g)

)x
. We have the p-adic expansion for the integer
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g and the p-adic value ω(g) where 1 ≤ k < e, g = a0 + a1p + a2p
2 + · · · +

ak−1p
k−1+akp

k+· · ·+alpl and ω(g) = a0+a1p+a2p
2+· · ·+ak−1pk−1+bkp

k+· · ·

such that ak 6= bk and 0 ≤ ak, bk ≤ p− 1.

Thus, dividing g by ω(g) we get a p-adic integer in 1 + pZp

g

ω(g)
=
a0 + a1p+ a2p

2 + · · ·+ ak−1p
k−1 + akp

k + · · ·+ alp
l

a0 + a1p+ a2p2 + · · ·+ ak−1pk−1 + bkpk + · · ·

= (1 + ckp
k + · · · ),

where p - ck.

Therefore,

gx = ω(g)x
(

g

ω(g)

)x
= ω(g)x(1 + ckp

k + · · · )x

= ω(g)x(1 +
(
ckp

k + · · ·
)
)x

= ω(g)x(1 +

(
x

1

)
(ckp

k + · · · ) + · · ·+
(
x

x

)
(ckp

k + · · · )x).

Note that in 1 + ckp
k + · · · all the terms after ckp

k have larger powers of p

in them.

Thus, to have solutions to gx ≡ 1 (mod pe), we start with gx ≡ 1 (mod p).

Since gx ≡ ω(g)x (mod p), by definition of ω(g) since p - g, we want x such

that ω(g)x ≡ 1 (mod p), which only happens when m | x. Again, if m | x, we

know that ω(g)x ≡ 1 (mod pe), by definition.

Therefore, when m | x we have by the binomial expansion, since x is a

positive integer, that

gx ≡ (1 + (ckp
k + · · · ) + · · ·+ (ckp

k + · · · )x) (mod pe)

≡ (1 + pk(ck + · · · ) + · · ·+ pkx(ck + · · · )x) (mod pe)

Note that (ck + · · · ) is not divisible by p since ck is not divisible p, and all

other terms are.
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Thus, by Proposition 5.4, vp(
(
x
1

)
pk(ck + · · · )) = vp(xp

k) < vp(
(
x
i

)
pki) =

vp(
(
x
i

)
pki(ck + · · · )) for all i > 1.

So for gx ≡ 1 (mod pe), we need pe | xpk(ck + · · · ) which implies that we

need pe−k | x.

Thus we need to count all the 1 ≤ x ≤ pe−1(p − 1) such that x ≡ 0

(mod pe−k) and x ≡ 0 (mod m). Thus, since gcd(m, p) = 1, we need x ≡ 0

(mod pe−km). So there will be pe−1(p−1)
pe−km

= pk−1N solutions to gx ≡ 1 (mod pe)

where 1 ≤ x ≤ pe−1(p− 1).

�

Here is an example to illustrate Theorem 5.5.

Example 5.6. Let p = 5 and g = 24. Note that g = 24 = 4 + 4 · 5 and

ω(g) = 4 + 4 · 5 + 4 · 52 + · · · . Also note that ordp(g) = 2 because g 6≡ 1

(mod 5) but g2 ≡ 242 ≡ 42 ≡ 1 (mod 5). If e = 1, 2 then g ≡ ω(g) (mod pe).

If e > 2, then g 6≡ ω(g) (mod pe) but g ≡ ω(g) (mod p2).

Now, consider the number of solutions to (24)x ≡ 1 (mod 5e) for 1 ≤ x ≤

5e−1(5− 1) = 5e−14.

By Theorem 5.5, if e = 1 then there are 5e−1 · 5−1
2

= 4
2

= 2 solutions for

1 ≤ x ≤ 4. The solutions are x = 2, 4 since 242 ≡ 1 ≡ 244 (mod 5).

If e = 2, there are 5e−1 · 5−1
2

= 5 · 4
2

= 10 solutions for 1 ≤ x ≤ 20. The

solutions are x = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

If e > 2, then there are 5k−1 5−1
2

= 51 4
2

= 10 solutions for 1 ≤ x ≤ 5e−1 · 4.

Next we will present a corollary of Theorem 5.5 that gives a formula for

ordpe(g). It will be used throughout the proofs on counting the number of

fixed points and two cycles.

Corollary 5.7. Let p be an odd prime. Let g be fixed such that p - g and

consider a positive integer e. Let m = ordp(g).
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If there exists k such that 1 ≤ k < e and g ≡ ω(g) (mod pk) but g 6≡ ω(g)

(mod pk+1) then ordpe(g) = pe−km.

If g ≡ ω(g) (mod pe) then ordpe(g) = m.

Proof. If there exists k such that 1 ≤ k < e and g ≡ ω(g) (mod pk) but

g 6≡ ω(g) (mod pk+1) then the order of g modulo pe will be the smallest x such

that gx ≡ 1 (mod pe). From the proof above, note that we said for there to

be a solution, we only need x ≡ 0 (mod pe−k) and x ≡ 0 (mod m). Thus,

since gcd(m, pe−k) = 1 there will be a solution if and only if pe−km | x. Thus,

ordpe(g) = pe−km.

If g ≡ ω(g) (mod pe) then the order of g modulo pe will be the same as the

order of ω(g) modulo pe and, by the definition of the order of ω(g) in the ring

of (p − 1)st roots of unity, the order of ω(g) is equal to m. Note that, from

the proof of Theorem 5.5, ω(g)x ≡ 1 (mod pe) if and only if m | x. Thus,

ordpe(g) = m. �

Below is an example to illustrate Corollary 5.7.

Example 5.8. Let p = 5 and g = 24. We know that ordp(g) = 2. Since

g ≡ ω(g) (mod pe) for e = 1, 2, then ordp(g) = 2 and ordp2(g) = 2.

Since g 6≡ ω(g) (mod p3), for e > 2 ordpe(24) = pe−22.

In the next theorem we use Theorem 5.5 to help us count fixed points, which

are defined in Definition 5.1. This will be useful for counting the number of

two cycles.

Theorem 5.9. Let p be an odd prime. Let g be fixed such that p - g and

consider a positive integer e. Let x ∈ {1, . . . , pe−1(p− 1)} such that p - x. Let

m = ordp(g) and N = p−1
m

. Consider the congruence xgx ≡ x (mod pe).

If e = 1 there will be N solutions.
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If there exists a positive integer k such that 1 ≤ k < e and g ≡ ω(g)

(mod pk) but g 6≡ ω(g) (mod pk+1) then there will be no solutions to the con-

gruence xgx ≡ x (mod pe).

If g ≡ ω(g) (mod pe) and e > 1 then there will be pe−2N(p− 1) solutions to

the congruence.

Proof. Since p - x, counting the solutions to our congruence reduces to counting

the solutions to gx ≡ 1 (mod pe). Now, this is not the same problem as in

Theorem 5.5, because here p cannot divide x.

If e = 1, we will never have p | x, since 1 ≤ x ≤ p − 1. Thus, we will have

the same number of solutions as in Theorem 5.5, which is N .

In the case where there exists k such that k < e and g ≡ ω(g) (mod pk)

but g 6≡ ω(g) (mod pk+1), then from Theorem 5.5, for a solution x we needed

pe−k | x. Thus, in this case there will be no solutions to our current congruence.

Now, in the case where g ≡ ω(g) (mod pe) and e > 1, there were pe−1N

solutions to gx ≡ 1 (mod pe) where we allowed p | x. So now we take out all

the solutions where p | x. We saw that we needed m | x. Now, by the Chinese

Remainder Theorem, when x ≡ 0 (mod m) and x ≡ 0 (mod p), there is one

solution to x ≡ 0 (mod pm). So there are pe−1(p−1)
pm

= pe−2N solutions where

p | x. Thus, there are pe−1N − pe−2N = pe−2N(p− 1) solutions when p - x.

�

Here is an example to illustrate Theorem 5.9.

Example 5.10. Let p = 5 and g = 24. Consider the number of solutions to

x24x ≡ x (mod 5e) for 1 ≤ x ≤ 5e−1(5− 1) = 5e−14 such that 5 - x.

By Theorem 5.9, if e = 1 there are 5−1
m

= 4
2

= 2 solutions for 1 ≤ x ≤ 4.

These are x = 2, 4. Note that 2 · 242 ≡ 2 (mod 5) and 4 · 244 ≡ 4 (mod 5).

If e = 2, there are 5e−2(5 − 1) · 5−1
m

= 50(4) · 4
2

= 4 · 2 = 8 solutions for

1 ≤ x ≤ 20. They are x = 2, 4, 6, 8, 12, 14, 16, 18.
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If e > 2, there are no solutions for 1 ≤ x ≤ 5e−14.

In the lemma below we count the number of fixed points for an extended

range of x values from 1 ≤ x ≤ pe−1(p− 1) to 1 ≤ x ≤ pem. This will help us

prove our result about two cycles.

Lemma 5.11. Let p be an odd prime. Let g be fixed such that p - g. Let e

be a positive integer. Let x ∈ {1, . . . , pem} such that p - x. Let m = ordp(g).

Consider xgx ≡ x (mod pe).

If g ≡ ω(g) (mod pe) then there will be pe−1(p − 1) solutions to xgx ≡ x

(mod pe).

If there exists k such that 1 ≤ k < e and g ≡ ω(g) (mod pk) but g 6≡ ω(g)

(mod pk+1) then there will be no solutions to the congruence.

Proof. Case 1 : Let g ≡ ω(g) (mod pe).

Note, since p - x, our congruence reduces to gx ≡ 1 (mod pe).

We want gx ≡ 1 (mod pe), thus gx ≡ 1 (mod p). Therefore, m | x. In fact,

if m | x then

gx ≡ ω(g)x (mod pe)

≡ 1,

by definition.

Hence, all we need is m | x. However, we have accidentally counted in

solutions such that p | x. Note that since gcd(m, p) = 1, the only time both

m and p divide x is when pm | x. So between 1 and pem there are pem
pm

= pe−1

solutions x such that both m and p divide x.

Thus, there are pe − pe−1 = pe−1(p− 1) solutions such that p - x.

Case 2 : Let there exists k such that 1 ≤ k < e and g ≡ ω(g) (mod pk) but

g 6≡ ω(g) (mod pk+1).
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By Theorem 5.5, for a solution x we needed pe−k | x. Thus, in this case

there will be no solutions to our current congruence. �

Below is an example illustrating Lemma 5.11.

Example 5.12. Let p = 5 and g = 24.

Consider the number of solutions to xgx ≡ x (mod pe) for 1 ≤ x ≤ 5e · 2

such that 5 - x.

By Lemma 5.11, if e = 1 there are 5e−1(5− 1) = 4 solutions for 1 ≤ x ≤ 10.

These are x = 2, 4, 6, 8.

If e = 2, there are 5e−1(5 − 1) = 5(4) = 20 solutions for 1 ≤ x ≤ 50. They

are x = 2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48.

If e > 2, there are no solutions for 1 ≤ x ≤ 5e · 2.

Next is a small lemma we need to help us prove our result about two cycles.

Lemma 5.13. Let p be an odd prime. Let e be a positive integer. Let g be a

positive integer such that p - g and g ≡ ω(g) (mod pe). Let ordp(g) = m. If

m - y and m | 2y, then gy ≡ −1 (mod pe).

Proof. Note that gy ≡ ω(g)y 6≡ 1 (mod pe). So ω(g)2y ≡ 1 (mod pe) and

ω(g)y 6≡ 1 (mod pe). Since ω(g) is a root of unity, so is ω(g)y, since y is an

integer. Now, since m | 2y, ω(g)2y ≡ 1 (mod pe). Thus, ω(g)y is a root of

order 2, so ω(g)y ≡ −1 (mod pe). Thus, gy ≡ −1 (mod pe). �

We will now use Lemmas 5.11 and 5.13 to count the number of two cycles

of the discrete Lambert map, defined in Definition 5.2.

Theorem 5.14. Let p be an odd prime. Let g be a positive integer such that

p - g. Let e be a positive integer. Let m = ordp(g). Consider the number of

simultaneous solutions, or two cycles, of the congruences xgx ≡ y (mod pe)



40 DARA ZIRLIN

and ygy ≡ x (mod pe), such that x, y ∈ {1, . . . , pem}, x 6≡ y (mod pe), and

p - x, y.

If g ≡ ω(g) (mod pe), then there are pe−1(p−1)(m−1)
2

such solutions.

If g 6≡ ω(g) (mod pe) then will exist a k such that g ≡ ω(g) (mod pk) but

g 6≡ ω(g) (mod pk+1) for 1 ≤ k < e.

When 2 | m and e ≤ 2k there are pe−1(p−1)
2

two cycles.

In all other cases (for e > 2k or for odd m) there are no two cycles.

Proof. First, suppose there is a solution (x, y) that is a two cycle. Since,

xgx ≡ y (mod pe) and ygy ≡ x (mod pe), we see that

xgxgy ≡ x (mod pe)

so that we have

xgx+y ≡ x (mod pe).

Since p - x, x must be invertible modulo pe by Remark 1.18 so we see that

(∗) gx+y ≡ 1 (mod pe).

Case 1 : We will first consider g ≡ ω(g) (mod pe).

Note by Corollary 5.7, ordpe(g) = m. Thus, by (∗) it must be that m | x+y.

This implies x ≡ −y (mod m).

Now, suppose we fix a y, such that p - y and 1 ≤ y ≤ pem. To be a two cycle

we must consider all x such that x ≡ ygy (mod pe) and x ≡ −y (mod m). By

the Chinese Remainder Theorem, there is one solution, x, modulo pem such

that x ≡ ygy (mod pe) and x ≡ −y (mod m) are satisfied. Now we must show

that this value for x will pair with our y to form a two cycle.

Note that for this x, when e > 0, pe | x− ygy so p | x− ygy. So if p were to

divide x then p would divide ygy, but since p - g, that would mean p | y which

would contradict our choice of y. Thus p - x.
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In addition, if we have found such an x, then

xgx ≡ ygygx (mod pe)

≡ ygx+y (mod pe)

≡ y (mod pe).

Thus, (x, y) really does form a simultaneous solution to the two congruences.

Since, there is one x for each y, there are pem − pe−1m = pe−1(p − 1)m

simultaneous solutions to the two congruences. However, this includes fixed

points, where x ≡ y (mod pe), and also we are still counting solution (x, y)

and (y, x) as different solutions.

Since, we do not want to count fixed points, let us find out how many there

are and subtract them. That is, we want to count values for y such that

ygy ≡ y (mod pe). By Lemma 5.11, there are pe−1(p − 1) such fixed points.

Thus, there are pe−1(p − 1)m − pe−1(p − 1) = pe−1(p − 1)(m − 1) two cycles

where x 6≡ y (mod pe) and x, y are in the required range of values.

However, we have counted x, y and y, x as different solutions. Thus, we must

divide by 2 to get the actual number of two cycles. So there are pe−1(p−1)(m−1)
2

two cycles in the case where g ≡ ω(g) (mod pe).

Case 2 : Now if g ≡ ω(g) (mod pk) but g 6≡ ω(g) (mod pk+1), where 1 ≤

k < e.

For (x, y) to be a two cycle, we must still require gx+y ≡ 1 (mod pe), but now

ordpe(g) = pe−km by Corollary 5.7. Thus, it must be true that pe−km | x+ y.

Now suppose we choose a y such that p - y and 1 ≤ y ≤ pem.

We must consider all x such that x ≡ −y (mod pe−km) and x ≡ ygy

(mod pe). Since e−k < e, we have that ygy ≡ x ≡ −y (mod pe−k). Now, since

p - y and y is invertible modulo pe−k, we deduce that gy ≡ −1 (mod pe−k).
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Therefore, since e− k ≥ 1, then gy ≡ −1 (mod p). Thus, m - y, but m | 2y.

Thus, m must be even since 1 ≤ e− k and p is odd.

Case 2a : If m is odd, there cannot be any solutions since m - y, but m | 2y

must hold for there to be a solution.

Case 2b : Note that if e ≥ 2k + 1 then gy ≡ −1 (mod pe−k) implies that

−1 ≡ gy (mod pk+1) since e − k ≤ k + 1. Thus, the order of g modulo pk+1

will not divide y, but the order of g modulo pk+1 will divide 2y. By Corollary

5.7, the order of g modulo pk+1 is pm. Thus, pm | 2y. Since p 6= 2, we have

that p | y, which contradicts our assumption that p - y. Thus, there are no

solutions when e ≥ 2k + 1.

Case 2c : Now, suppose 2 | m and e ≤ 2k. We know that we must count

the solutions y where m - y, but m | 2y. So, fix such a y. This implies that

gy ≡ −1 (mod pe−k), by Lemma 5.13.

We know we also need x ≡ −y (mod pe−km) and x ≡ ygy (mod pe). If that

is the case, then x ≡ −y (mod m) and x ≡ ygy (mod pe). By the Chinese

Remainder Theorem there is one x such that 1 ≤ x ≤ pem and such that for

a given y, x ≡ −y (mod m) and x ≡ ygy (mod pe).

If x ≡ −y (mod m) and x ≡ ygy (mod pe), then x ≡ −y (mod m) and x ≡

ygy (mod pe−k). Since gy ≡ −1 (mod pe−k), this implies that x ≡ y(−1) ≡ −y

(mod pe−k).

Thus, since gcd(m, pe−k) = 1, we have pe−km | x + y. Thus, there is one

solution to x ≡ −y (mod pe−km) and x ≡ ygy (mod pe) where 1 ≤ x ≤ pem.

If x ≡ −y (mod pe−km), then gx+y ≡ 1 (mod pe). Thus, for this pair (x, y)

xgx ≡ ygygx ≡ ygx+y ≡ y (mod pe).

Therefore, if k < e ≤ 2k and 2 | m, there will be a two cycle (x, y) if and

only if m - y and m | 2y. So, let us count how many y there are such that

m - y and m | 2y.
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First, let us count how many y there are such that m | 2y. Since m is

even, we have that m
2
| y. Thus, there are 2

m
pem − 2

m
pe−1m = 2pe−1(p − 1)

such y since we are subtracting out those y such that p | y. Similarly, there

are 1
m
pem − 1

m
pe−1m = pe−1(p − 1) such y such that m | y. Thus, there are

2pe−1(p − 1) − pe−1(p − 1) = pe−1(p − 1), y such that m - y, but m | 2y and

p - y. For each y there will be exactly one x.

Now, we have counted all of the simultaneous solutions to (∗), and note by

Lemma 5.11, none of these will be fixed points.

Lastly, we have double counted, since we counted (x, y) and (y, x) as different

solutions. Thus, there are pe−1(p−1)
2

total two cycles in this case.

�

Here is an example to illustrate Theorem 5.14.

Example 5.15. Let p = 5 and g = 24. So m = ord5(24) = 2.

Now, consider the number of simultaneous solutions, or two cycles, to the

equations x24x ≡ y (mod 5e) and y24y ≡ x (mod 5e), such that 0 ≤ x, y ≤

5e · 2, x 6≡ y (mod 5e), and 5 - x, y.

If e = 1, by Theorem 5.14, there are 5e−1(5−1)(2−1)
2

= 4
2

= 2 solutions for

0 ≤ x, y ≤ 10. One solution is (x, y) = (3, 7) because 7·247 ≡ 7·4 ≡ 3 (mod 5)

and 3·243 ≡ 2·4 ≡ 2 ≡ 7 (mod 5). The other solution is (x, y) = (1, 9) because

1 · 241 ≡ 1 · 4 ≡ 4 (mod 5) and 9 · 249 ≡ 4 · 4 ≡ 1 (mod 5).

If e = 2, there are 5e−1(5−1)(2−1)
2

= 5·4
2

= 10 solutions for 0 ≤ x, y ≤ 50. The

solutions are (x, y) ∈

{(1, 49), (3, 47), (7, 43), (9, 41), (11, 39), (13, 37), (17, 33), (19, 31), (21, 29), (23, 27)}.

If e = 3, there are 5e−1(5−1)
2

= 52·4
2

= 50 solutions for 0 ≤ x, y ≤ 250. One

solution is (x, y) = (1, 149).

If e = 4, there are 5e−1(5−1)
2

= 53·4
2

= 250 solutions for 0 ≤ x, y ≤ 1250. One

solution is (x, y) = (1, 649).
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If e > 4, there are no solutions for 0 ≤ x, y ≤ 5e · 2.

Next we consider the case where p = 2 and try to count two cycles modulo

2e. From this point on g will be an odd number and m the order of g modulo

4. Note that for all such g either m = 1 for g ≡ 1 (mod 4) or m = 2 for

g ≡ 3 (mod 4). In addition, ω(g) = 1 if g ≡ 1 (mod 4) and ω(g) = −1 if

g ≡ 3 (mod 4). Note that by ord(ω(g)) we mean the order of ω(g) in the

multiplicative group {1,−1}.

In the next theorem we use Proposition 5.4 to count the number of solutions

to gx ≡ 1 (mod pe) for p = 2. The proof will help us count the number of

fixed points. This is analogous to Theorem 5.5.

Theorem 5.16. Let p = 2. Let g and e > 1 be fixed integers such that p - g.

Let 1 ≤ x ≤ pe−1. Let m = ord4(g). In this situation we count the number of

solutions to gx ≡ 1 (mod pe).

If g ≡ ω(g) (mod pe) then there will be pe−1

m
solutions to gx ≡ 1 (mod pe).

Otherwise there exists a positive integer k such that 2 ≤ k < e and g ≡ ω(g)

(mod pk) but g 6≡ ω(g) (mod pk+1) and there will be pk−1 solutions to gx ≡ 1

(mod pe).

Proof. Case 1 : Suppose g ≡ ω(g) (mod pe). In this case, gx ≡ (ω(g))x

(mod pe). Thus, we only need to count the solutions to (ω(g))x ≡ 1 (mod pe)

for 1 ≤ x ≤ pe.

If ω(g)x ≡ 1 (mod pe) for e > 1, then (ω(g))x ≡ 1 (mod p2). This is by

Proposition 1.10.

Since g ≡ ω(g) (mod p2), (ω(g))x ≡ 1 (mod p2). Since ord4(g) = ord(ω(g)) =

m, m | x.

Then note that for x such that m | x, (ω(g))x ≡ 1 (mod pe) by definition.

Thus, gx ≡ (ω(g))x ≡ 1 (mod pe) if and only if x ≡ 0 (mod m). Thus, there

are pe−1

m
solutions for 1 ≤ x ≤ pe−1 when g ≡ ω(g) (mod pe).
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Case 2 : We have g ≡ ω(g) (mod pk) but g 6≡ ω(g) (mod pk+1). So gx =

(ω(g))x
(

g
ω(g)

)x
where g = a0 + a1p+ a2p

2 + · · ·+ ak−1p
k−1 + akp

k + · · ·+ alp
l

and ω(g) = a0 + a1p + a2p
2 + · · · + ak−1p

k−1 + bkp
k + · · · such that ak 6= bk.

Keep in mind that ω(g) = 1 or ω(g) = −1.

Thus, when dividing g by ω(g) we get

g

ω(g)
=
a0 + a1p+ a2p

2 + · · ·+ ak−1p
k−1 + akp

k + · · ·+ alp
l

a0 + a1p+ a2p2 + · · ·+ ak−1pk−1 + bkpk + · · ·

= (1 + ckp
k + · · · ),

where p - ck, so that ck = 1 since p = 2.

Therefore, for an integer x where 1 ≤ x ≤ pe−1

gx = ω(g)x
(

g

ω(g)

)x
= ω(g)x(1 + pk + · · · )x

= ω(g)x(1 +
(
pk + · · ·

)
)x

= ω(g)x(1 +

(
x

1

)
(pk + · · · ) + · · ·+

(
x

x

)
(pk + · · · )x).

Note that in pk + · · · all the terms after pk have larger powers of p in them.

Thus, to have solutions to gx ≡ 1 (mod pe), we start with gx ≡ 1 (mod p2).

Since gx ≡ ω(g)x (mod p2), by definition of ω(g) since p - g, we want x such

that ω(g)x ≡ 1 (mod p2), which only happens when m | x. Again, if m | x,

we know that ω(g)x ≡ 1 (mod pe), by definition.

Therefore, when m | x we have that

gx ≡ (1 +

(
x

1

)
(pk + · · · ) + · · ·+

(
x

x

)
(pk + · · · )x) (mod pe)

≡ (1 +

(
x

1

)
pk(1 + · · · ) + · · ·+

(
x

x

)
pkx(1 + · · · )x) (mod pe)

Note that (1 + · · · ) is not divisible by p since 1 is not divisible p, and all

other terms are.
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Thus, by Proposition 5.4, vp(
(
x
1

)
pk(1 + · · · )) < vp(

(
x
i

)
pki(1 + · · · )) for all

i > 1.

So for gx ≡ 1 (mod pe), we need pe | xpk(1 + · · · ) which implies we need

pe−k | x.

Thus we need to count all the 1 ≤ x ≤ pe−1 such that x ≡ 0 (mod pe−k)

and x ≡ 0 (mod m). Thus, since m = 1 or m = 2 and 2 ≤ k < e, we see that

m | pe−k. Thus, all we need is x ≡ 0 (mod pe−k). So there will be pe−1

pe−k = pk−1

solutions to gx ≡ 1 (mod pe) where 1 ≤ x ≤ pe−1.

�

Next we will present a corollary of Theorem 5.16 that gives a formula for

ordpe(g) for p = 2. It will be used throughout the proofs on counting the

number of fixed points and two cycles.

Corollary 5.17. Let p = 2. Let g be fixed such that p - g and consider an

integer e > 1. Let m = ord4(g).

If there exists k such that 2 ≤ k < e and g ≡ ω(g) (mod pk) but g 6≡ ω(g)

(mod pk+1) then ordpe(g) = pe−k.

If g ≡ ω(g) (mod pe) then ordpe(g) = m.

Proof. If there exists k such that 2 ≤ k < e and g ≡ ω(g) (mod pk) but

g 6≡ ω(g) (mod pk+1) then the order of g modulo pe will be the smallest x such

that gx ≡ 1 (mod pe). From the proof above, note that we said for there to

be a solution, we only need x ≡ 0 (mod pe−k). Thus, ordpe(g) = pe−k.

If g ≡ ω(g) (mod pe) then the order of g modulo pe will be the same as the

order of ω(g) in the multiplicative group {1,−1}, which is either 1 or 2. Note

that, by looking at the proof from Theorem 5.5, ω(g)x ≡ 1 (mod pe) if and

only if m | x. Thus, ordpe(g) = m. �
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In the next theorem we use Theorem 5.16 to help us count fixed points,

which are defined in Definition 5.1, for p = 2. This will be useful for counting

the number of two cycles for p = 2.

Theorem 5.18. Let p = 2. Let g be fixed such that p - g and consider an

integer e > 1. Let x ∈ {1, . . . , pe−1} such that p - x. Let m = ord4(g).

Consider the xgx ≡ x (mod pe).

If there exists a positive integer k such that 2 ≤ k < e and g ≡ ω(g)

(mod pk) but g 6≡ ω(g) (mod pk+1) then there will be no solutions to the con-

gruence xgx ≡ x (mod pe).

If g ≡ ω(g) (mod pe), e > 1, and m = 1 (so that g ≡ 1 (mod 4)) then there

will be pe−2 solutions to the congruence.

If g ≡ ω(g) (mod pe), e > 1, and m = 2 (so that g ≡ 3 (mod 4)) then there

will be no solutions to the congruence.

Proof. Since p - x, x is an invertible element modulo pe. Thus, counting

the solutions to our congruence reduces to counting the solutions to gx ≡ 1

(mod pe). Now, this is not the same problem as in Theorem 5.16, because here

p cannot divide x.

In the case where there exists k such that 2 ≤ k < e and g ≡ ω(g) (mod pk)

but g 6≡ ω(g) (mod pk+1), then from Theorem 5.16, for a solution x we needed

pe−k | x. Thus, in this case there will be no solutions to our current congruence.

Now, in the case where g ≡ ω(g) (mod pe), there were pe−1

m
solutions to

gx ≡ 1 (mod pe) where we allowed p | x. So now we take out all the solutions

where p | x. We saw that we needed m | x. Now, if p | x then m | x since

m = 1 or m = 2. So there are pe−1

p
= pe−2 solutions where p | x. Thus, there

are pe−1

m
− pe−2 solutions. Note that this is equal to pe−2 when m = 1 and 0

when m = 2. So there are pe−2 solutions when p - x and m = 1. There are no

solutions when p - x m = 2.
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�

In the lemma below we count the number of fixed points, for p = 2, for an

extended range of x values from 1 ≤ x ≤ pe−1 to 1 ≤ x ≤ pe. This will help

us prove our result about two cycles.

Lemma 5.19. Let p = 2. Let g be fixed such that p - g. Let e > 1 be an

integer. Let x ∈ {1, . . . , pe} such that p - x. Let m = ord4(g). Consider

xgx ≡ x (mod pe).

If g ≡ ω(g) (mod pe) and m = 1 then there will be pe−1 solutions to xgx ≡ x

(mod pe).

If g ≡ ω(g) (mod pe) and m = 2 then there will be no solutions to xgx ≡ x

(mod pe).

If there exists k such that 2 ≤ k < e and g ≡ ω(g) (mod pk) but 6≡ ω(g)

(mod pk+1) then there will be no solutions to xgx ≡ x (mod pe).

Proof. Case 1 : Let g ≡ ω(g) (mod pe) and m = 1.

Since p - x, x is invertible modulo p and our congruence reduces to counting

solutions to gx ≡ 1 (mod pe) for odd x such that 1 ≤ x ≤ pe.

We want gx ≡ 1 (mod pe) where e > 1, so we know that gx ≡ 1 (mod 4).

Therefore, m | x. In fact, if m | x then

gx ≡ ω(g)x (mod pe)

≡ 1,

by definition.

Hence, all we need is m | x. So since m = 1 all x work. However, we

have accidentally counted in values for x where p | x. So modulo pe there are

pe

p
= pe−1 solutions such that p | x (these are even x values).

Thus, there are pe − pe−1 = pe−1 solutions such that p - x (these are odd x

values).
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Case 2 : Let g ≡ ω(g) (mod pe) and m = 2.

By Theorem 5.16, we needed m | x for there to be solutions to the congru-

ence. However, since p - x and p = 2, m - x. Thus, there are no solutions to

the congruence for this case.

Case 3 : Let there exists k such that 2 ≤ k < e and g ≡ ω(g) (mod pk) but

g 6≡ ω(g) (mod pk+1).

By Theorem 5.16, for a solution x we needed pe−k | x. Thus, in this case

there will be no solutions to our current congruence. �

Next is a small lemma we need to help us prove our result about two cycles.

Lemma 5.20. Let p = 2. Let e > 1 be an integer. Let g be a positive integer

such that p - g and g ≡ ω(g) (mod pe). Let m = ord4(g). If m - y and m | 2y,

then gy ≡ −1 (mod pe).

Proof. Note that gy ≡ ω(g)y (mod pe). Clearly ω(g)2y ≡ 1 (mod pe) and

ω(g)y 6≡ 1 (mod pe). Since ω(g) is ±1, so is ω(g)y, which clearly has order 2.

Thus, it must be that ω(g)y ≡ −1 (mod pe). Thus, gy ≡ −1 (mod pe). �

We will now use Lemmas 5.19 and 5.20 to count the number of two cycles

of the discrete Lambert map, defined in Definition 5.2, for p = 2.

Theorem 5.21. Let p = 2. Let g be a positive integer such that p - g. Let

e ≥ 2 be an integer. Let m = ord4(g). Consider the number of simultaneous

solutions, or two cycles, to the congruences

xgx ≡ y (mod pe)

and

ygy ≡ x (mod pe)

, such that x, y ∈ {1, . . . , pe}, x 6≡ y (mod pe), and p - x, y.

If g ≡ ω(g) (mod pe) and m = 1, then there are no two cycles.
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If g ≡ ω(g) (mod pe) and m = 2, then there are pe−2 two cycles.

In the next case let k be the integer 2 ≤ k < e such that g ≡ ω(g) (mod pk)

but g 6≡ ω(g) (mod pk+1).

If m = 1, then if e = k + 1 there are pe−2 two cycles.

If m = 1 and e 6= k + 1 there are no two cycles.

If m = 2 and k ≤ e ≤ 2k there are pe−2 two cycles.

If m = 2 and e ≥ 2k + 1 there are no two cycles.

Proof. First, suppose there is a solution x, y. Since, xgx ≡ y (mod pe) and

ygy ≡ x (mod pe), we see that

xgxgy ≡ x (mod pe)

xgx+y ≡ x (mod pe).

Since p - x, x will be invertible modulo pe and so gx+y ≡ 1 (mod pe). Thus,

the order of g modulo pe must divide x+ y.

Case 1 : We first consider the case where g ≡ ω(g) (mod pe).

By Corollary 5.17, in this case ordpe(g) = m. Thus, we need m | x + y so

that we have gx+y ≡ 1 (mod pe).

Now, suppose we fix a y such that p - y and 1 ≤ y ≤ pe. Then, we need an

x such that x ≡ ygy (mod pe) and x ≡ −y (mod m). Note that if x ≡ ygy

(mod pe) and m = 2, then we see that x ≡ y (mod 2) since g ≡ 1 (mod 2).

Since 2x ≡ 0 (mod 2), we see that x ≡ −x ≡ −y (mod 2). Thus, if x ≡ ygy

(mod pe) and m = 2, then x ≡ −y (mod m) is automatically satisfied. In

addition, we see that if m = 1 then x ≡ −y (mod m) is automatically satisfied.

Thus, we only need consider x such that x ≡ ygy (mod pe).

Note that for such an x, pe | x − ygy and so p | x − ygy. So, if p | x, then

p | ygy and since p - g, then p | y. Since this goes against how we chose y,

p - x.
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In addition, if we have found such an x, then

xgx ≡ ygygx (mod pe)

≡ ygx+y (mod pe)

≡ y (mod pe).

Thus, both congruences are satisfied.

Since there is one solution, x, for each y where p - y, then there are pe −

pe−1 = pe−1 solutions to x ≡ ygy (mod pe) including fixed points. We are also

currently counting x, y and y, x as different solutions.

Since, we don’t want to count fixed points, let’s find out how many there

are and subtract them. That is, we want to count ygy ≡ y (mod pe).

Case 1a : Let m = 1. By Lemma 5.19, there are pe−1 fixed points. Thus,

there are pe−1 − pe−1 = 0 two cycles.

Case 1b : Let m = 2. By Lemma 5.19, there are no fixed points. Thus,

there are pe−1−0 = pe−1 solutions to xgx ≡ y (mod pe) and ygy ≡ x (mod pe)

However, we have counted x, y and y, x as different solutions. Thus, we must

divide by 2 to get the actual number of solutions. So there are pe−1

2
= pe−2

two cycles.

Case 2 : Now consider the case where g ≡ ω(g) (mod pk) but g 6≡ ω(g)

(mod pk+1) for 2 ≤ k < e.

We have already established that if there is a solution then the order of g

modulo pe must divide x+y. Thus, by Corollary 5.17, pe−k | x+y. This means

x ≡ −y (mod pe−k). In addition, x ≡ ygy (mod pe). These two congruences
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together imply the following:

x ≡ ygy (mod pe−k)(10)

−y ≡ ygy (mod pe−k)(11)

−1 ≡ gy (mod pe−k)(12)

This means we have that m - y and m | 2y. For reference later, we call this

condition (?).

Case 2a : Suppose m = 1 and e > k + 1

By (12), e > k + 1 implies gy ≡ −1 (mod p2). Thus, m 6= 1. Thus, there

are no two cycles when m = 1 and e > k + 1.

Case 2b : Suppose m = 1 and e = k + 1.

We have already established that if there is a solution then the order of g

modulo pe must divide x+y. Thus, by Corollary 5.17, p = pe−k | x+y meaning

x ≡ −y (mod p). In addition we need x ≡ ygy (mod pe). However, if x ≡ ygy

(mod pe), then we see that x ≡ y (mod p) since g ≡ 1 (mod p). Since 2x ≡ 0

(mod p), we see that x ≡ −x ≡ −y (mod p). Thus, if x ≡ ygy (mod pe) then

x ≡ −y (mod p) is automatically satisfied. Thus, for a fixed y we only need

consider x such that x ≡ ygy (mod pe).

Note that for such an x, pe | x − ygy and so p | x − ygy. So, if p | x, then

p | ygy and since p - g, then p | y. Since this contradicts our choice of y, we

have that p - x.

In addition, if we have found such an x, then

xgx ≡ ygygx (mod pe)

≡ ygx+y (mod pe)

≡ y (mod pe).

Thus, both congruences are satisfied.
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Since, there is one solution for each y such that p - y, then there are pe −

pe−1 = pe−1 solutions to x ≡ ygy (mod pe) including fixed points. We are also

currently counting x, y and y, x as different solutions.

Since, we do not want to count fixed points, let us find out how many there

are and subtract them. That is, we want to count ygy ≡ y (mod pe). By

Lemma 5.19, there are no such fixed points in this case. Thus, there are

pe−1 − 0 = pe−1 two cycles in this case.

However, we have counted x, y and y, x as different solutions. Thus, we must

divide by 2 to get the actual number of solutions. So there are pe−1

2
= pe−2

two cycles.

Case 2c : Suppose m = 2 and e > 2k + 1.

By (12), gy ≡ −1 (mod pe−k). If e > 2k + 1, then the order of g modulo

pe−k is pe−2k. Thus, pe−2k - y, but pe−2k | 2y. Thus, since e > 2k + 1, p2 | 2y.

This implies that 2 | y. Thus, if m = 2 and e > 2k+1, there are no two cycles.

Case 2d : Suppose m = 2 and e = 2k + 1.

By (12), gy ≡ −1 (mod pe−k). If e = 2k + 1 then the order of g modulo

pk+1 is p. We know that p - y, so y is odd. This means y = 2 · s + 1 for some

integer s. Thus, gy ≡ g2s+1 ≡ g2sg ≡ g 6≡ ω(g) (mod pk+1). Since g 6≡ ω(g)

(mod pk+1) and ω(g) = −1 since g ≡ 3 (mod 4), g 6≡ −1 (mod pk+1). Thus,

gy 6≡ −1 (mod pk+1) and we have a contradiction. Thus, there are no two

cycles.

Case 2e : Suppose m = 2 and 2 < k < e < 2k + 1.

We saw in (?) that it is necessary that m - y, but m | 2y. So assume we

have a fixed such y. Then, by Lemma 5.20, gy ≡ −1 (mod pe−k).
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There is one x such that x ≡ ygy (mod pe) because 1 ≤ x ≤ pe. This

implies

x ≡ ygy (mod pe−k)

x ≡ y(−1) (mod pe−k)

x ≡ −y (mod pe−k)

Thus, by Corollary 5.17, gx+y ≡ 1 (mod pe). Therefore, if we have found

such an x, then

xgx ≡ ygygx (mod pe)

≡ ygx+y (mod pe)

≡ y (mod pe).

Thus, both two-cycle congruences are satisfied for such a y. Thus, there

is one two-cycle for y such that m - y and m | 2y, and there are two-cycles

for only these such y. Since m = 2, m | 2y for all y. Thus, we only need

concern ourselves with m - y. Since there are pe − pe−1 such odd y there are

just that many solutions. However, we over-counted by counting x, y and y, x

as different solutions. Thus, there are really pe−1

2
= pe−2 two cycles in this

case. �

6. Conclusion

In this thesis, we were able to count the number of fixed points and two

cycles of the discrete Lambert map.

Now, let us consider what our theorems on fixed points and two cycles might

mean for the security of the ElGamal digital signature scheme. Consider a

given prime p and integer g > 0 such that p - g. Our theorems on fixed points
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and two cycles prove that for large enough e and g 6= 1 the discrete Lambert

map will have no fixed points and no two-cycles.

We briefly review what is known from [7] about the discrete logarithm map.

If p is an odd prime, g ∈ Z such that p - g, and m = ordp(g), then the number

of fixed points or solutions to gx ≡ x (mod pe) is m for x ∈ {1, . . . , pem}.

The number of two cycles or simultaneous solutions to gx ≡ y (mod pe) and

gy ≡ x (mod pe) is m2−m
2

, for x, y ∈ {1, . . . , pem} such that p - x, y and x 6≡ y

(mod pe).

These results indicate that the discrete Lambert map has a certain amount

of regularity that the discrete logarithm map does not have. See [7] for results

on the discrete logarithm map. Our results suggest that an attack on the

ElGamal digital signature scheme might be easier via the discrete Lambert

map than via the discrete logarithm map.

The function x→ xgx is not the only one that people would like to under-

stand. Other congruences that relate to cryptological problems are:

xx ≡ x (mod n)

gx
2 ≡ x (mod n)

xgx
2 ≡ x (mod n)

xgx ≡ x−1 (mod n)

ax + bx ≡ 1 (mod n)

gx
2 ≡ c (mod n)

x2gx
2 ≡ x (mod n).
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7. Appendix

The following are the tables I used to formulate the conjectures that led to

the main results.

Let p, e, m and g be defined as in Theorem 5.14.

For p = 3 :

g p e m fixed points two cycles
2 3 1 2 2 1
2 3 2 2 0 3
2 3 3 2 0 0
2 3 4 2 0 0
2 3 5 2 0 0
2 3 6 2 0 0
4 3 1 1 2 0
4 3 2 1 0 0
4 3 3 1 0 0
4 3 4 1 0 0
4 3 5 1 0 0
4 3 6 1 0 0
5 3 1 2 2 1
5 3 2 2 0 3
5 3 4 2 0 0
5 3 3 2 0 0
5 3 5 2 0 0
5 3 6 2 0 0
7 3 1 1 0 0
7 3 2 1 0 0
7 3 3 1 0 0
7 3 4 1 0 0
7 3 5 1 0 0
7 3 6 1 0 0
8 3 1 2 2 1
8 3 2 2 6 3
8 3 3 2 0 9
8 3 4 2 0 27
8 3 5 2 0 0
8 3 6 2 0 0
10 3 1 1 2 0
10 3 2 1 6 0
10 3 3 1 0 0
10 3 4 1 0 0
10 3 5 1 0 0
10 3 6 1 0 0
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For p = 5 :

g p e m fixed points two cycles
2 5 1 4 4 6
2 5 2 4 0 10
2 5 3 4 0 0
2 5 4 4 0 0
2 5 5 4 0 0
2 5 6 4 0 0
3 5 1 4 4 6
3 5 2 4 0 10
3 5 3 4 0 0
3 5 4 4 0 0
3 5 5 4 0 0
3 5 6 4 0 0
4 5 1 2 4 2
4 5 2 2 0 10
4 5 4 2 0 0
4 5 3 2 0 0
4 5 5 2 0 0
4 5 6 2 0 0
6 5 1 1 4 0
6 5 2 1 0 0
6 5 3 1 0 0
6 5 4 1 0 0
6 5 5 1 0 0
6 5 6 1 0 0
7 5 1 4 4 6
7 5 2 4 20 30
7 5 3 4 0 50
7 5 4 4 0 250
7 5 5 4 0 0
7 5 6 4 0 0
8 5 1 4 4 6
8 5 2 4 0 10
8 5 3 4 0 0
8 5 4 4 0 0
8 5 5 4 0 0
8 5 6 4 0 0
9 5 1 2 4 2
9 5 2 2 0 10
9 5 3 2 0 0
9 5 4 2 0 0
9 5 5 2 0 0
9 5 6 2 0 0
11 5 1 1 4 0
11 5 2 1 0 0
11 5 3 1 0 0
11 5 4 1 0 0
11 5 5 1 0 0
11 5 6 1 0 0
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For p = 7 :

g p e m fixed points two cycles
2 7 1 3 6 6
2 7 2 3 0 0
2 7 3 3 0 0
2 7 4 3 0 0
2 7 5 3 0 0
3 7 1 6 6 15
3 7 2 6 0 21
3 7 3 6 0 0
3 7 4 6 0 0
3 7 5 6 0 0
4 7 1 3 6 6
4 7 2 3 0 0
4 7 3 3 0 0
4 7 4 3 0 0
4 7 5 3 0 0
5 7 1 6 6 15
5 7 2 6 0 21
5 7 3 6 0 0
5 7 4 6 0 0
5 7 5 6 0 0
6 7 1 2 6 3
6 7 2 2 0 21
6 7 3 2 0 0
6 7 4 2 0 0
6 7 5 2 0 0
8 7 1 1 6 0
8 7 2 1 0 0
8 7 3 1 0 0
8 7 4 1 0 0
8 7 5 1 0 0
9 7 1 3 6 6
9 7 2 3 0 0
9 7 3 3 0 0
9 7 4 3 0 0
9 7 5 3 0 0
10 7 1 6 6 15
10 7 2 6 0 21
10 7 3 6 0 0
10 7 4 6 0 0
10 7 5 6 0 0
11 7 1 3 6 6
11 7 2 3 0 0
11 7 3 3 0 0
11 7 4 3 0 0
11 7 5 3 0 0
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For p = 11 :

g p e m fixed points two cycles
2 11 1 10 10 45
2 11 2 10 0 55
2 11 3 10 0 0
2 11 4 10 0 0
3 11 1 5 10 20
3 11 2 5 110 220
3 11 3 5 0 0
3 11 4 5 0 0
4 11 1 5 10 20
4 11 2 5 0 0
4 11 3 5 0 0
4 11 4 5 0 0
5 11 1 5 10 20
5 11 2 5 0 0
5 11 3 5 0 0
5 11 4 5 0 0
6 11 1 10 10 45
6 11 2 10 0 55
6 11 3 10 0 0
6 11 4 10 0 0
7 11 1 10 10 45
7 11 2 10 0 55
7 11 3 10 0 0
7 11 4 10 0 0
8 11 1 10 10 45
8 11 2 10 0 55
8 11 3 10 0 0
8 11 4 10 0 0
9 11 1 5 10 20
9 11 2 5 110 220
9 11 3 5 0 0
9 11 4 5 0 0
10 11 1 2 10 5
10 11 2 2 0 55
10 11 3 2 0 0
10 11 4 2 6 0
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For p = 2, let p, e, m and g be defined as in Theorem 5.21.

Our table is

g p e m fixed points two cycles
3 2 1 2 1 0
3 2 2 2 0 1
3 2 3 2 0 2
3 2 4 2 0 4
3 2 5 2 0 0
3 2 6 2 0 0
3 2 7 2 0 0
5 2 1 1 1 0
5 2 2 1 2 0
5 2 3 1 0 2
5 2 4 1 0 0
5 2 5 1 0 0
5 2 6 1 0 0
5 2 7 1 0 0
7 2 1 2 1 0
7 2 2 2 0 1
7 2 3 2 0 2
7 2 4 2 0 4
7 2 5 2 0 8
7 2 6 2 0 16
7 2 7 2 0 0
9 2 1 1 1 0
9 2 2 1 2 0
9 2 3 1 4 0
9 2 4 1 0 4
9 2 5 1 0 0
9 2 6 1 0 0
9 2 7 1 0 0
11 2 1 2 1 0
11 2 2 2 0 1
11 2 3 2 0 2
11 2 4 2 0 4
11 2 5 2 0 0
11 2 6 2 0 0
11 2 7 2 0 0
13 2 1 1 1 0
13 2 2 1 2 0
13 2 3 1 0 2
13 2 4 1 0 0
13 2 5 1 0 0
13 2 6 1 0 0
13 2 7 1 0 0
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