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ABSTRACT 
 

The infestation of indigenous forest species by foreign pests plays an 
important role in ecosystem change, often altering stable stand composition and 
vigor. A recent and pressing infestation in the United States by a foreign insect is 
the hemlock woolly adelgid (Adeleges tsugae: HWA), attacking eastern (Tsuga 
canadensis) and Carolina hemlocks (Tsuga caroliniana). The eastern hemlock is a 
shade tolerant, late succession conifer and key component of Northeastern mixed 
forest stands. The adelgid kills eastern hemlocks by feeding on the xylem ray 
parenchyma cells and disabling the tree from producing allelochemicals which 
chemically defend plant tissue walls. Feeding changes chlorophyll production, 
with needles eventually turning gray and dropping. It was this change in 
chlorophyll vigor that this study sought to detect and characterize. As hemlocks 
die due to adelgid infestation, gaps in the canopy aid the growth and density of 
already abundant hardwoods, altering stand dynamics. Additionally, nitrogen held 
in the root systems of hemlocks is released into soils as death occurs. Nitrate 
leaching is a problem within the Quabbin Watershed because it is a public water 
supply watershed, and higher nitrogen rates degrade the quality of water.    

Hemlocks and adelgid infestation were analyzed in images captured by the 
Airborne Imaging Multispectral Sensor (AIMS-1) in April of 2004 during leaf 
senescence of hardwoods. AIMS-1 collects data within the visible spectrum and 
near infrared spectrum of light using 3 multispectral bands: near infrared, red and 
green. Healthy vegetation reflects light in the near-infrared (NIR) band between 
0.62µm and 0.7µm and absorbs red energy between 0.45µm and 0.66µm. As 
parenchyma cells accumulate, the chlorophyll content of plants increases, causing 
plants to absorb more light energy in the red band and reflect more energy in the 
near infrared band. The reduction of parenchyma cells should provide a direct link 
between infestation and corresponding changes in the absorption and reflectance 
properties of damaged hemlocks. The plots used in this study had previously been 
classified by the Division of Water Supply Protection, which is part of the 
Massachusetts Department of Conservation and Recreation, as possessing adelgid 
damage, so tests focused on classifying hemlock vigor tree by tree. This was done 
in order to first assess if AIMS-1 data preserved spectral differentiation within 
two broad classes of health: damaged and healthy. Tests show a statistically 
significant difference in spectral response between the two classes in the 8-bit 
data. The vegetation class with the tightest spectral fit is the Transform 
Normalized Difference Vegetation Index (TNDVI). Percentages of stands can be 
delineated manually due to the high spatial resolution of the image; however 
supervised classification does not provide any information about individual tree 
health. 10-bit data used in this study does not lend any more useful information 
about the spectral differences of damaged hemlocks.  Future work will attempt to 
characterize entire stands of damage rather than individual trees so foresters may 
be able to implement treatment options typically conducted at the stand level.  
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INTRODUCTION 

The infestation of indigenous species by foreign insects plays an important 

role in forest change. As pests are introduced into an ecosystem, they alter current 

and stable stand composition and vigor. Pathogens spread to new areas, degrade 

their host species, and increase ecosystem susceptibility to further disturbances 

(Orwig, 2002). Degradation due to the introduction of pests can continue 

unabated in the absence of information regarding its spread and impact.   

A pressing infestation in the Eastern United States by a foreign insect is 

the hemlock woolly adelgid HWA (Adeleges tsugae), attacking the eastern 

hemlock (Tsuga canadensis) and Carolina hemlock (Tsuga caroliniana). While 

proving deadly for the eastern and Carolina hemlocks, the woolly adelgid does 

not affect western hemlock (Tsuga heterophylla) or Chinese hemlock (Tsuga 

chinesis). The eastern hemlock is a key component of mixed forest stands in the 

Northeastern United States. It ranges throughout New England, New York, 

Pennsylvania, the Mid-Atlantic states, and in smaller quantities farther to the 

south. It can also be found in Nova Scotia across southern Ontario, northern 

Michigan and northeastern Minnesota.   

The hemlock is a shade tolerant, late succession conifer, strongly 

represented in climax forests because of its lifespan of up to 400 years (Bonneau 

et al, 1999a). Because of the hemlock’s longevity and propensity for shade, it can 
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live in suppressed environments with low levels of sunlight or heavily moistened 

soil, and change surrounding microclimates in order to prolong its life (Goerlich 

& Nyland, 1999). The dense canopy of the hemlock intercepts all manner of 

natural elements, including but not limited to solar radiation, precipitation, and 

wind (Evans, 1995). In this manner hemlock stands perpetuate their distinctive 

environments and provide rich habitats for at least eight bird and ten mammal 

species (Yamasaki et al, 1999).   

In the past, the eastern hemlock was an important member of Northeastern 

mixed forest stands. Approximately 5,000 years ago an unknown pathogen caused 

hemlock populations to decline unexpectedly throughout North America (Orwig 

& Foster, 1998). This decline caused ecosystem changes similar to those 

occurring throughout the eastern United States, as the population died and then 

returned. The hemlocks’ return was large, and before European settlement 

hemlock stands covered much of the northeast (Foster and Aber, 2004). Estimates 

from 1814 to 1815 show that hemlocks comprised at least 19.9% of trees in 

United States forests. By 1973, that percentage had fallen to 5.8% of total trees in 

the United States. Old-growth hemlock was exploited for both its bark and wood. 

Today the hemlock population is still around 5% of trees within the United States 

(Quimby, 1995). It is an important member of the New England forest landscape, 

though, and is estimated to account for between 61% - 70% of all softwoods in 

Connecticut (Bonneau et al, 1999a). 
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Jenkins, Canham, and Barten (1999) report that as hemlocks die, gaps in 

the canopy allow greater light to penetrate the forest floor, aiding in the growth 

and density of already abundant hardwoods.  Studies suggest that hemlocks are 

most readily replaced by black birch (Betula lenta) and red maple (Acer rubrum) 

(Bonneau et al, 1999a). Further adding to changes in forest stand composition, 

invasive species including Japanese barberry (Berberis thunbergii) and 

honeysuckle (Lonicera japonica) are quickly replacing defoliated hemlocks. 

Stands comprised of hemlock currently exist in three types: pure hemlock, 

hemlock mixed with dominating white pine, and hemlock mixed with dominating 

hardwoods (Division of Water Supply Protection (DWSP, 2004)). Hemlock 

infestation and death compromises these unique stand structures and have 

researchers predicting a complete change in cover type from hemlock to 

hardwood-dominated forests (Orwig & Foster, 1999).  

Hemlocks are usually located on steep hillsides in riparian areas, shading 

trout streams for spawning and providing shelter for animals. Hemlocks have 

shallow root systems, which makes them highly susceptible to disturbances of any 

kind. Trees on mountain tops with poor, dry soils are most susceptible to 

infestation when compared to those in riparian zones (Orwig & Foster, 1998).        

Approaches to managing the woolly adelgid always result in changes to 

the forest floor and surrounding ecosystems. Being located primarily in riparian 

zones, hemlocks provide shade for rivers and lakes. Accompanying hemlock 

mortality, stream temperatures rise due to sun exposure threatening habitat 
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quality. Nitrate leaching and cation losses pose serious problems for organisms 

living within and around hemlock stands as well because hemlocks sequester 

nitrogen by storing it in their root system. Once the hemlocks die this nitrogen is 

released back into the soil. Jenkins, Aber, and Canham (1999) noted that forests 

comprised of degraded hemlock stands experienced nitrification rates 30 times 

higher than hemlock stands without infestation. Kizlinski et al. (2002) report net 

nitrification rates 41 times higher in woolly adelgid damaged sites, 72 times 

higher in recent hemlock harvests, and over 200 times higher in old harvests when 

compared with undamaged hemlock sites which had near-zero nitrification rates. 

Mortality tends to increase soil moisture and subsurface flow because the 

hemlock is no longer providing shelter with foliated branches. This allows for the 

increasing movement of released nutrients to streams. The result is water 

pollution because of increased phosphorous and lower nitrogen levels in the soil, 

which affects productivity.   

 

Hemlock Woolly Adelgid 

The hemlock woolly adelgid is an exotic pest, originating in Japan that 

feeds on the needles of eastern hemlocks (Battles et al, 1999). Adelges tsugae was 

brought to the Pacific Northwest in 1924, next appearing in Virginia in 1951. It 

has since migrated north, reaching Connecticut in 1985. By 1995 the woolly 

adelgid had spread to 11 states from North Carolina up the eastern seaboard to 

Massachusetts. It has caused mortality in at least 5 states including Virginia, 
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Pennsylvania, New Jersey, New York, and Connecticut (McWilliams & Schmidt, 

1999).  

The woolly adelgid is parthenogenic, meaning that all adult females are 

capable of reproducing (DWSP, 2004). Females produce more females from 

unfertilized eggs, which is a very 

fast way of reproducing a 

population. Adults typically lay 

between 50-300 eggs, with an 

average of 100 eggs per bearing 

adult. Each adult female 

produces eggs twice a year, in the 

spring between March and April 

and again in mid-June. The second 
(Figure 1): The woolly adelgid attached to 
hemlock needles. Notice the white woolly 
substance. 
generation, hatched in June, is migratory and moves to spruce with no evidence of 

spruce being able to support the adelgid (Souto, 1995). The adelgid spends winter 

feeding in order to grow and breed again in the spring and summer.    

The woolly adelgid is a small (1-2mm) aphid-like insect, whose name 

originates from the white woolly substance it secrets during winter (Figure 1) 

(Royle & Lathrop, 1997). The adelgid settles at the base of the hemlock needle 

then inserts its stylet into the needle, feeding on the fluids in xylem ray 

parenchyma cells. Stylet insertion is generally intracellular near the adaxial side 

of the needle and proximal to the abscission layer (Young et. al, 1995). Once 
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inserted into the plant, the stylet generally moves between cells before penetrating 

the xylem ray parenchyma cells insides.  

In addition to sucking out the trees’ cells, the adelgid injects toxic saliva 

into the branch, further hastening the death of the hemlock (Royle & Lathrop, 

1997). The saliva is used to guide the stylet through the cells and is then left 

behind because adelgid stylets do not have separate canals for feeding and 

salivary processes.  

The stylet bundle includes four stylets: two outer mandibular stylets and 

two inner maxillary stylets. The mandibular stylets house the maxillary stylets 

which extend and retract, acting as the feeding mechanisms. The stylet lengths of 

nymphs have been measured at up to 5 times their body length, but as the adelgid 

grows in size, the stylet length generally does not increase (Shields et al, 1995). It 

is hypothesized by Young et al. (1995) that the stylet is adapted not only for 

feeding but for anchoring the adelgid to the feeding site.  

The presence of adelgids at high densities prevents the production of new 

hemlock growth the following year (Souto et al, 1995). Within the first year of 

infestation, the adelgid depletes the hemlock of its youngest growth. The 

following year adelgids are forced to feed on the older growth, causing a 

reduction in their survival rates. This also causes a greater number of developing 

nymphs to die without first reproducing because there is no available host to feed 

on. Adelgids that die as nymphs before reproduction are called sexuparae. A 

pattern is established where populations climax during the first year of infestation 
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while hemlocks are still producing new needles. Adelgid populations then 

collapse the second year when hemlocks are too damaged to reproduce new 

growth. During the third year of infestation 11% to 15% (Souto et. al, 1995) of 

hemlock buds produce new growth, rebounding from the adelgids’ slowed 

feeding rates the second year. Adelgids quickly monopolize the new growth and 

resurge to a second population peak only to decline again during the fourth year 

of infestation when most trees die (Yorks et al, 1999).  Following the first year of 

colonization, more than 93% of adelgids produced sexuparae; in the fourth year 

only sexuparae are produced (Souto et al, 1995). That being said, hemlocks have 

lived with infestation for over a decade in weakened conditions (RCE, 2002).       

The adelgid’s preference for new growth can be attributed to lower 

nutrient contents in older plants (Miles, 1990). Additionally, with age a plant’s 

allelochemical content within the tissue increases. Allelochemicals act as 

chemical defenses for plants’ tissue walls, making feeding for the adelgid more 

difficult. Young hemlock trees have not developed the elevated levels of chemical 

protection that older generation trees have, so they fall more easily to the adelgid. 

There is also evidence that the saliva of the adelgid prevents the chemical 

defenses of the plant from replacing itself. The adelgid accomplishes this by 

absorbing the allelochemicals before the damaged cells.     

There are no natural predators of the woolly adelgid in the United States. 

The winter mortality is high and has been noted at 75% by the Division of Water 

Supply Protection within Massachusetts, but the rapidity with which the adelgid 
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reproduces allow population growth to occur. Orwig et al. (2002) reported that 

mortality is weakly correlated to stand aspect and stand size. He concluded that, 

as the adelgid increases in numbers, external variables such as slope, elevation, 

and stand composition play increasingly smaller roles in controlling damage. The 

only environmental barrier that has been noticed is latitude (Orwig et al, 2002). 

Winter temperatures are lower in higher latitudes, and this cold factor prevents the 

adelgid from surviving. Winter mortality rates require temperatures below -30˚ C 

for extended periods of time (Orwig et al, 2002). If the adelgid manages to 

survive in such low temperatures their tolerance for the cold generally increases, 

allowing for future northern movement.  

As a result of feeding, hemlock needles turn grayish in color and 

eventually drop. Infestation progresses from the bottom of the tree upwards and 

can be evenly distributed throughout the tree. The adelgid prefers younger foliage, 

so new growth is attacked as it is produced (DWSP, 2004). This new growth 

sprouts from the ends of hemlock branches, giving the appearance of a healthy 

vegetation ring around the trees. As infestation progresses hemlocks appear to be 

thinning until only a sparse amount of needles are left on the top of the trees 

crown.    

Accompanying the infestation of hemlocks are changes in chlorophyll 

production. While thinning is noticeable throughout the process of death, 

measuring changes in chlorophyll vigor requires more than sight. Chlorophyll 

production and vigor appear within remotely sensed imagery utilizing 
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multispectral or colored bands. The chlorophyll content within plants increases 

with age because the internal parenchyma become denser (Guyot et al, 1989). 

Aged hemlocks should reflect the build up of parenchyma, but it is these cells that 

the adelgid feeds upon. Lower chlorophyll levels of trees infested by the woolly 

adelgid should relay different spectral responses in multispectral, broad band 

imagery than healthy, aged hemlocks that are building up xylem ray parenchyma 

cells. Noting woolly adelgid infestation is fundamental to preserving the health of 

hemlocks stands, and, through the utilization of remotely sensed imagery 

managers may note chlorophyll changes and recognize new invasions (Royle & 

Lathrop, 2002b). 

 

Research Questions 

There is a recognized need to research the woolly adelgid, as it is attacking 

and compromising forest stand structure and health. Quantifying damage through 

remotely sensed imagery is a cost-effective way of studying populations of trees 

without having to do time-consuming ground-truth work. In addition, the results 

yielded from remotely sensed images may provide more information than results 

attained by ground-truth methods because analyzing spectral response patterns 

within stands of healthy and damaged hemlock may reveal differing levels of 

chlorophyll (Royle & Lathrop, 2002a).  

 From a forestry standpoint, the identification of hemlock damage on a tree 

by tree basis is imperative in order to quantify the amount of damage within a 
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stand. Within the Division of Water Source Protection, once 50% of any area 

possessing hemlocks is infested, salvaging operations begin. Classifying damage 

through image classification was attempted within a small hemlock stand in order 

to test the spectral homogeneity of the damage classifications.  

It was unknown at the inception of this study if the AIMS-1 sensor would 

preserve spectral and spatial differentiation to a great enough degree that health/ 

vigor differences between infested and healthy hemlocks and different degrees of 

infestation of hemlocks could be quantized. The study was completed using 

predominantly 8-bit imagery, and there were doubts as to whether the sensor in 8-

bits provided enough quantized levels to discriminate between different damage 

classifications. This prompted the integral question of the study: will infested 

hemlocks have statistically different maximum and mean spectral signatures when 

compared with healthy hemlocks? Images have been taken in 10-bit format for 

areas of the Quabbin watershed and there was speculation that if spectral 

differences were not preserved in the 8-bit data, then perhaps the 10-bit images 

might lend more information. This question was not as important within the study 

as the 8-bit data proved to be useful. The question this prompted is the fourth in 

the study: if 8-bit data cannot provide information and or quantify woolly adelgid 

damage, can 10-bit data provide any additional information? The spatial 

characteristics of the sensor were important in this process because high detail 

imagery was necessary in order to identify hemlocks.  
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Research focused on separating and developing health classifications for 

eastern hemlocks infested by the hemlock woolly adelgid. Detecting these 

spectral differences is important because they convey useful information about the 

radiometric resolution of the sensor. Vegetation classes with relatively 

homogenous signatures can also lead to automated processes such as image 

segmentation which has the ability to generate tree health information on a much 

larger scale. To test the homogeneity of the spectral responses, a supervised 

classification was tested. This was important in the overall study and prompted 

question 3: can adelgid infestation be quantified by percentage of stand damage? 

Another method of testing chlorophyll vigor within images is through the 

use of vegetation indices. In addition to testing chlorophyll vigor, vegetation 

indices remove background noise from the imagery such as soil moisture 

reflectance or aspect interference. Vegetation indices were used in this study to 

understand which damage class is the most homogenous, and which index 

removed the most background interference. This was tested in question 2 by 

asking: which vegetation index will relay the most information concerning 

hemlock decline?   

   

Remote Sensing 

A remotely sensed image is a two-dimensional array of numbers, each 

representing the brightness of a small elemental area in the digital image 

(Schowengert, 1983). When an object is struck by sunlight, that object can reflect, 
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absorb, or transmit the energy. What happens to the light after striking depends on 

the object’s characteristics (Jensen, 2000). Materials that are dark absorb most 

light energy, and light materials reflect most wavelengths that have struck the 

object. By assigning numerical values to each quantized level of color, computers 

can process the reflectance and absorption properties of objects numerically.  

Within remotely sensed images, thousands of light sensitive photosites 

(pixels) act as the converters of the wavelengths of light into electrical signals, 

which then assign the numerical reflectance value. Pixels are fundamental within 

digital images because the size of the pixel affects the detail within the image. As 

the pixel area is reduced, more scene detail becomes available. The amount of 

detail represented by the pixel is contingent upon the altitude of the sensor and its 

instantaneous field of view (IFOV). Bits represent the radiance for each pixel with 

only 5 to 6 bits required for a visually continuous image scene. Five-bit data is 

recognized as a minimum for continuous imagery (Schowengert, 1983) and 

represented numerically as 25 meaning that 2 x 2 x 2 x 2 x 2 represents the 

number of gray levels (32) in the data. Most commonly used is 8-bit data with 256 

gray levels. 

Gray levels are excellent indicators of change, but color imagery has 

become fundamental when analyzing vegetation. Multispectral images are taken 

simultaneously on alternate bands within the electromagnetic spectrum. Each 

pixel within a multispectral image carries x and y coordinates for location, but 

instead of a gray level, it recognizes the spectral coordinate or wavelength giving 
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it color. Figure 2 represents the visible, infrared, and middle infrared light 

spectrums for which information is transferred onto multispectral bands. Images 

can be taken utilizing any band combination; it is solely dependent upon the 

capabilities of the sensor.  

 

(Figure 2): The visible, near infrared, and middle infrared spectrums of light. The 
chlorophyll absorption bands are circled. Notice the sharp jump in reflectance as you near 
the infrared spectrum of light. In this study, the near infrared and red bands were focused 
upon.     
 

All color systems for display of digital images utilize an additive color 

composite system with three primary colors: red, green, and blue (RGB) 

(Schowengert, 1983). When displayed as an RGB combination, images appear as 

a standard color infrared (CIR) image. Color infrared is used as a good indicator 

of plant vigor, and images in this study were taken using the AIMS-1 sensor 

capturing data in visible green 0.54-0.59, visible red 0.64-0.69, and the near 
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infrared 0.78-0.84 micrometers 

respectively, matching Landsat 

TM data. Healthy vegetation 

reflects energy in the near-infrared 

(NIR) band, and absorbs energy in 

the red band. Chlorophyll is the 

most important plant pigment 

absorbing red and blue light. 

Chlorophyll absorbs energy between wavelengths of 0.43 and 0.66µm (Jensen, 

2000). This differs in the near-infrared region, as vegetation is generally 

characterized by high reflectance levels ranging from 40-60% of light, with 5-

10% absorption, and the remaining light being transmitted to other leaves (Horler 

et al, 1983). These representations can be seen by the peaks in Figure 3. This 

figure is representative of the vegetation peaks within the sensor used for this 

study.  

(Figure 3): CIR peaks of healthy vegetation 
along the visible spectrum of light, nearing 
the infrared spectrum.  

When a plant is under stress, chlorophyll production decreases causing a 

lack of green pigmentation, which typically causes the plant to absorb less energy 

in the absorption band. This causes a change in spectral response patterns. Stress 

induced changes in reflectance have been directly linked to chlorophyll content in 

numerous studies (Pontius, 2005).   

A tree’s optical properties are not defined solely by the leaves absorption 

and reflectance patterns, but can also be defined by a tree’s bark and, in the case 
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of conifers, its cones.  Within the visible spectrum of light, bark has a higher 

reflectance level than leaves; however, in the near infrared band the bark’s 

reflectance is lower than leaf reflectance. When the leaf density decreases on the 

branch, either due to disease or senescence, the reflectance properties of bark 

become more important for analyzing the spectral response patterns. Also 

important is the effect of the underlying vegetation. In an open stand or during 

senescence, the soil beneath the trees can alter the responses recorded.    

Spectral responses will range throughout an image, but trends emerge with 

respect to the landscape. In a forest, healthy plants will have roughly the same 

pixel reflectance value, and deep bodies of water are uniform and generally 

absorb all the light. When brightness values for pixels with similar values are 

combined, the mean value forms a group and a unique pattern. With these patterns 

in mind, the next step is to cluster features into similar classes and measure their 

spectral responses. 

 

Assessing Hemlock Damage 

In this study I question if infested hemlocks have different reflective 

characteristics when compared with healthy hemlocks, specifically in relation to 

changes in chlorophyll production, and if these differences are preserved in 

AIMS-1 data.   

The answers to these questions will hopefully lead to the identification of 

infested areas through a variety of image processing techniques including image 
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segmentation and image classification. The function of image segmentation is to 

define regions within an image which correspond directly to the ground (Abeyta 

& Franklin, 1998). Image segmentation groups pixels based on the spatial domain 

of the image and the mutually exclusive groups of the image segmentation 

(Haralick, 1985).  Segmentation is a quicker method of defining regions in an 

image, whether the pixel values are an exact fit or within a certain value range 

(Woodcock & Harward, 1992). While not as accurate as human interpretation, 

defining boundaries through segmentation will generate data about the entire 

Quabbin region rather than several small sample plots. The laboratory procedures 

used to test the sensor’s ability to detect damage, while appropriate for the size of 

this study region, would be too time-consuming when applied to a larger forested 

area. Image segmentation would expedite the process of identifying damaged 

adelgid on an object by object basis. This technique could also be used over a 

period of time to evaluate the amount of forest structure change.  

Classification is similar to image segmentation, as it is a process of sorting 

pixels into individual classes or categories of data. There are two types of 

classification procedures: supervised and unsupervised. An unsupervised 

classification generates the outcome image that displays all of the spectral 

signatures detected within the input image. In a supervised classification, the 

process uses reflectance values of predefined training sites chosen to represent the 

general characteristics of the variable being tested. If a pixel satisfies a certain set 

of criteria, then the pixel is assigned to the class that corresponds to that criterion 
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(Erdas Help, 2005). A supervised classification allows signature inputs to be the 

only parameters within the test, thereby limiting the outcome image to display the 

desired characteristics. There are drawbacks to working at the pixel level if the 

ground features are larger than the grain size, because the ability to identify 

objects decreases with each differing pixel reflectance (Winne, 1999). Image 

segmentation, while similar, is actually object based.  This study is more focused 

upon tree by tree identification; however, image classification may provide useful 

information about the homogeneity and heterogeneity of the damage 

classifications spectral characteristics.    

The answers to these questions will help to further explain the radiometry 

of the AIMS-1 sensor, which is a fundamental goal in this study. In the event that 

it proves possible to identify hemlock woolly adelgid damage through broadband 

multispectral imagery, such imagery can aid foresters in their management of the 

Quabbin watershed.      
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METHODS 

Site Description   

The study is located in the Quabbin watershed, North East of the Mount 

Holyoke College campus in Hampshire County Massachusetts, Lat 42o21'03”E, 

Long 072o24'11”N (Figure 4). The Quabbin reservoir serves as the drinking water 

supply for the greater Boston area, and the land in the watershed is intensively 

managed. Woolly adelgid infestation and its spread have been recorded by 

foresters working within the Quabbin. The forest is a Northeastern coniferous/ 

deciduous mix with the prominent tree types being white pine (Pinus strobus), red 

maple (Acer rubrum), black birch (Betula lenta), and white oak (Quercus alba).  

 

(Figure 4): GIS Image of the Quabbin Watershed. The blue dots represent Continuous 
Forestry Index Plots. Vegetation type polygons are on this map, but they are not visible. 
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The AIMS-1 Sensor 
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(Figure 5): Image of the AIMS-1 sensor with labeled components.   

Initial examination of adelgid infestation took place through viewing 

images captured by the AIMS-1 sensor (Figure 5) in April of 2004, during leaf 

senescence of the hardwood stands. The AIMS-1 sensor was developed in the 

GeoProcessing Lab at Mount Holyoke College (Millette & Hayward, 2005), and 

provides a variety of remotely sensed data useful in forest management activities. 

AIMS-1 captures images in four spectral bands at 0.40-0.52µ, 0.54-0.59µ, 0.64-

0.69µ, and 0.78-0.84µ in order to be comparable with Landsat TM data. The 

Charged Couple Device (CCD) can capture 8-bit (256 color variations through 
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each band) data in the four spectral bands, or 10-bit (1024 color variations) data in 

any three channel combination. The CCD captures up to 10 frames a second, with 

a 14mm lens. In this study, the spatial resolution of the imagery is 25 cm on 

average.   

In addition to the band information, the sensor contains a Trimble AgGPS 

132 12 channel differential GPS receiver, capable of instantaneously locating the 

aircraft’s position for georectification. The GPS information can also be used to 

develop flight lines in a GIS and provide the pilot with navigation directions. 

Flight lines are displayed on a 10.4 inch heads-up display that allows the pilot to 

choose background images such as topographic maps, navigation charts, and 

digital orthophotos.   

Positional information, in addition to the plane’s orientation, pitch rate, 

roll rate, yaw rate, heading rate, and bank and elevation are key components 

within the sensor. These measurements are acquired by the Attitude and Heading 

Reference System (AHRS), which records data 71 times a second. Accuracy of 

this sensor component is approximately ±0.01º in attitude and ±0.1º in heading.  

A profiling laser rangefinder (LIDAR) firing 240 times a second is used to 

measure the height of the aircraft during flight. It does this by recording the time-

of-flight (TOF) of a 30ns laser for the first group of reflected photons and the last 

group of reflected photons. The first group represents those objects within the 

closest range of the airplane, and the last group measures objects with the farthest 

range (Millette & Hayward, 2005).  
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Data  

 Two sets of data were used in this study. The primary source of imagery 

was captured in April of 2004 in tri-band 8-bit format.  This information provided 

256 quantized levels of color information through the near infrared, red, and green 

bands. Tests performed later in the study used images captured in October of 2004 

in tri-band 10-bit format. This provided 1024 quantized levels of information 

through the near infrared, red, and green bands. The location of 10-bit tests 

differed from the plots used in the 8-bit tests.  

 

Data Processing 

A geographic information system (GIS) map of the Quabbin (Figure 6) 

with marked vegetation types was created previous to this project. The Division 

of Water Supply Protection under the direction of the Massachusetts Department 

of Conservation and Recreation, monitors stand health by taking forest metrics on 

individual trees in approximately 420 fifth-acre plots located throughout the 

watershed. Plot notes from 2000 enabled foresters to give accurate information as 

to where damaged stands were located, and pass that information to me.  

Through the use of GIS software, the flight line of the plane on which the 

sensor was mounted and the corresponding images taken were added to the 

preexisting vegetation map. The Global Position Sensor device (GPS) located 

within the AIMS-1 sensor array provided position information once every second. 

This enabled each image to have precise location information, making 
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georectification possible. Map projections used for all operations in this study 

were georeferenced in NAD (North American Datum) 1983, state plane, 

Massachusetts mainland, meters. Georeferencing is fundamental in order to 

accurately locate any map feature.    

 

(Figure 6): A GIS Map of a portion of the Quabbin. Colored polygons represent different 
vegetation types within the forest. Also visible on this image are continuous forest index 
(CFI) plots represented by small pink triangles with numerical values next to them. 
Foresters visit these plots to monitor stand development. The last recorded visit by the 
DWSP was in 2000 and it was then that foresters noted where damaged hemlocks were 
located. The vertical dots represent the flight and the corresponding frames taken as the 
plane traversed the Quabbin. Lastly, the circled areas are the locations of the three 
primary plots used in this study.   

 
The georeferenced images needed to be examined to discern if it was 

possible to visually determine infestation (Figure 7). Three plots, 146, 165, and 
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169, located along the same flight line were identified as damaged using the 

information provided by foresters working within the Quabbin. Discerning 

individual hemlock health will be described in the next section titled Visual 

Analysis. These plots have assigned numbers because they coordinate with the 

continuous forest index (CFI) plots that the Division of Water Supply Protection 

uses to monitor stand health. Having the stands located on the same flight line 

normalized illumination effects, minimizing different interpretations of tree 

damage. Interactions between forest canopy and incident sunlight can result in a 

variety of different spectral responses that either aid or hinder the identification of 

tree crowns (Lamar et al, 2005). Keeping incident sunlight relatively homogenous 

for all three stands minimized the errors due to illumination differences. These 

sites were comprised mostly of hemlock, with Plot 169 containing the most 

hardwoods of the three plots.  Alternative sites were heavily composed of other 

vegetation types such as white pines, red pines, and spruce, which would have 

added error into the tree identification process, and were not chosen for that 

reason.   
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(Figure 7): Located three frames below CFI plot 146, this image shows woolly adelgid 
damage. Notice the different shading of the trees, and their drastically darker appearance. 
This is in part due to hill aspect, but it also shows the different color of damaged trees.    
 

After identifying sites that looked to be infected upon primary 

interpretation, it was necessary to build stereo blockfiles in ERDAS image 

analysis software. A stereo blockfile is a set of images that are georeferenced to 

one another, and a control image with a ground reference, through the creation of 

tie points linking corresponding places in images. Building a blockfile is 

necessary in order to orient the image to the ground for truth data collection. 

When creating the blockfile it is important to have the lowest amount of error 

possible, so when ground referencing of the data occurs, the trees are close to 

their projected locations. The total Image Weight RMS Error for Plots 146, 165, 

and 169 are 0.965, 0.592, and 0.496 meters respectively. Additionally, by building 

a blockfile the image can be viewed in three dimensions. To accomplish this, two 

images are projected at opposing angles to each other. Using polarized classes and 
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a specialized monitor, the two images then appear in 3-D, much like the 

technology used for movies. Stereo viewing allows for a closer look at damage 

upon the branches of trees because it becomes possible to zoom towards the tree 

trunks and see where the remaining needles producing chlorophyll are located in 

relation to the base of the tree. 

Once the blockfiles for each plot were finished, individual tree polygon 

measurements were taken using ArcGIS. In ArcGIS 2-dimensional shapefiles 

allow the examiner to zoom to the affected area of the image and capture the 

exact pixels for each polygon. Initially, two vegetation classes were delineated, 

Healthy_Hemlocks and Damaged_Hemlocks and were then digitally processed. 

These polygons were supposed to highlight the measured difference in the density 

of vigorous needles compared to the density of needles no longer producing 

chlorophyll. Separate GIS shapefiles were created for each damage classification 

in each plot, but the names were constant so data can be combined in the future 

(Figure 8). Ground-truth data, while important, was not addressed at this juncture. 
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(Figure 8): Image showing an identified damaged plot, 146, and vector polygons on top 
of each tree labeled as healthy or damaged. Yellow polygons represent damaged 
hemlocks and blue represent healthy hemlocks.  
 

Visual Analysis 

An important part of this project involved developing an understanding of 

hemlock shape characteristics within images. The hemlock typically has a circular 

or conical appearance, with a noticeable apex at the center, depending upon the 

angle of the image. In Figure 9 below, the arrow points to the damaged hemlock’s 

apex, giving a representation of the standard pattern to look for when identifying 

hemlocks, damaged or healthy. The branch patterns generally show circular gaps 

in the trees’ thick foliage. A representation of this pattern can be seen in Figure 

10.  This was seen more in healthy hemlocks, as damaged trees generally 

appeared to be very thin.   
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(Figure 9): Close up of damaged hemlocks.     (Figure 10): View of hemlock from 
         above.  
 

Trees classified as damaged tended to be heavily infested. The adelgid 

initially feeds at the bottom of the tree moving upwards, and can be normally 

dispersed throughout the tree (Shields et al, 1995). The most noticeable pattern of 

damage was the ring of chlorophyll producing needles at the tops of and around 

the edges of the hemlocks. The dispersion of adelgid damage made trees nearest 

to death easier to identify, with those that were only beginning to be affected by 

the adelgid not as obvious. This in turn means that it was difficult to distinguish 

between differing stages of infestation, and lightly infested trees oftentimes were 

not included in the damaged classification. This gap in identification also created 

challenges when measuring spectral responses between each plot as there is great 

differentiation and the amounts of damage the trees were experiencing.   

Accounting for these extra variables and becoming familiar with typical 

hemlock shapes was an important part of this study. Interpretation of the 10-bit 

data required examination when the hardwoods were in a leaf-on state, sometimes 
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shadowing hemlock branches. Without prior photo interpretation skills, these 

trees would have been impossible to identify.    

 

Spectral Analysis 

After defining trees within both feature classes, zonal attributes were run 

for all damage classifications through each of the three sensor bands. The 

attributes tested for each tree in the near infrared and red bands were maximum 

pixel value, minimum pixel value, mean pixel value, range of these values and the 

standard deviation. Statistics were performed using Microsoft Excel and SPSS. 

The mean pixel value is the primary focus because it quantifies the average 

spectral response for each individual tree. A comparison of maximum pixel values 

was completed for each plot and band; however it does not lend as much useful 

information because many of the infested hemlocks still are producing 

chlorophyll. This is a large problem for trees in the early stages of infestation, 

because much of the tree may still appear to be vigorous. Needles still producing 

chlorophyll will have the maximum pixel value, which isn’t representative of 

actual hemlock health. Minimum pixel value is not useful because hemlock 

branches are often included within the polygons and those pixels would be 

counted as the minimums within both damage classifications. In this case, the 

minimum value would not be representative of the actual foliage, but of the 

branches.   
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The mean pixel values were then plotted on a graph against each tree 

location (this x-axis value had no significance) to discern if there was any 

difference between the two responses. These values were also used to test the 

statistical significance of the differences. 

A t-test was performed upon the numerical data representing pixel values 

of the two samples of hemlocks: Damaged_Hemlocks and Healthy_Hemlocks. 

The t-test is the most robust way to determine statistical difference within a 

population. There are several assumptions needed for t-tests that the study fails to 

meet. With regards to random sampling, because I was discerning which trees I 

believed to be damaged and which I believed to be healthy, there was no random 

placement within the groups. The specific tree locations were dispersed 

throughout the plots, but this does not make the population truly random. In 

addition to there being no random sampling, there is no independent sampling. 

The distribution is normal, though, and the variances are homogenous.  

After initial tests, it was noted that more than two vegetation classes 

would be needed to test the sensor’s ability to detect spectral differences. The 

third plot, number 169, yielded different results from the first two plots, numbers 

146 and 165. This anomaly forced the creation of more stringent tree 

classifications and future recognition of aspect differences. The new 

classifications are titled Damaged_Dark, Damaged_Light, Healthy_Dark and 

Healthy_Light.  
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Hemlocks are generally located upon hillsides, resulting in some light 

differentiation in images due to aspect. It should be noted that not all hillsides are 

shady for a large portion of the day; south or west facing slopes get more sun.  

Images from the three plots were all taken along the same flight line, so shadows 

from the sun would be approximately the same. Hill inclines differ in the three 

images though. What resulted were reflectance values of healthy trees being lower 

on the darker side of the image than the lighter side of the image, and the same 

being true for damaged tree. The dark and light extensions on the new 

classifications represent the dark and light sides of the images, accounting for the 

difference in hill elevation and incline. Figure 11 represents the same plot viewed 

in Figure 8, but there are now four damage classes present as vector layers on top 

of the image. The specificity of these classes will contribute to understanding the 

sensor’s ability to detect adelgid damage through preservation of spectral 

differences, and will aid in future image segmentation by providing more detailed 

pixel values to classify damaged and healthy trees. 

Also accounted for in these measurements was the individual shadow 

factor for trees where the shadows are too prevalent to accurately read what the 

tree’s spectral signature should really be. In the case that a hemlock looked 

damaged, but there was a shadow on the tree, careful measurements were made in 

order to keep these pixels out of the data. This identification of shadow is separate 

from the dark and light sides of the image that were identified. 
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(Figure 11): Plot 146 with polygons separating two classes of damaged and healthy 
hemlocks, for a total of four different. The right side of the image is the darker side of the 
image, and the darker yellow and blue represent tree classifications Damaged_Dark 
(blue) and Healthy_Dark (yellow). On the lighter side of the image, the same colors were 
used for each damage classification.  
  

The next step was to test the spectral differences using vegetation indices. 

After creating the blockfiles, all of the referenced images were appended together 

to create a continuous image scene that included a larger area than each of the 

images provided alone. Creating a blockfile was also necessary to create a mosaic 

image. The purpose of the vegetation index is to stabilize internal effects such as 

canopy background, soil variations, and differences in senesced or woody 

vegetation that can skew results within a CIR or RGB combination image. The 

first vegetation index completed was the normalized difference vegetation index 

(NDVI), which separates the information in the red and near infrared band. This 

vegetation index contrasts the absorption properties in the red band against the 
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high reflectance of plants in the NIR (Elvidge & Zhikang et al, 1995). In a 

damaged site, the chlorophyll absorption should be low relative to the healthy 

plants, and that difference should appear in the index results. While the NDVI is 

the most common index tested when examining chlorophyll levels, other indices 

also relay similar information. Three indices were run in order to test which index 

provided the most information about the sensor’s ability to detect adelgid damage 

and hemlock health (Bonneau et al, 1999b). Equations of all indexes used in this 

study are listed in Table 1. Each relays different information about atmospheric 

conditions utilizing the second and third bands, which hold the most information 

concerning vegetation. Their functions can be found within the third column of 

the table. 

Index Formula Assesses 
Normalized Difference 
Vegetation Index 
(NDVI) 
 

(NIR - Red)  
(NIR + Red) 

Chlorophyll 
content and 
energy absorption. 
 

Transform Normalized 
Difference Vegetation 
Index (TNDVI) 
 

 √ (NIR - Red) = + 0.5  
            √(NIR +Red) 

Chlorophyll 
content with a 
stabilized 
variance 

 
Soil Adjusted 
Vegetation Index 
(SAVI) 
 

 
(1+L) (Band 3- Band 2) 

NIR + Red + L 

 
Minimize soil 
brightness if 
moisture is 
present. 

(Table 1) The three vegetation indexes performed on the numerical data. There are 
hundreds more vegetation indexes that have been created, however many utilize 
hyperspectral data, which differs from the broadband data used in this study.  
Formulas found in Jensen, (1996).  
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Spatial Analysis 

Another test performed in this study attempted to quantify the amount of 

adelgid damage within a stand. Foresters working within the Quabbin care less 

about the damage stage of individual trees and more about the percentage of 

damage within a stand. Forestry practices warrant the salvaging of a stand that is 

over 50% damaged. The logic underlying this practice is that, once a hemlock is 

infested, it cannot be saved, and with over 50% damage it is more cost effective to 

harvest the stand and acquire revenue from the sale of the timber (DWSP, 2004). 

In order to perform this test, a subset of Plot 165 was digitized as an entire 

hemlock stand. It falls within the boundaries of a much larger hemlock stand and 

the flight lines don’t cover the entirety of the stand, so images are not available to 

examine the entire plot. All hemlocks within the subset of Plot 165 were digitized. 

The number of damaged trees was then divided by this total number in order to 

test if there was more than 50% stand damage.     

The purpose of the subset test was to see if an automated process could 

identify damage more efficiently than manual delineation of hemlocks (the 

method used in this study), or ground truthing. Using spectral signatures of the 

healthy hemlocks and damaged hemlocks, a supervised classification was 

performed in order to generate images to visually display the homogeneity and 

heterogeneity of spectral responses within both vegetation classes. Because each 

pixel is tested and placed within a certain signature category, the chances that 

objects will appear whole after classification are somewhat slim. 
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10-Bit Data Analysis 

It was thought that if 8-bit data could not provide information about the 

sensor’s ability to detect spectral differences, then 10-bit data might be used 

instead. Images taken in 10-bit measurements were captured in October of 2004, 

before senescence of the hardwoods. This meant that the image data varied 

greatly from the spring data used in the rest of the study. Additionally, the image 

location is different in the 10-bit data, even though it is still located in the 

Quabbin. While the comparisons seem different because of the time at which 

images were taken, it is important to understand the sensor’s functionality within 

a leaf on state as well. Hemlocks show damage in October like they do in March, 

and it is this health information that we are concerned about in the study.    
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RESULTS 

Question 1: Will infested hemlocks have statistically different maximum and mean 
spectral signatures when compared with healthy hemlocks?  
 

Plot 146: Band 1 is the near infrared band, which provides information 

about chlorophyll production within vegetation. The graph below (Figure 12) 

displays the results for the comparison of mean pixel values for damaged and 

healthy hemlocks in Plot 146, Band 1. All pixel values are taken from individual 

digitized polygons, which contain more than 1 pixel. Visually there is clear 

differentiation between the trees classified as damaged (blue) and those classified 

as healthy (yellow). The mean pixel values of healthy hemlocks range 

significantly higher than the mean pixel values of the damaged hemlocks.  
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Mean Pixel Values for Hemlocks in Plot 146 through 
Band 1
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(Figure 12): The above graph represents the mean pixel values in Band 1 for each 
measured tree in Plot 146. While there is some variability within individual trees, the 
mean values appear to be very different.  
 

The graphical representations show clear separation of hemlock health 

classes, but statistical verification is still necessary as evidentiary proof of actual 

difference. Group statistics and t-test results for the mean pixel values in band 1 

are listed in Table 2 (Appendix A). The t-statistic is 33.124 which is stronger than 

the t-critical 1.645 for the number of samples within this test with a p-value of 

.0001.  

The maximum pixel values of the two hemlock classes show similar 

trends when compared with the mean pixel values (Figure 13), with clear 

differentiation between the maximum pixel values of healthy and damaged 
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hemlocks. The difference is not as defined as that of the mean pixel values, but it 

is still apparent and significant.  

Maximum Pixel Values for Hemlocks in Plot 146 through 
Band 1
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(Figure 13): The above graph represents the maximum pixel values in Band 1 for each 
measured tree in Plot 146. The variability within individual trees is noticeable, but the 
maximum values are still different.   
 

Table 3 (Appendix A) shows the results of a t-test on the maximum pixel 

values in Plot 146, Band 1. The t-statistic is 22.55 which is stronger than the t-

critical of 1.645 for the number of samples within this test with a p-value of 

.0001. Again, this shows that there are statistically different responses between 

the hemlocks within the damaged and healthy classes. 

In Figure 14, the mean pixel values for Hemlocks are displayed for Band 

2, Plot 146. While the damaged hemlocks do have higher reflectance values for 
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the most part, it is clear from visual interpretation that a trend does not exist. This 

does not preclude the test from actual statistical significance.   

Mean Pixel Values for Hemlocks in Plot 146 though 
Band 2
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(Figure 14): The above graph represents the mean pixel values in Band 2 for each 
measured tree in Plot 146. 
 

Statistics were computed using the mean pixel values within Band 2 for 

damaged and healthy hemlocks Table 4 (Appendix A). There is noticeable 

variation between the maximum values of damaged and healthy hemlocks within 

Band 2. The t-statistic is 3.871which is stronger than the t-critical of 1.645 for the 

number of samples within this test with a p-value of .0001. Statistics prove that 

there is a difference between the population.   
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Maximum Pixel Values for Hemlocks in Plot 146 through 
Band 2
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(Figure 15): The above graph represents the maximum pixel values in Band 2 for each 
measured tree in Plot 146. Obvious is the trend where infested hemlocks reflect more 
light than healthy hemlocks.  
 

The results for this t-test can be seen in Table 5 (Appendix A). The t-

statistic is 10.82 which is stronger than the t-critical of 1.645 for the number of 

samples within this test with a p-value of .0001. 

Plot 165: The second plot of tree measurements was taken near CFI 165, 

and shows similar results to Plot 146. In Figure 16, data from Band 1 is presented. 

There appears to be higher reflectance means for healthy hemlocks (yellow) than 

for damaged hemlocks (blue) (Table 6, Appendix A). The t-statistic is 19.28 

which is stronger than the t-critical of 1.645 for the number of samples within this 

test with a p-value of .0001. 
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Mean Pixel Values for Hemlocks in Plot 165 through 
Band 1
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(Figure 16): The above graph represents the mean pixel values in Band 1 for each 
measured tree in Plot 165. Notice the extreme difference in the damaged hemlocks, 
which are not reflecting light, and the healthy hemlocks, which are reflecting normal 
chlorophyll production.  
 
 When looking at the maximum pixel values for damaged and healthy 

hemlocks in Plot 165 Band 1, visual differences in the reflectance patterns of the 

two groups become apparent (Figure 17).  The standard deviations are similar. 

The t-statistic is 14.68 which is stronger than the t-critical of 1.645 for the number 

of samples within this test with a p-value of .0001.   
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Maximum Pixel Values for Hemlocks in Plot 165 through 
Band 1
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(Figure 17): The above graph represents the maximum pixel values in Band 1 for each 
measured tree in Plot 165. In band 1, healthy vegetation should reflect more light and 
have a higher pixel value. 
 
 Figure 18 is the graphic representation of the mean pixel values for Plot 

165 in band two. While there is statistical difference between the mean pixel 

values for the damage classes, this relates to the extreme values within the 

damaged classification (Figure 18). Reflectance values for healthy hemlocks 

appear to be homogenous, generally ranging within a certain boundary of 

absorption. T-statistic is 8.1 which is stronger than the t-critical of 1.645 for the 

number of samples within this test with a p-value of .0001.  
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Mean Pixel Values for Hemlocks in Plot 165 through 
Band 2
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(Figure 18): The above graph represents the mean pixel values in Band 2 for each 
measured tree in Plot 146.  
 

Figure 19 is the graphic representation of  the maximum pixel values in 

Plot 165. There is great amount of heterogeneity between the spectral signatures, 

but there is still statistical difference within the data. The t-statistic is 17.8 which 

is stronger than the t-critical of 1.645 for the number of samples within this test 

with a p-value of .0001. Statistics show that there is a difference between the 

population.   
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Maximum Pixel Values for Hemlocks in Plot 165 through 
Band 2
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(Figure 19): The above graph represents the maximum pixel values in Band 2 for each 
measured tree in Plot 165. Signature responses show no statistical differences.  
 
 Plot 169: Within Plot 169 there are major discrepancies in the data, and 

there is no pattern with regards to the pixel reflectance values. Figures 20 and 21 

show the mean pixel values and maximum pixel values in Band 1 for Plot 169. 

This data were surprising because the other plots mirrored each other in their 

results.  

 Upon closer inspection, an inconsistency with regards to the sampling 

method was noticed. Within the lighter side of the image there were not as many 

healthy hemlocks, and there were relatively no damaged hemlocks—the lighter 

side of the image was composed mostly of white pines. This means that the 

majority of tree measurements were taken within the darker side of the image. 
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Another inconsistency in Plot 169 was its relative heterogeneity when compared 

to Plots 146 and 165. Both of those plots were homogenous hemlock plots with 

very few pines and even fewer hardwoods. While Plot 169 is still primarily 

comprised by hemlock, the presence of hardwoods is much greater when 

compared to the homogeneity within the other plots. These two major differences 

account for some of the dissimilarities in data, and forced me to create another 

method for testing the sensors preservation of spectral differentiation. 
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Band 1

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80

Tree Identification Numbers

Damaged Hemlocks
Healthy Hemlocks

 
(Figure 20): The above graph represents the mean pixel values in Band 1 for each 
measured tree in Plot 169. Signature responses show no spectral differences, differing 
from the results of Plots 146 and 165.  
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Maximum Pixel Values for Hemlocks in Plot 169 through 
Band 1
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(Figure 21): The above graph represents the maximum pixel values in Band 1 for each 
measured tree in Plot 169. There is no difference between the damaged and healthy 
hemlock signature responses.  
 
 In order to correct for this inconsistency I created four vegetation classes 

instead of two.  In these new vegetation classes, measurements of healthy and 

damaged hemlocks were taken from both sides of each mosaic image.  This was 

based on photo interpretation, not ground truth identification. 
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Mean Reflectance Values All Measured Hemlocks in 
Three Plots on both Sides of the Image in Band 1
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(Figure 22): Mean reflectance values of all measured trees within all three plots. Within 
the damage hemlocks class, trees identified as 1-117 are located on the dark sides of the 
images. Trees 118- 190 are located on the lighter sides of images. Within the healthy 
class, trees 1- 129 are located on the darker sides of images and trees 130- to 258 are on 
the light side of the image.   
 

Figure 22 compares all of the measured trees, 447 in total, in Band 1. 

Results were displayed stand by stand before to highlight the differences in Plot 

169 when compared to Plots 146 and 165. Band 1 is focused upon because the 

infrared band is regarded as the most informative concerning chlorophyll vigor. 

Statistics for Band 2 provide little consistent information concerning difference 

within damage classes, so tests were not completed within that band.   

Figure 22 shows expected trends with damaged vegetation having a lower 

reflectance value in the near infrared channel. There is a less pronounced 

difference between the two classes when compared to Figures 12 and 16, but 
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these results mirror those figures. It should also be noted that the spectral 

responses within the trees numbered 170-190 of the Damaged_Hemlocks 

classification generally range higher than the rest of the damaged trees.  

In addition to four defined spectral classes, more careful examination of 

each tree leads to the most accurate pixel responses available for each polygon. 

An independent t-test was run utilizing all of the tree damage information. The t-

statistic of 17.19 which is stronger than the t-critical of 1.645 for the number of 

samples within this test with a p-value of .0001. These tests show that there is a 

statistical difference between the two vegetation classes. The results of this test 

can be seen in full in Table 9 (Appendix A).    

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   48

Question 2: Which vegetation index will relay the most information concerning 
hemlock decline? 
 

One way to account for external parameters within image data sets is to 

use a vegetation index. The most common index used to test the reflective 

properties of the near infrared band is the NDVI. The primary focus in Figures 

23-25 is the distribution of vegetation index values. The distribution of data 

shows the sensor’s ability to detect pixel differences and the vegetation indexes 

capacity to normalize background noise.  

Normalized Difference Vegetation Index (NDVI) Mean 
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(Figure 23): Pixel variations of the four health classifications when performed in an 
NDVI.  
 
 Within Figure 23, the greatest amount of variation can be seen in the 

Damage_Dark classification. The patterns of reflection for the rest of the health 

classifications follow the expected pattern with both of the healthy vegetation 



   49

classes having the highest average pixel reflectance. The one anomaly is that there 

are higher values within the Healthy_Dark classification than there are in the 

Healthy_Light classification. The Healthy_Dark population should have a higher 

reflectance than the damaged hemlocks and a slightly lower reflectance than the 

Healthy_Light classification because of aspect interference.    

Transform Normalized Difference Vegetation Index 
(TNDVI) Mean Reflectance Values for All Trees
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(Figure 24): Pixel variations of the four health classifications when performed in an 
TNDVI. 
 
 The variation trends are similar within the TNDIV (Figure 24) when 

compared to the NDVI. The transform NDVI stabilizes the variance within the 

data, and takes into account slope effects. While following the same trends as the 

NDVI, there is less variation within the Damage_Dark classification. Especially 

noticeable is the tight classification of the Healthy_Light population, showing the 
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similarity of the spectral signatures in this vegetation class. The narrow fit within 

this health class, shows that the sensor is responding the way it is expected to.    

Soil Adjusted Vegetation Index (SAVI) Mean Reflectance 
Values for All Trees
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(Figure 25): Pixel variations of the four health classifications when performed in an 
SAVI. 
 
 The soil adjusted vegetation index (SAVI) (Figure 25) varies most within 

the Damage_Dark classification, following the same trend as the other vegetation 

indices. This relates to the fact that trees are in different stages of infestation. 

Notice within the Healthy_Light classification the vegetation index values do not 

appear to be as homogenous as the same population when tested using the 

TNDVI. Image representations of the separate vegetation indices can be seen in 

Figures 27-29 (Appendix A).  
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Question 3: Can adelgid infestation be quantified by percentage of stand 
damage? 
 

The first method used to quantify the number of damaged trees present 

within the stand was to digitize each hemlock and assign it a health value. This 

was performed on a subset within Plot 165. Of the 223 hemlocks digitized, 

healthy trees comprised 74% (165 trees) and damaged trees comprised 26% (58 

trees). This stand would not warrant clearing, as over 50% of the stand is not 

damaged.  

The ultimate goal is to automate this selection process, so a supervised 

classification was performed using signatures taken from these two health 

classifications. Aspect effects are minimal within the subset, so the only real 

shadow variables came from the trees themselves. The resulting image can be 

seen in Appendix A (Figure 30), with a table of each corresponding color and its 

actual reference within the image (Table 10). The supervised classification did not 

display two discernable vegetation classes. There was more variability within the 

damaged class, which was to be expected because of varying lengths of 

infestation. Ground cover was consistently classified as damaged hemlock in 

addition to the unhealthy hemlocks. There were also differences within the 

healthy classifications. The color green is representative of the white pines found 

in the image, along with hemlocks that had high reflectance values at their apexes. 

Several healthy hemlocks reflect red, but there only appears to be a slight 

difference between the blue and yellow classes when compared with the red class. 

These anomalies do not provide useful information about the health of each 
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individual tree. At this point, the spectral characteristics of the hemlocks are not 

homogenous enough for reliable automated pixel-based classification.      
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Question 4: If 8-bit data cannot provide information and or quantify woolly 
adelgid damage, can 10-bit data provide any additional information? 
 
 Upon initial inspection, it was thought that the 10-bit data might yield 

additional information due to enhanced radiometric resolution and an increase in 

quantized information levels. As noted in the methods section, 10-bit imagery was 

taken before senescence, when hardwoods were still bearing their leaves. This 

made identifying hemlocks difficult since occasionally their branches were hidden 

by other trees or shadow, and that is not a problem experienced within the spring 

images used for most of the study.  

 When viewed more closely, it became apparent that hemlocks could be 

viewed within the imagery. Through photo interpretation, 76 hemlocks were 

identified and then separated based on whether they appeared to be healthy or 

damaged. An equal number of hemlocks appeared to be damaged and healthy, 

with noticeable color differences in the damaged classification on the trees’ 

apexes.  The same process completed to discern the spectral differences within the 

damaged and healthy classifications of the hardwood leaf senescence data, was 

used for the 10-bit data. Zonal attributes were run for each polygon and the means 

were focused upon in order to get a general sense of each tree’s average 

reflectance. The graph in Figure 26 shows that there is no statistical difference 

between the two vegetation classes within the 10-bit imagery.  
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Mean Pixel Values for Damaged and Healthy Hemlocks 
in 10-Bit Imagery in Band 1
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(Figure 26): Pixel values from 10-bit imagery to discern if vegetation classifications 
would be more homogenous.  
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DISCUSSION  

Sources of Error and Variation 

 The identification of hemlocks posed a problem because of ground 

interferences and inexperience. Once the general characteristics of hemlock 

appearance within digital imagery were learned, this source of error decreased 

precipitously. To highlight an example of this kind of error, within the first data 

set some hemlocks digitized in Plot 169 were not actually hemlocks, but under-

story vegetation mistaken as hemlocks. This factor could have played into the 

skewed results found within Plot 169 when compared to Plots 146 and 165. Two 

data sets were collected; the latter population with four vegetation classes was 

more accurate, with only hemlocks being digitized. This second set of data was 

collected in the same plots used in the first tests, with many of the same trees 

being digitized. The main differences of this second data set were the increase in 

the number of digitized trees, and four vegetation classes as compared to two 

vegetation classes.     

The largest source of variation within the study was the trees. Measuring 

adelgid infestation was difficult because trees do not progress through damage 

stages at the same rate, making the variability of damage high. Within Plot 146, 

the majority of damaged trees were on the shady side of the slope, and were 

heavily impacted. Neither of the other two plots possessed such noticeable 
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damage. Additionally, in Plots 165 and 169, the aspect was not as severe and did 

not play as large a role in shadowing the stands. Within Plot 165, a number of 

trees were heavily impacted around the base and apex, but were still vigorous 

through most of the trees. These patterns are typical of trees within their first and 

third years of infestation (McClure, 1995), but it is impossible to discern the exact 

length of time a tree has been infected and level of damage without hyperspectral 

data.  

In Plot 169, the classification of infestation was problematic because the 

trees were surrounded for the most part by senesced hardwoods. Comprising the 

majority of forests within the Northeast, the interference of hardwoods is a 

constant variable.  The hardwood’s branches often overlapped with the hemlocks 

skewing mean pixel values in both damage classifications. This was not a 

problem within the other plots, as they were relatively homogenous hemlock 

stands. Results in Plot 169 were different, even after the tests accounted for aspect 

and shadow interference.    

All trees within the second set of data were classified correctly and 

although these trees identified as infected were damaged, some hemlocks were 

still producing new growth on the edges of their limbs. Zonal attributes therefore 

record these values. The variability within the damaged class is troubling, 

especially when compared to the consistency of the healthy hemlocks. 

 Examining the data graphically shows these trees falling either below or 

above the mean pixel value. The responses of healthy trees showed a much 
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stronger correlation throughout the plots when represented graphically. This is 

more representative of what the ideal spectral responses would be because of the 

homogeneity within the population.   

Accounting for these factors, other than being mindful of them when 

processing the data and viewing graphic results, is difficult. It is important to 

include varying levels of damage in each populations in order to have a realistic 

representation of spectral differences within each damage class. The graphic 

results in Figures 12 and 16 show the variability of spectral responses for both 

damage classifications.  At the same time, these heavily damaged trees skew the 

average and the results by drawing the average responses of each class further 

away from each other. The results end up showing statistically dissident 

differences without distinct separation of pixel values.  

 

Comparison of Damage Using Two Classifications  

The first method used to test the AIMS-1 sensor’s ability to preserve 

spectral differentiation of hemlock woolly adelgid damage specified only two 

broad health classifications. External parameters such as tree shadow and aspect 

were not accounted for within the initial sample collection procedure. This 

introduced error into the results, showing pixel values within Plots 146 and 165 

that varied greatly between tree health classifications. Without taking these 

parameters into account, misleading results showed that spectral differences could 

be detected by the AIMS-1 sensor and followed trends documented by (Jensen, 
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1996) and (Pontius, 2005). This differentiation between the means of the two 

damage classes in the infrared band can be seen in Figures 12 and 16. Plot 169, 

however, yielded different results, which can be seen in graph form in Figure 20. 

The mean pixel reflectance values test for Plot 169 showed no differentiation 

between healthy and infested hemlocks.    

Band 2 is the red band in which healthy vegetation absorbs light. When a 

plant is under stress, chlorophyll production decreases, leading to an increase of 

reflectance in the red band. Figure 15 displays the maximum pixel values for 

damaged and healthy hemlocks in Band 2, Plot 146. In this band a healthy plant 

will have lower reflectance values in the red band than a damaged plant with 

diminished chlorophyll production levels. This is inversely related to the trends 

within Band 1 data, where reflectance values for healthy vegetation are very high.  

 Within Band 2, the red band, statistical outcomes varied. Statistical tests 

showed damage differentiation with great variability in most cases. Pixel 

difference was on average, only 3 pixels within the means test for Plot 146 (Table 

4), but it was around 10 pixels for the maximum values test (Table 5).  This trend 

exists because the red band is less sensitive to chlorophyll production when 

compared to the infrared band.     

 A primary goal in this study was to test the sensor’s ability to preserve 

spectral differentiation, so these mixed results led to closer identification of 

differences within the images. This was done in order to determine why Plot 169 

had such varying responses within both health classifications. Sampling methods 
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had remained constant through each of the plots, so it had to be some sort of 

external interference that caused seemingly similar plots to have different results.  

 

Comparison of Damage Using Four Specified Classifications 

Differences in aspect were noticed and believed to be the cause of the 

skewed results within Plot 169. Through examination of all three plots, the 

conclusion was made that all images contained shadow differentiation due to 

aspect. This was in addition to individual shadows within tight canopies. 

Hemlocks typically prefer hillsides and riparian zones (Bonneau 1999a), so 

interference because of aspect is to be expected within most hemlock stands.     

To account for this variable, four vegetation classes were created. These 

vegetation classes were more sensitive to the external parameters of shadow, 

aspect and ground interference. Statistical tests were performed with the new data 

set comprised of four vegetation classes. While the statistical fit was much tighter, 

there were still very distinct trends in the data (Figure 22). The only band tested 

was Band 1, because the information within the red band was so variable for the 

other data sets, and didn’t relay any consistent results.   

Through having to use these specialized damage classes, some of the 

sensitivities of the sensor became apparent. When capturing images, detection of 

the damage was acute enough to warrant separate vegetation classifications within 

the same health category. Additionally, these characteristics were relatively 

homogenous between different image sets, showing that the sensor behaves 
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normally, and these results were normal throughout all captured images. This is 

important, as the AIMS-1, a broadband multispectral, CCD, digital camera has 

never been tested in identifying vegetation classifications. Previous work has been 

completed using broadband imagery from Landsat satellites to measure time 

change data, but the method attempted within this study was completely different.     

 

10-Bit Imagery 

 It seemed somewhat incongruous that the 10-bit imagery provided 

no significant information to the study. With 1024 quantized levels, the potential 

of 10-bit imagery to detect pixel sensitivities seemed to be a sure thing. Part of the 

problem was the fact that the hardwoods were not in senescence like the 8-bit 

imagery. When hardwoods are in senescence the branches of infested hemlocks 

are visible, and can be captured during shapefile creation. Additionally, damage 

while apparent, was not as advanced as many of the hemlocks measured within 

the three original test plots. Capturing these branches during shapefile building 

was not possible in the 10-bit imagery.     

 

Future Considerations 

 Vegetation classifications that are more defined can lead to image 

segmentation which will identify individual trees rather than pixels. This can 

provide foresters with the percentage of damage within any stand possessing 

hemlocks. The infestation of adelgid is a problem, and the more information 
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researchers have about their spread and the hemlock mortality rate, the easier it 

will be to stem their spread.    

. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   62

 

 

CONCLUSION 

These tests confirm that the AIMS-1 sensor is sensitive enough to preserve 

spectral difference within 8-bit data between infested hemlocks and healthy 

hemlocks in the near infrared band. Results for the red band are not conclusive, 

and generally it does not relay as much information about chlorophyll vigor. 

External parameters such as aspect and individual tree shadow must be accounted 

for when trying to characterize these damage classifications 

The assessment of hemlock damage was possible because of the high 

spatial resolution within the data. At roughly 25cm, ground detail was visible and 

pronounced. This detail allowed for the close inspection of hemlocks and 

provided information about their chlorophyll vigor and needle mass.   

The health classification with the strongest correlation was the healthy 

hemlock class on the non-shadowed portions of images. At this time, pixel-based 

image classification procedures such as supervised classifications have not proved 

useful in determining the percentage of damage within a stand supervised 

classification was performed on. More promise might lie in automated 

classifications of damage using image segmentation techniques. 

The vegetation index that removed external parameters and normalized the 

data to the greatest extent is the transform normalized difference vegetation index 

(TNDVI). The spectral responses within the Damaged_Dark classification had the 



   63

greatest range of values of the four vegetation classes, but within the TNDVI 

Damage_Dark had the tightest range of values.  

It was unknown at the outset of this project whether 8-bit imagery would 

preserve spectral differences between damaged and healthy hemlocks. If this was 

not possible, there was speculation that 10-bit imagery might lend significant 

results because of the increase in quantized levels. While 8-bit imagery preserved 

spectral differences, 10-bit data did not yield any significant additional 

information. The usefulness of AIMS-1 data is apparent through its preservation 

of spectral differentiation between healthy and damaged hemlocks, and its spatial 

resolution which allowed for these measurements to be made.   
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APPENDIX A 
 

(Table 2): Statistics for the Mean Pixel Values in Band 1, Plot 146. Health category 1 represents healthy hemlocks and healthy 
category 2 represents damaged hemlocks. 

Group Statistics

75 134.31849 10.26738 1.18558
76 78.05443 10.59999 1.21590

HEALTH
1
2

MEAN
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

.192 .662 33.124 149 .000 56.26406 1.69860 52.90761 59.62051

33.131 148.949 .000 56.26406 1.69824 52.90831 59.61981

Equal variances
assumed
Equal variances
not assumed

MEAN
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 3): Statistics for the Maximum Pixel Values in Band 1, Plot 146. Health category 1 represents healthy hemlocks and 
healthy category 2 represents damaged hemlocks. 

Group Statistics

75 169.55 10.96 1.27
76 125.45 12.98 1.49

HEALTH
1
2

MAXIMUM
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

3.241 .074 22.546 149 .000 44.10 1.96 40.23 47.96

22.572 145.533 .000 44.10 1.95 40.24 47.96

Equal variances
assumed
Equal variances
not assumed

MAXIMUM
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 4): Statistics for the Mean Values in Band 2, Plot 146. Health category 1 represents healthy hemlocks and healthy 
category 2 represents damaged hemlocks. 

Group Statistics

75 40.54 3.91 .45
76 44.03 6.77 .78

HEALTH
1
2

MEAN
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

17.802 .000 -3.871 149 .000 -3.49 .90 -5.27 -1.71

-3.884 120.285 .000 -3.49 .90 -5.27 -1.71

Equal variances
assumed
Equal variances
not assumed

MEAN
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 5): Statistics for the Maximum Pixel Values in Band 2, Plot 146. Health category 1 represents healthy hemlocks and 
healthy category 2 represents damaged hemlocks. 

Group Statistics

75 58.39 5.73 .66
76 72.12 9.41 1.08

HEALTH
1
2

MAXIMUM
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

12.476 .001 -10.816 149 .000 -13.73 1.27 -16.24 -11.22

-10.849 124.211 .000 -13.73 1.27 -16.24 -11.23

Equal variances
assumed
Equal variances
not assumed

MAXIMUM
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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 (Table 6): Statistics for the Mean Pixel Values in Band 1, Plot 165. Health category 1 represents healthy hemlocks and healthy 
category 2 represents damaged hemlocks. 

Group Statistics

62 142.81392 11.14007 1.41479
60 99.47437 13.59421 1.75500

HEALTH
1
2

MEAN
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

4.336 .039 19.288 120 .000 43.33955 2.24695 38.89076 47.78835

19.226 114.025 .000 43.33955 2.25426 38.87390 47.80521

Equal variances
assumed
Equal variances
not assumed

MEAN
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 7): Statistics for the Maximum Pixel Values in Band 1, Plot 165. Health category 1 represents healthy hemlocks and 
healthy category 2 represents damaged hemlocks. 

Group Statistics

62 187.32 15.17 1.93
60 144.92 16.72 2.16

HEALTH
1
2

MAXIMUM
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

.535 .466 14.680 120 .000 42.41 2.89 36.69 48.13

14.657 118.012 .000 42.41 2.89 36.68 48.14

Equal variances
assumed
Equal variances
not assumed

MAXIMUM
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 8): Statistics for the Mean Values in Band 2, Plot 165. Health category 1 represents healthy hemlocks and healthy 
category 2 represents damaged hemlocks. 

Group Statistics

62 47.84419 5.01708 .63717
60 60.44455 11.19311 1.44502

HEALTH
1
2

MEAN
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

42.142 .000 -8.067 120 .000 -12.60036 1.56199 -15.69298 -9.50773

-7.979 81.204 .000 -12.60036 1.57927 -15.74248 -9.45823

Equal variances
assumed
Equal variances
not assumed

MEAN
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Table 9): T-Test performed on the means of all trees labeled as damaged (Healthy Class 2) and all trees labeled healthy 
(Healthy Class 1).  

Group Statistics

257 135.13432 20.31220 1.26704
190 102.37667 19.38262 1.40616

HEALTH
1
2

MEAN
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

.045 .832 17.185 445 .000 32.75765 1.90616 29.01146 36.50383

17.306 417.369 .000 32.75765 1.89280 29.03704 36.47825

Equal variances
assumed
Equal variances
not assumed

MEAN
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means
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(Figure 27): Output images of the three vegetation indices used to test which index would provide the most information about 
hemlock damage. Images in this figure represent Plot 146. 
 

         
a. NDVI Normalized Difference Index            b. SAVI (Soil Adjusted Vegetation Index) 

 

 
c. TNDVI (Transform NDVI 
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(Figure 28): Output images of the three vegetation indices used to test which index would provide the most information about 
hemlock damage. Images in this figure represent Plot 165. 
 

         
a. NDVI Normalized Difference Index            b. SAVI (Soil Adjusted Vegetation Index) 
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c. TNDVI (Transform NDVI) 
 
 
(Figure 29 ): Output images of the three vegetation indices used to test which index would provide the most information about 
hemlock damage. Images in this figure represent Plot 169. 
 

         
a. NDVI Normalized Difference Index            b. SAVI (Soil Adjusted Vegetation Index) 
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c. TNDVI (Transform NDVI) 

 
(Figure 30 ): Supervised Classification of the subset of Plot 165. A corresponding table of what each represented color 
translates to on the ground can be found within Table 10, located on the next page. Supervised Classifications are described 
within the Methods section and the Introduction.  
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(Table 10): Table providing classification information for each color represented in the Supervised Classification image on the 
previous page.  
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Classification Color In the Image Corresponding True Life Classification  
Healthy_1 
 Gray              

Shadows on healthy hemlocks.  

Healthy_2 
 Red              

Very bright/ healthy vegetation 

Healthy_3 
 Green           

Brightest reflectance values- Appear for all 
White Pines 

Healthy_4 
 Blue             

Also on healthy hemlocks/ no noticeable 
difference between red class  

Healthy_5 
 Yellow         

Found on fringes of healthy hemlocks/ no 
difference from red or blue classification 

Unhealthy_1 
 Purple          

Shadows around vegetated ground 

Unhealthy_2 
 Orange         

Pavement and dark shadow areas 

Unhealthy_3 
 Cyan            

Vegetated ground cover/ including both 
shrubs and damaged hemlocks 

Unhealthy_4 
 Magenta       

Bare ground cover/ dirt 

Unhealthy_5 
 Dark Green    Picks up some lighter pixels and damage/ for 

the most part not useful. 
 

 


