SHUTESBURY AQUIFER RESILIENCY IN THE FACE OF CLIMATE CHANGE

By Cara Board

A thesis presented to the faculty of Mount Holyoke College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors

Department of Geology and Geography

South Hadley, Massachusetts

May 2019

ABSTRACT

The climate is rapidly changing due to human activity, and these changes will impact our water resources. In the town of Shutesbury, Massachusetts, a municipal water supply does not exist. Instead, water comes from private wells that tap into a vast and complex bedrock groundwater system. Prior to this study, little information existed regarding the seasonal fluctuations, the sensitivity of the aquifer to short or prolonged drought, or the ability of the aquifer system to support future development in Shutesbury. Still less was known regarding how the aquifer system could potentially be impacted by climate change. Reports of lowering water levels in New Hampshire and the neighboring town of Pelham were a cause for concern. In 2014, eight monitoring wells were drilled at four locations in order to monitor seasonal changes in water level and to establish a baseline for future levels. Water levels were found to fluctuate seasonally, and despite a snow-heavy winter and summer drought, spring static water levels returned to similar levels each year. Based on the small amplitude of seasonal fluctuations, the lack of a lasting impact of the drought of 2016, and expected future increases in rainfall, it appears that the shared aquifer should continue to serve as a viable source for the town.

TABLE OF CONTENTS

ABSTRACT	
ACKNOWLEDGEMENTS	
1 INTRODUCTION	
2 PROJECTED IMPACTS OF CLIMATE CHANGE IN MASSACHUSETTS	
2.1 Historical Climate	
2.2 Climate Predictions for Massachusetts	
2.2.1 Future Temperatures	
2.2.2 Future Precipitation	14
2.2.3 Future Snow	
3 SETTING AND GEOLOGY	
3.1 Geology	19
3.1.1 Bedrock Geology	
3.1.2 Fractures	23
3.1.3 Surficial Geology	23
3.1.4 Hydrology	24
4 MONITORING WELL LOCATIONS	26
4.1 Site 1	27
4.2 Site 2	27
4.3 Site 3	27
4.4 Site 4	28
5 METHODS	29
5.1 Manual Water Level Measurements	
5.2 Level Logger Measurements	29
5.3 Pumptest	
5.4 Weather Data	
6 RESULTS	
6.1 Climate Results	
6.1.1 Temperature	
6.1.2 Precipitation	
6.2 Water Level Results	
6.2.1 Comparison of Monitoring Wells	
6.2.2 Comparison of Bedrock Wells	
6.2.3 Site 1	
6.2.3.1 Site 1 Bedrock Well	
6.2.3.2 Site 1 Monitoring Well	40

6.2.4 Site 2	
6.2.4.1 Site 2 Bedrock Well	42
6.2.4.2 Site 2 Monitoring Well	43
6.2.5 Site 3	
6.2.5.1 Site 3 Bedrock Well	45
6.2.5.2 Site 3 Monitoring Well	46
6.2.6 Site 4	
6.2.6.1 Site 4 Bedrock Well	48
6.2.6.2 Site 4 Monitoring Well	50
6.3 Pumptest and Blowtest Results	51
6.3.1 Site 1	51
6.3.2 Site 2	51
6.3.3 Site 3	
6.3.4 Site 4	
	53
7.1 Site 1	52
7.2 Site 2	54
7.3 Site 3	56
7.4 Site 4	59
7.5 Annual cycles	61
7.6 Response to a Discrete Rainfall Event	62
7.7 Drought vs Wet Summer	63
7.8 Climate Change and the Shutesbury Water Supply	64
8 CONCLUSION	66
9 WORKS CITED	68

TABLE OF FIGURES AND TABLES

Table 1: Western Massachusetts Climate	
Figure 1: New Hampshire Water Levels	10
Figure 2: Pelham Well	11
Figure 3: Pelham Well Water Level	11
Figure 4: Observed and Projected Temperature Change	13
Figure 5: Changing Summers in Massachusetts	14
Figure 6: Observed Annual Precipitation	15
Figure 7: Observed Number of Extreme Precipitation Events	16
Figure 8: Topographic Profile	18
Figure 9: Pelham Dome	20
Figure 10: Bedrock Geology of the Pelham Dome	21
Figure 11: Bedrock Geology	22
Figure 12: Surficial Geology	24
Figure 13: Well Locations	26
Table 2: Elevation Corrections	30
Figure 14: Temperature	34
Figure 15: Rainfall Rate	35
Figure 16: Rainfall	35
Figure 17: Snowfall and Rainfall	35
Figure 18: Specific Rainfall Event	36
Figure 19: Monitoring Well Composite Graph	37
Figure 20: Bedrock Well Composite Graph	38
Figure 21: Site 1 Monitoring and Bedrock Wells	
Table 3: Site 1 Bedrock Well	40
Figure 22: Site 1 Bedrock Well and Rainfall	40
Table 4: Site 1 Monitoring Well	41
Figure 23: Site 1 Monitoring Well and Rainfall	41
Figure 24: Site 2 Monitoring and Bedrock Wells	42
Table 5: Site 2 Bedrock Well	43
Figure 25: Site 2 Bedrock Well and Rainfall	43
Table 6: Site 2 Monitoring Well	44
Figure 26: Site 2 Monitoring Well and Rainfall	44
Figure 27: Site 3 Monitoring and Bedrock Wells	45
Table 7: Site 3 Bedrock Well	46
Figure 28: Site 3 Bedrock Well and Rainfall	46
Table 8: Site 3 Monitoring Well	47
Figure 29: Site 3 Monitoring Well and Rainfall. W	47
Figure 30: Site 4 Monitoring and Bedrock Wells	48
Table 9: Site 4 Bedrock Well	49
Figure 31: Site 4 Bedrock Well and Rainfall	49

Table 10: Site 4 Monitoring Well	50
Figure 32: Site 4 Monitoring Well and Rainfall	50
Figure 33: Site 1 Monitoring Well and Discrete Rainfall Event	53
Figure 34: Site 1 Bedrock Well and Discrete Rainfall Event	54
Figure 35: Site 2 Bedrock Well, Monitoring Well, and Discrete Rainfall Event	56
Figure 37: Site 3 Bedrock Well and Discrete Rainfall Event	58
Figure 38: Site 4 Deep Well and Discrete Rainfall Event	60

ACKNOWLEDGEMENTS

First and foremost, I would like to express my unending gratitude to my thesis advisor, Al Werner, for his continued support of my research. Thanks to his presence, patience, and conversation, this thesis has not only pushed me beyond what I thought my academic achievements could be, but it has also been fun. I would be remiss if I didn't include Chloe in my gratitude, for her enjoyment of the outdoors and enviable curls.

I would like to thank the rest of my thesis committee as well. My sincere thanks goes to Tim Farnham, who has been my academic advisor since the beginning, and who's guidance and good faith have carried me throughout my college career. Thank you to Sam Tuttle for his conversation, his mastery of Microsoft Excel, and for his enthusiasm.

Special thanks to Ben Brau for providing us with local weather data, and to Drew Forest and Scott Campbell at the Department of Conservation and Recreation for sending over their snowfall data from the Quabbin Reservoir.

1 | INTRODUCTION

In New England, as with most of the United States, our relationship with local water resources is based on the assumption that the resource in question will be consistent and predictable. In most temperate latitudes, water levels are typically high in the spring because of rainfall and snowmelt, and drop throughout the summer as the weather gets hotter and drier, water use increases, and vegetation claims its fair share (Whately et al 2012). Typically, rain shifts to snow during the late fall, snowpack begins to melt during the spring, and the summers are warm and dry with occasional interruptions by intense thunder storms. However, because of climate change, these expected patterns are changing and are predicted to continue to change. Temperatures are rising, precipitation trends are shifting (Table 1), and surface and ground water resources are becoming less predictable.

The resilience of groundwater systems in New England became a concern in the early 2000s as statements from drillers in New Hampshire began to report that wells were needing to be drilled deeper and that static water levels were decreasing. A study in 2010 found that, between 1984 and 2007, the average static water level in New Hampshire wells lowered by 13ft (Ayotte et al 2010; Kernen 2010; Figure 1). About 50% of New Hampshire residents get their water from bedrock wells, and 80% of these wells are private, so the only consistent reporting came from the initial drilling and complaints of individual wells running dry. Further exacerbating the situation, the population of New Hampshire has been growing, and the resulting increase in water use caused concern about the resilience of their groundwater resource and the potential impacts of climate change (Mack 2009).

WESTERN		CHANGE FROM 30 YEAR AVERAGE 1980-2009 (+ 0R -)				• or -)	
MASSACHUSETTS	30 YEAR AVERAGE*	SHOR 2010	T TERM -2039	MEDIUM TERM 2040-2069		LONG TERM 2070-2099	
INDICATORS	1980-2009	LOW EMISSIONS	HIGH EMISSIONS	LOW EMISSIONS	HIGH EMISSIONS	LOW EMISSIONS	HIGH EMISSIONS
MINIMUM TEMPERATURE (°F)							
Annual TMIN	35.4	1.6	2.0	2.8	5.1	3.7	8.7
Winter TMIN	14.2	2.1	2.5	3.4	5.4	4.7	8.9
Spring TMIN	33.3	2.9	1.5	4.7	4.1	5.8	7.3
Summer TMIN	55.5	1.5	2.1	2.7	5.6	3.4	9.8
Fall TMIN	38.2	0.1	1.9	0.3	5.3	0.8	8.7
MAXIMUM TEMPERATURE (°F)							
Annual TMAX	57.7	1.6	1.7	3.0	4.7	3.9	8.1
Winter TMAX	34.0	1.7	1.6	2.5	3.6	3.6	6.1
Spring TMAX	56.0	2.6	1.6	5.1	4.8	6.8	8.7
Summer TMAX	79.7	1.6	1.9	3.1	5.4	3.9	8.9
Fall TMAX	60.5	0.8	1.8	1.2	5.3	1.3	8.5
TEMPERATURE EXTREME (DAYS PE	R YEAR)						
<32°F	158	-9	-11	-15	-25	-19	-43
<0°F	13	-4	-4	-6	-9	-7	-12
>90°F	6	4	5	11	20	16	45
>95°F	1	1	1	2	5	5	18
TMAX on hottest day of the year	92.5	1.7	1.1	3.0	4.4	4.8	8.0
TMIN on coldest day of the year	-14.1	3.6	4.3	6.0	9.9	7.9	16.8
GROWING SEASON (DAYS)	168	12	12	19	29	20	51
PRECIPITATION (IN.)							
Annual Mean	46.2	4.9	4.0	5.7	6.2	7.5	9.3
Winter Mean	10.3	1.1	0.9	1.4	1.2	1.8	2.7
Spring Mean	11.8	1.3	1.4	1.8	1.9	2.3	3.2
Summer Mean	12.4	1.9	1.6	1.6	2.4	2.4	2.2
Fall Mean	11.6	0.5	0.1	0.8	0.6	1.0	1.2
EXTREME PRECIPITATION (EVENTS PER YEAR)							
1" in 24 hours	11.5	2.0	1.7	2.0	2.8	3.0	4.2
2" in 48 hours	5.7	1.5	1.4	2.0	2.4	2.8	4.3
EXTREME PRECIPITATION (EVENTS PER DECADE)							
4" in 48 hours	4.8	2.6	1.6	4.7	4.1	6.2	7.8
SNOW COVERED DAYS	87	-13	-13	-18	-33	-25	-44

Table 1: Western Massachusetts Climate. Minimum and maximum temperatures, temperature extremes, length of growing season, precipitation, extreme precipitation events, and snow covered days averaged from 1980 to 2009 for Western Massachusetts. Includes the short, medium, and long term high and low emission predictions for these categories as well (Climate Solutions New England).

Figure 1: New Hampshire Water Levels. The mean quarterly static water levels in bedrock wells in New Hampshire, 1984-2007. The graph measures feet below land surface, so the upward trend indicates an increase in distance beneath the surface, demonstrating a lowering water level (Ayotte et al 2010).

Five miles to the south of Shutesbury is a USGS monitoring well located in Pelham, Massachusetts (Figure 2) that shows a similar downward trend in static water levels (Figure 3). Since 1982, the water level has fallen by approximately 8ft. The downward trend seen in New Hampshire in conjunction with the falling levels of a well in an adjacent town prompted the town of Shutesbury, Massachusetts, to take stock of the state of their primary water source. In Shutesbury, as in most of rural New England, a municipal water supply doesn't exist. Instead, water is produced from private wells that tap into a vast and complex bedrock groundwater system. This is the reality for about 40% of the New England population (NE Drinking Water 2017). These private wells have no municipal management plan or system in place to monitor the water level or quality besides the individual homeowner and the well driller. As such, little information exists regarding the seasonal fluctuations, sensitivity to short or prolonged drought, or ability of the aquifer system to support future development.

Figure 2: Pelham Well. The green triangle shows the location of the Pelham Well in relation to the town of Shutesbury. The blue circles are 3 of the 4 well sites for the study, with the fourth one being farther north beyond the limits of this figure (USGS 2018).

Figure 3: Pelham Well Water Level. The depth to water level below land surface on the left y axis and groundwater level above the logger on the right y axis, both in feet, from 1982 to 2018 (USGS 2018).

2 | PROJECTED IMPACTS OF CLIMATE CHANGE IN MASSACHUSETTS

2.1 | Historical Climate

Using the 30-year average from 1980 to 2009, the average daily low and high temperature in Western Massachusetts is 35.4F and 57.7F, respectively. The average winter low is 14.2F and the average summer high is 79.7F. The annual mean precipitation is 46.2", with approximately 16 extreme precipitation events (defined as more than 1" of rain falling over a period of 24 hours) per year. During this time, there were an average of 87 snow covered days (Table 1). Historical records indicate the occurrence of a major drought in the 1960's and a less severe one in the early 1980s. Drought periods were recorded consistently in Massachusetts, starting in 2001, with a major drought occurring in 2002 and during the course of this study in 2016 (DCR 2017).

2.2 | Climate Predictions for Massachusetts

2.2.1 | Future Temperatures

Average temperatures in Massachusetts are predicted to rise 1-5 degrees C by the end of the century (Figure 4), with winter temperatures rising at a faster rate than summer temperatures (NE EPA). This has increased the length of the shoulder seasons (fall and spring), has shortened the time in which there is potential for snowfall and subsequent snowpack, and increased the duration of the summer season. These changes in temperature are predicted to be greater in areas that have been historically colder (Pourmokhtarian et al 2017), so higher elevations in Massachusetts and the more northern regions of the state are projected to feel the most change. Climate Solutions New England shows Massachusetts as having summers that are similar to the current climate of South Carolina by 2100 (higher emission scenario) (Figure 5).

Figure 4: Observed and Projected Temperature Change. The increase in Massachusetts air temperature over the last century and twomodel based projections for future temperature for low and high emission scenarios (Runkle et al 2017).

Figure 5: Changing Summers in Massachusetts. In the high emission scenario (red), Massachusetts summer climate is predicted to shift to feel like that of South Carolina by 2100. The low emissions scenario is shown in yellow.

2.2.2 | Future Precipitation

Precipitation in Massachusetts has been increasing over the last century (Figure 6), but as with temperature, the increase has not been uniform throughout the year. While annual precipitation has increased by about 10% in the last century, it has increased at a higher rate in winter months. Winter precipitation is predicted to increase by another 11-14%, whereas summer rain is expected to decrease slightly (Mack 2009). One report goes so far as to suggest that winter precipitation will increase by as much as 30% by 2100 (Mass.gov). Because of the increasing temperature, most of this increase in winter precipitation will occur in the form of rainfall (Hayhoe et al 2006).

Figure 6: Observed Annual Precipitation. The total annual observed precipitation in the state of Massachusetts grouped in 5 year periods over the last century, showing a steady increase (Runkle et al 2017).

The increased heavy rainfall will increase local runoff in the winter, leading to worsening flooding (Hayhoe et al 2006; Pourmokhtarian et al 2017). The peak streamflow in the spring is expected to come earlier, which has implications for a lengthened the low flow period in the summer and reduced groundwater recharge potential. Precipitation from intense storms, in which a large amount of rain falls in a relatively short amount of time, has likewise increased since the 1960s (Figure 7), and another 13% increase is predicted by 2100 (Mack 2009). Intense rainfall events have a significant implication for the environment, because intense rain can produce runoff when the soil is completely saturated and cannot absorb more water, or when the rainfall rate exceeds the infiltration rate of water into the soil. This increase in runoff can lead to an increase in local flooding, and can limit the groundwater recharge potential of these precipitation events (Hayhoe et al 2006; Mack 2009).

Figure 7: Observed Number of Extreme Precipitation Events. The number of intense precipitation events greater than 2 inches in the state of Massachusetts grouped in 5 year periods over the last century, showing a steady increase.

2.2.3 | Future Snow

Massachusetts is projected to lose between 25-50% of its snow covered days by the end of the century (Mass.gov) due to the increase in winter temperature and the resulting shift to rainfall from what has historically been snowfall. The time in which snow will exist is predicted to be reduced, due to delayed snowfall and earlier melting (Hayhoe et al 2006).

Snowpack will melt earlier, eliminating the reserves that would otherwise melt into the early summer. This will potentially have a major impact on spring base flow in streams (Whately et al 2012), increasing frequency and duration of low flow periods and lowering the availability for groundwater recharge from infiltration from surface water (Dudley et al 2010).

The volume of water available for infiltration earlier in the melting season is expected to increase. However, frozen ground could increase runoff into surface water systems (Hayhoe et al 2006). Soil freezing is an important factor in the hydrology of Western Massachusetts, as soil that is concretely frozen has been shown to cause up to 100% of precipitation and snowmelt to runoff and not infiltrate (Storey 1955). Additionally, snow cover is a major player in whether or not the ground freezes, as well as the depth of the frost (Storey 1955, Dudley et al 2010). The predicted lowering of snow pack volume increases the likelihood of a frozen, impermeable ground, but the higher air temperatures increase the likelihood that it will be too warm for the ground to freeze (Dudley et al 2010, Whately et al 2012). As such, with warmer air temperatures and reduced frozen ground, it is most likely that the net affect will be an increase in winter recharge.

3 | SETTING AND GEOLOGY

Shutesbury is located on a topographic ridge just east of the Connecticut River and west of the Quabbin Reservoir, and precipitation that falls on either side of the ridgeline flows to those bodies of water. The aquifer relies on recharge from direct precipitation, and because even the deepest wells in town are above these levels, the Connecticut River and the Quabbin Reservoir are not considered sources of water for the town (Figure 8).

Figure 8: Topographic Profile. An east-west topographic profile from the Connecticut River to the Quabbin Reservoir showing that the Shutesbury ridge is a groundwater recharge area.

3.1 | Geology

3.1.1 | Bedrock Geology

Shutesbury is located in the south-central part of the Pelham Dome (Zen 1983, Figure 9). Most of the region is mapped as undifferentiated Poplar Mountain and Dry Hill Gneiss with a band of biotite-tourmaline schist and quartzite that is classified as pelitic (Zen 1983, Figure 10, Figure 11). The bedrock is Proterozoic in age and records the convergent tectonics associated with the formation of Pangea. The region has been mapped as Pelham Gneiss, which is metamorphosed granite, and is referred to as granite by the well drillers in the well driller reports.

Figure 9: Pelham Dome. A portion of a map of the bedrock geology of Western Massachusetts (Zen et al 1983) that places Shutesbury in the south-central portion of the Pelham Dome.

	Dry Hill Gneiss (Proterozoic Z)		
Zdh	Pink microcline-biotite and microcline-hornblende gneiss containing pink microcline megacrysts and minor quartzite		
Zdhs	Biotite-tourmaline schist and quartzite		
Zdpq Pelham Quartzite Member. White to buff quartzite and feldspathic quartzite commonly with biotite and/or actinolite			
Zpd	Undifferentiated Poplar Mountain and Dry Hill Gneisses (Proterozoic Z)		

Figure 10: Bedrock Geology of the Pelham Dome. The snapshot from Figure 8 identifies the bedrock in the regions where the wells are located as pink microline-biotite and microline-hornblende gneiss containing pink microline megacrysts and minor quartzite, undifferentiated Poplar Mountain and Dry Hill Gneisses, and a small band of Biotite-tourmaline schist and quartzite, all of which are Proterozoic Z (Zen et al 1983).

Figure 11: Bedrock Geology. Map of the bedrock geology in the town of Shutesbury. The wells in the groundwater study are located in Granite and Pelitic Rocks, and are marked by a yellow circle (Mass GIS).

<u>3.1.2 | Fractures</u>

Gneiss is a crystalline rock and has a relatively low hydraulic conductivity (Ozbek et al, 2018). The principal paths for groundwater flow are therefore various types of fractures such as fracture zones, faults, shear zones, and joints (Hansen and Simcox 1994). Fractures in the area consist of regional N—S trending fractures and subhorizontal fractures at shallow depths associated with "unroofing" the bedrock (Al Werner, pers comm, 2019). The width of these fractures can range from barely visible to several inches, but the fracturing of the coarser gneiss tends to be wider and more continuous (Hansen and Simcox 1994). The isotropic structure of the Dry Hill Gneiss allows it to fracture anywhere and in any direction. The anisotropic structure of the schist, on the other hand, occurs along the foliation of the rock, limiting the pathways for water to travel.

3.1.3 | Surficial Geology

The surficial geology in this region is mostly thin glacial till, and has abundant outcropping and shallow bedrock (Mass GIS, Figure 12). Glacial till is a mixture of clay, silt, sand, gravel, and some larger rocks that were deposited directly by glacial ice. In much of Massachusetts, it's relatively thin (50ft thick or less) (Mass GIS, Figure 12). The stratified drift deposits are made up of the same ingredients, but are better sorted, have a higher hydraulic conductivity, and were also deposited during deglaciation by meltwater processes. From the well drillers reports (Appendix A), the till in the region of the study can be generalized as poorly sorted silty gravel. The till was deposited around 16,000 years ago, during deglaciation of New England (Ridge et al 2012).

Figure 12: Surficial Geology. Map of the surficial geology in the town of Shutesbury. The wells in the groundwater study are marked by a blue circle (Mass GIS).

3.1.4 | Hydrology

In New England, groundwater is usually found fairly close to the surface of the land, up to about 50ft deep. It occurs in three major geologic units: glacial till, stratifieddrift deposits, and bedrock (Mack 2009). Beneath the surficial deposits is the bedrock, consisting of crystalline igneous rocks and metamorphic rocks, like granitic gneiss (Mack 2009). Crystalline bedrock is not very permeable, so it is not considered to be a prolific source of groundwater. However, groundwater can be stored in glacial till, or in subhorizontal fractures in the bedrock (Simcox 1994).

Recharge of these aquifers comes in the form of rainfall and snowmelt. The groundwater that is stored in the glacial till and stratified-drift layers make up a large portion of the water that is available to the bedrock aquifer. The amount that enters the bedrock at any given place depends on the location of that point within the flow of the entire aquifer and the connectivity of the fractures within the bedrock (Mack 2009, Hansen and Simcox 1994). After spring rain and snowmelt, groundwater slowly discharges into streams throughout the summer, and accounts for a large percentage of the surface water flow during lower flow periods in the summers (Dudley et al, Hansen and Simcox 1994). The system is recharged by precipitation at the land surface and then discharges into streams, flowing from topographic high areas to low areas.

<u>4 | MONITORING WELL LOCATIONS</u>

The town of Shutesbury installed 8 wells drilled at 4 sites located along the ridgeline along a roughly N-S transect (Figure 13). Each of the sites has one monitoring well that was drilled to bedrock (between 4 and 26 feet), and one deep well that is 100ft deep (except at site 3 where the deep well reaches 300ft).

Figure 13: Well Locations. A map of the town of Shutesbury with the four wells marked by red stars. The ridgeline is indicated by a meandering yellow line.

4.1 | Site 1

Site 1 is located off of Pelham Hill Road in a level forested area (Figure 13). Drilling for the bedrock well was completed on 8/23/2014, and the monitoring well was completed on 8/22/2014. Water levels took two weeks to recover after the drilling (Al Werner, pers comm, 2019). The total depth of the bedrock well is 100ft, and the casing length is 40ft. The monitoring well was drilled 25ft deep to the top of the bedrock. The well lithology from 0-25ft is a gravel/silty clay mix, and from 25-100ft is a quartz/granite. No significant fractures were detected during the drilling process (Appendix A).

4.2 | Site 2

Site 2 is located near an old military navigation site that was once considered as a site for a library, and is home to a small cranberry bog (Figure 13). The area is level, partially forested, and frequently has a shallow amount of standing water on the surface. Drilling for both wells was completed on 8/21/2014. The total depth of the bedrock well is 100ft, and the casing length is 40ft. The monitoring well was drilled until hitting bedrock at a depth of 26ft. The well lithology is silty sands from 0-4ft, gravel from 4-26ft, weathered rock from 26-34ft, and granite from 34-100ft. Fractures were detected at depths of 44ft and 58ft during the drilling process (Appendix A).

4.3 | Site 3

Site 3 is located behind the Shutesbury Town Hall (Figure 13) in a grassy field, and both UMass Amherst and the USGS have monitored this well. Drilling for the bedrock well was completed on 8/27/2014, and the monitoring well was completed on 8/24/2014. The total depth of the bedrock well is 300ft, and the casing length is 30ft. The monitoring well was drilled until hitting bedrock at a depth of 13ft. The well lithology from 0-13ft is described as dry gravel, and granite from 13-300 ft. Significant fractures were detected at depths of 234, 260, 267, 269, 282, and 288ft during the drilling process (Appendix A).

4.4 | Site 4

Site 4 is located up a slight hill in a forested area behind the Shutesbury Athletic Club (Figure 13). Drilling for the bedrock well was completed on 8/25/2014, and the monitoring well was completed on 8/26/2014. The total depth of the bedrock well is 100ft, and the casing length is 20ft. The monitoring well was drilled until hitting bedrock at a depth of 4ft. The lithology from 0-4ft is described as dry gravel, and granite from 4-100ft. Fractures were detected at depths of 41, 61, and 94ft during the drilling process (Appendix A).

5 | METHODS

Water levels were measured in two ways during the study: seasonal manual measurements and high frequency measurements using automated data loggers. Manual measurements were collected to validate the logger data, whereas level loggers using a 15 min interval were used to record small and rapid changes in water level.

5.1 | Manual Water Level Measurements

A weighted measuring tape was used to measure from the top of the well casing to the top of the water and measurements were made to the nearest 1/10 of a foot. These data were recorded in a spread sheet for comparison to the water levels recorded by the water level loggers. This is supplementary data and is not discussed as part of this study.

5.2 | Level Logger Measurements

In order to collect water level data from the eight wells, HOBO Onset water level loggers (model U20L-01) with a range of 0 to 30ft were suspended by a thin stainless-steel cable from the top of the well casing to below the seasonal low water levels. These loggers function by recording the total pressure above the sensor, which includes both the weight of the water and the atmospheric pressure, and have a water level accuracy of 0.1%. The loggers were programmed to take recordings every 15 minutes, and their

memory capacity required downloading every four months using Hoboware Pro. This program has an embedded barometric correction wizard that efficiently uses a separate barometric data file to correct for atmospheric pressure, affording absolute water level determinations. A dedicated baro-logger was used to monitor and record these atmospheric pressure changes from a station near the Town Hall in Shutesbury.

Well	Well Elevation (ft)	Casing Height (ft)	Cable Length (ft)	Water Logger Elevation (ft)	
Site 1 MW	1208	1.74	4.23	1205.51	
Site 1 DW	1208	1.25	29.1	1180.15	
Site 2 MW	1183	2.36	19.78	1165.56	
Site 2 DW	1183	2.02	19.95	1167.07	
Site 3 MW	1188	2.23	14.57	1175.66	
Site 3 DW	1188	1.67	69.8	1119.87	
Site 4 MW	1190	1.57	19.9	1186.64	
Site 4 DW	1190	3.07	29.1	1171.67	
Water Logger Elevation = well elevation + casing height - cable length					
Water Table Elevation = water logger elevation + water level above logger					

Table 2: Elevation Corrections. The water logger elevation was determined by taking the well site elevation plus the well casing height, and subtracting the length of the cable that the logger hangs from. The water table elevation was calculated by adding the water level logger elevation and adding it to the recorded water level above the logger. The equations in the bottom of the table show this.

The format of the raw data was feet of water over the water level logger. Because this is impossible to contextualize with the other wells, the data were normalized by translating the relative water-level data to water elevation values. After discussion with professor Eugenio Marcano, a DEM (digital elevation model) was used to determine the elevation at each site. The casing height was added to the well elevation, and then the cable length was subtracted from that value to determine the elevation of the level logger (Table 2). This constant value was then added to the raw data in Microsoft Excel. In order to put the normalized data back into Hoboware Pro, it was saved as a text file. Other data corrections were necessary in a handful of occasions in which data were missing, or barometric data were not available to correct the pressure reading. These intervals show up as data gaps in the time series. There were also intervals where there is an abrupt increase in water level between two points that has no weather or pressure related explanation. It appears that the logger had become stuck on a ledge in the well and eventually became dislodged and then fell to its full potential depth at the end of the cable, accounting for the abrupt change. In these instances, the difference between the two data points in question was calculated, and the difference was added to the lodged portion of the data to account for the change in elevation.

5.3 | Pumptest

On November 12, 2018, a pumptest was performed at sites 1, 2, and 4. A submersible pump was used for 30 minutes, or until the drawdown reached the limits of the sensor. The level loggers were set to record pressure changes at a 1 second interval, and then 1 minute intervals for the duration of the test. The wells were left to recover for 7 days, at which point they were collected and downloaded. For site 3, a drawdown event in September of 2017 was used. Using the slug test software in Aqtesolv, the recovery data was uploaded and processed. Curve matching was used to determine K-values for each well. The K-value is the hydraulic conductivity, or the flow rate of the aquifer. The program assumes that the entire well is porous, not that the water is coming from a few productive fractures, so the K-value is, in a sense, averaged over the entirety of the well-bore.

5.4 | Weather Data

With the help of a local resident, air temperature and precipitation recorded at 5 minute intervals for the span of the study were collected from a weather station located on West Pelham Rd. Daily snowfall data from the Quabbin Reservoir located just to the east of Shutesbury was kindly provided by the Department of Environmental Protection. Both sets of data were imported into Microsoft Excel files and then saved as text files and uploaded to Hoboware Pro.

<u>6 | RESULTS</u>

Data collection for this study began in early fall of 2014. Missing data is the result of either the well logger running out of battery or storage, or because of missing barometric data that prevented barometric correction. The monitoring well data at site 4 was used for barometric correction on occasions when there were no significant rainfall events.

6.1 | Climate Results

6.1.1 | Temperature

The maximum temperature for the duration of the study was 94.89F, and the minimum temperature was -17.60F. The average was 48.19F. Annual high temperatures for the duration of the study ranged between 89F and 95F, whereas the annual lows ranged from -17F to -6F. Between November of 2014 and April of 2015, there were 132 days where the temperature was below freezing. From November of 2015 to April of 2016, there were 137 days where the temperature was below freezing. From November of 2016 to April of 2017, there were 158 days where the temperature was below freezing. From November of 2017 to April of 2018, there were 160 days that were below freezing (Figure 14).

Figure 14: Temperature. Outdoor temperature in Fahrenheit from Sept. 2014 – Nov. 2018.

6.1.2 | Precipitation

The highest intensity of rainfall was a rate of 11in/hr in late August of 2016 (Figure 15). In general, the higher intensity (5in/hr) rainfall events occurred between May and October. The larger rainfall events happen in the summer and fall months when water levels in the wells are lowering (Figure 16). There is a lower volume of rain in the winter and fall. The amount of snow that fell in a 24-hour period was recorded at the Quabbin Reservoir between November and April. The snowfall coincides with the timing of below freezing temperatures, and peaks where the rainfall decreases (Figure 17).

Figure 15: Rainfall Rate. Measured in inches per hour from Sept. 2014 — Nov. 2018.

Figure 16: Rainfall. Amount of rain in a 5-minute interval from Sept. 2014 — Nov. 2018.

Figure 17: Snowfall and Rainfall. A composite graph of the snowfall (light blue) and rainfall (dark blue) data measured in inches from September 2014 through November 2018.

6.1.3 | Isolated Rainfall Event

An isolated rainfall event was selected to analyze the response of the monitoring and bedrock wells to direct precipitation. The rainfall events between October 24⁺, 2017 and November 1, 2017 are preceded by approximately 9 days of dry conditions (Figure 18). The first rainfall event in this sequence has the highest volume, with the other events appearing to be much less significant. This event is used to evaluate ground water level response to a discrete rain event (see Interpretations – below).

Figure 18: Specific Rainfall Event. A subset of the rainfall data from October 15 through November 1 of 2017.

6.2 | Water Level Results

<u>6.2.1 | Comparison of Monitoring Wells</u>

A composite graph of all four monitoring wells shows the respective elevations of their water levels in relation to each other (Figure 19). Site 1 is approximately 30 ft higher than the others, with site 4, 3, and 2 following respectively. Sites 4, 3, and 2 inhabit a range in elevation of approximately 1170ft to 1190ft. Sites 1, 2, and 3 have
similar temporal patterns, maintaining a relatively consistent spacing between them, and site 4 displays changes in water level when the other three wells are at their highest levels. Site 4 is the shallowest, at only 4ft deep, and is frequently dry. This well only contained water during the highest peaks in water level throughout the duration of the study. The other sites have similar magnitude of seasonal fluctuations, with the greatest drop in water level occurring in 2016.

The higher water levels occur between January and June. Low levels occur September through December. In 2015, each of the wells experience a peak in December/January, fall to a lower level in March, and rise again in late April. These fluctuations happen on smaller scales in the following years. Recovery from the summer low levels begins around November. Water levels in 2018 don't have a distinct, singular low period, but rather consistently fluctuated in a much more limited range of variability than previous years (Figure 19).

Figure 19: Monitoring Well Composite Graph. Site 1 is in black, site 2 is blue, site 3 is green, and site 4 is red.

6.2.2 | Comparison of Bedrock Wells

A composite graph of all four bedrock wells shows the respective elevations of their water levels in relation to each other (Figure 20). Site 3 is approximately 45ft lower than the other three wells. Site 4 is consistently at the highest elevation, while sites 1 and 2 are about the same. All four sites have similar temporal patterns, maintaining a relatively consistent spacing between them. Site 1 has the most stable water levels of the four. All four wells have a similar magnitude of seasonal fluctuations, with the greatest drop in water level occurring in 2016. Trends in high and low water levels throughout the seasons mirror those in the monitoring wells (Figure 20).

Figure 20: Bedrock Well Composite Graph. Site 1 is in black, site 2 is blue, site 3 is green, and site 4 is red.

A composite graph of the monitoring and bedrock wells at site 1 shows the 35ft difference in water table elevation between the two wells. There is a similar magnitude in water level fluctuation and temporal variations. The monitoring well is much more responsive to short term fluctuations, whereas the bedrock well is more stable (Figure 21).

Figure 21: Site 1 Monitoring and Bedrock Wells. A composite graph of the water elevation from September of 2014 through November of 2018 from both the monitoring and bedrock wells at site 1. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.3.1 | Site 1 Bedrock Well

The annual maximum water levels of the bedrock well occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 3). The maximum water levels during the 5 years of study varied by 0.36ft, while the minimum water levels had a larger range of variability at 5.38ft. The highest difference between high and low water levels occurred in 2016, whereas 2018 had the smallest difference. The bedrock well at site 1 has the most stable water level in the study. Rainfall coincides with the downward slope of the seasonal fluctuations

(Figure 22).

Table 3: Site	1 Bedrock Well		
year	maximum water level	minimum water level	annual range
2015	1,176.41	1,173.07	3.34
2016	1,176.60	1,170.58	6.02
2017	1,176.54	1,172.74	3.80
2018	1,176.77	1,175.96	0.81
full study	1,176.77	1,170.58	6.19
range	0.36	5.38	

Table 3: depicts the maximum and minimum water level values for each year as well as for the entire study for the bedrock well at site 1. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels in feet for the duration of the study.

Figure 22: Site 1 Bedrock Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the bedrock well at site 1 along with the rainfall data shown previously. The well is in black and the rainfall is in blue.

6.2.3.2 | Site 1 Monitoring Well

The monitoring well is missing data from March through June of 2016 (Figure 23). The annual maximum water levels occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 4). The maximum water levels varied by 0.48ft, while the minimum water levels had a larger

range of variability (3.19ft). 2016 had the highest difference between high and low water levels, while 2018 had the lowest difference. Rainfall coincides with the downward slope of the seasonal fluctuations (Figure 23). The lowest water level for this monitoring well is unknown because the water level was below the data logger for a three-month period from August through mid-November, as indicated by the relatively flat line. This occurred during a period of drought in the region.

Table 4: Site	Table 4: Site 1 Monitoring Well		
year	maximum water level	minimum water level	annual range
2015	1,212.65	1,206.78	5.87
2016	1,212.47	1,205.51	6.96
2017	1,212.66	1,205.97	6.69
2018	1,212.18	1,208.70	3.48
full study	1,212.66	1,205.51	7.15
range	0.48	3.19	

Table 4: depicts the maximum and minimum water level values for each year as well as for the entire study for the monitoring well at site 1. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels in feet for the duration of the study.

Figure 23: Site 1 Monitoring Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the monitoring well at site 1 along with the rainfall data shown previously. There is a period of missing data from March through June of 2016 that is labeled on the graph, and a 30-day period of missing data in February of 2018. The well is in red and the rainfall is in blue.

A composite graph of the monitoring and bedrock wells at site 2 shows that the water levels for these two wells are very similar. While the monitoring well is usually at a lower water level than the deep well, they frequently overlap (Figure 24). There is a similar magnitude in water level fluctuation and similar temporal variations. Both wells are missing data from mid-December of 2014 through January of 2015 and again in February of 2018.

Figure 24: Site 2 Monitoring and Bedrock Wells. A composite graph of the water elevation from September of 2014 through November of 2018 from both the monitoring and bedrock wells at site 2. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.4.1 | Site 2 Bedrock Well

The annual maximum water levels in the bedrock well at site 2 occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 5). The maximum water levels varied by 0.92ft, while the minimum water levels had a larger range of variability at 5.73ft. The highest difference between high and low water levels occurred in 2016, while 2018 had the lowest difference. Rainfall coincides with the downward slope of the seasonal fluctuations (Figure 25).

Table 5: Site	Table 5: Site 2 Bedrock Well		
time	maximum water level	minimum water level	annual range
2015	1,177.37	1,172.37	5.00
2016	1,177.73	1,169.61	8.12
2017	1,178.07	1,172.71	5.36
2018	1,178.29	1,175.34	2.95
full study	1,178.29	1,169.21	9.08
range	0.92	5.73	

Table 5: depicts the maximum and minimum water level values for each year as well as for the entire study for the bedrock well at site 2. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels in feet for the duration of the study.

Figure 25: Site 2 Bedrock Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the bedrock well at site 2 along with the rainfall data shown previously. There is a period of missing data in early 2015 that is labeled on the graph, and a period of missing data in February of 2018. The well is in black and the rainfall is in blue.

6.2.4.2 | Site 2 Monitoring Well

The annual maximum water levels at the monitoring well occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 6). The maximum water levels varied by 0.66ft, while the minimum water levels had a larger range of variability at 6.02ft. The highest difference between high and low water levels was in 2016, while 2018 had the lowest difference. Rainfall coincides with the downward slope of the seasonal fluctuations (Figure 26).

Table 6: Site	Table 6: Site 2 Monitoring Well		
time	maximum water level	minimum water level	annual range
2015	1,178.42	1,171.93	6.49
2016	1,178.28	1,168.27	10.01
2017	1,177.76	1,171.12	6.64
2018	1,178.42	1,174.29	4.13
full study	1,178.42	1,168.27	10.15
range	0.66	6.02	

Table 6: depicts the maximum and minimum water level values for each year as well as for the entire study for the monitoring well at site 2. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels in feet for the duration of the study.

Figure 26: Site 2 Monitoring Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the monitoring well at site 2 along with the rainfall data shown previously. There is a period of missing data in early 2015 that is labeled on the graph, and a period of missing data in February of 2018. The well is in red and the rainfall is in blue.

6.2.5 | Site 3

A composite graph of the monitoring and bedrock wells at site 3 shows 50ft difference in water levels between the two wells (Figure 27). There is a similar

magnitude in water level fluctuation and similar temporal variations. Both wells are missing data in February of 2018.

Figure 27: Site 3 Monitoring and Bedrock Wells. A composite graph of the water elevation from September of 2014 through November of 2018 from both the monitoring and bedrock wells at site 3. The monitoring *well (mw) is in red, and the bedrock well (dw) is in black.*

6.2.5.1 | Site 3 Bedrock Well

The annual maximum water levels in the bedrock well occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 7). The maximum water levels varied by 1.7ft, while the minimum water levels had a larger range of variability at 3.19ft. 2016 had the highest difference between high and low water levels, while 2018 had the lowest difference. The bedrock well at site 3 shows consistent daily fluctuations that may be attributed to tidal influences, which could easily be the subject of its own study. Rainfall coincides with the downward slope of the seasonal fluctuations (Figure 28).

Table 7: Site 3 Bedrock Well			
time	maximum water level	minimum water level	annual range
2015	1,134.43	1,128.05	6.38
2016	1,135.04	1,127.30	7.74
2017	1,135.90	1,129.55	6.35
2018	1,136.13	1,130.49	5.64
full study	1,136.07	1,127.30	8.77
range	1.70	3.19	

Table 7: depicts the maximum and minimum water level values for each year as well as for the entire study for the bedrock well at site 3. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels for the duration of the study.

Figure 28: Site 3 Bedrock Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the bedrock well at site 3 along with the rainfall data shown previously. There is a period of missing data in February of 2018 that isn't labeled as it is quite brief. The well is in black and the rainfall is in blue.

6.2.5.2 | Site 3 Monitoring Well

The annual maximum water levels at the monitoring well occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 8). The maximum water levels varied by 0.86ft, while the minimum water levels had a larger range of variability at 4.23ft. 2016 had the highest difference between high and low water levels, while 2018 had the lowest difference. Water levels dropped below the level logger in the late summer of 2016, as depicted by the flat line at the lowest point on the graph (Figure 29).

Table 8: Site 3 Monitoring Well			
time	maximum water level	minimum water level	annual range
2015	1,186.04	1,177.86	8.18
2016	1,185.59	1,175.67	9.92
2017	1,186.45	1,177.02	9.43
2018	1,186.15	1,179.90	6.25
full study	1,186.45	1,175.67	10.78
range	0.86	4.23	

Table 8: depicts the maximum and minimum water level values for each year as well as for the entire study for the monitoring well at site 3. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels for the duration of the study.

Figure 29: Site 3 Monitoring Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the monitoring well at site 3 along with the rainfall data shown previously. There is a period of missing data in February of 2018. The well is in red and the rainfall is in blue.

A composite graph of the monitoring and bedrock wells at site 3 shows 50ft difference in water levels between the two wells (Figure 30). There is a similar magnitude in water level fluctuation and similar temporal variations. Both wells are missing data in early 2015 and again in February of 2018. The monitoring well is missing data from late-September and early-October of 2017. There are large fluctuations in the relationship between the water levels in the monitoring and deep wells at this site. The monitoring well is dry for the majority of the duration of the study.

Figure 30: Site 4 Monitoring and Bedrock Wells. A composite graph of the water elevation from September of 2014 through November of 2018 from both the monitoring and bedrock wells at site 4. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.6.1 | Site 4 Bedrock Well

The annual maximum water levels in the bedrock well occurred during the late fall and early spring months, and the lows occurred in the late summer and early fall months (Table 9). The maximum water levels varied by 0.27ft, while the minimum water levels had a larger range of variability at 3.73ft. 2016 had the highest difference between high and low water levels, while 2018 had the lowest difference. In mid-January, there is a drop in water level in the bedrock well that is the result of a UMass class using the well for a pumptest. Rainfall coincides with the downward slope of the seasonal fluctuations (Figure 31).

Table 9: Site 4 Bedrock Well			
time	maximum water level	minimum water level	annual range
2015	1,183.84	1,178.30	5.54
2016	1,183.64	1,175.57	8.07
2017	1,183.57	1,177.65	5.92
2018	1,183.58	1,179.30	4.28
full study	1,183.84	1,175.57	8.27
range	0.27	3.73	

Table 9: depicts the maximum and minimum water level values for each year as well as for the entire study for the bedrock well at site 4. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels for the duration of the study.

Figure 31: Site 4 Bedrock Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the bedrock well at site 4 along with the rainfall data shown previously. There is a period of missing data in early 2015 that is labeled. The well is in black and the rainfall is in blue.

The monitoring well at site 4 is frequently dry (Figure 32). The annual maximum water levels occurred during the late fall and early spring months, and the dry periods occurred in the late summer and early fall months (Table 8). The maximum water levels varied by 0.41ft, while the minimum water levels had a smaller range of variability at 0.11ft. The well had water in it during the late fall and early spring months. This well has the most occurrences with missing or oddly corrected data, with data missing in early 2015 and in February of 2018.

Table 10: Site 4 Monitoring Well			
time	maximum water level	minimum water level	annual range
2015	1188.78	1,186.66	2.12
2016	1,188.76	1,186.73	2.03
2017	1,189.02	1,186.75	2.27
2018	1,189.17	1,186.77	2.40
full study	1,189.17	1,186.66	2.51
range	0.41	0.11	

Table 10: depicts the maximum and minimum water level values for each year as well as for the entire study for the monitoring well at site 4. The right column lists the range of water levels for that time period, and the bottom row shows the variability in maximum and minimum water levels for the duration of the study.

Figure 32: Site 4 Monitoring Well and Rainfall. Water level elevation from September of 2014 through November of 2018 of the monitoring well at site 4 along with the rainfall data shown previously. There is a period of missing data in early 2015 that is labeled, as is missing data in February of 2018. The well is in red and the rainfall is in blue.

6.3 | Pumptest and Blowtest Results

<u>6.3.1 | Site 1</u>

The pumptest and subsequent Aqtesolv analysis resulted in a K value of 0.00006132m/day. This very low flow rate coincides with the well drillers blow test that resulted in 0gpm of water (Appendix A).

<u>6.3.2 | Site 2</u>

The pumptest and subsequent Aqtesolv analysis resulted in a K value of 0.02008m/day, and is the highest rate of the four wells. This flow rate coincides with the well drillers blow test that resulted in 4gpm of water (Appendix A).

<u>6.3.3 | Site 3</u>

The pumptest and subsequent Aqtesolv analysis resulted in a K value of 0.00006032m/day. This very low flow contradicts the well drillers blow test that resulted in 2.25gpm of water (Appendix A).

<u>6.3.4 | Site 4</u>

The pumptest and subsequent Aqtesolv analysis resulted in a K value of 0.0004667m/day. This low flow rate coincides with the well drillers blow test that resulted in 0.25gpm of water (Appendix A).

7 | INTERPRETATION AND DISCUSSION

7.1 | Site 1

The bedrock well at site 1 is likely located in the pelitic schist (Figure 9, 10, 11), which is thought to have a lower permeability than the granitic gneiss that the other wells are located in. The low K value, blow test yield of 0gpm, and lack of significant fractures found during the drilling process support this theory. The well could also simply be isolated from any prolific fracture zones. The deep well at site 1 has the most stable water level response, suggesting that the bedrock aquifer at that location isn't very responsive to precipitation events. The monitoring well is similar to the other monitoring wells in the study, with many smaller fluctuations throughout the larger trends of the water level changes. The monitoring well at this site had the highest water level elevation in relation to the other wells (Figure 19), whereas the bedrock well water level was a similar elevation to the majority of the other bedrock wells (Figure 20). Both had comparable ranges in fluctuations to the other wells, and their highs and lows occurred at similar times. In comparison to each other, their overall response to seasonal water level fluctuations were generally similar in magnitude (Figure 21).

After the rainfall events that occurred between 10/24/2017 and 11/1/2017, the water level in the monitoring well began to rise in the midst of the initial rainfall event, and rose 3ft by the end of the period (Figure 33). The bedrock well rose by <0.5ft during

the same period (Figure 34), indicating that the monitoring well is much more responsive. The bedrock well has a barely perceptible change in water level of <0.5ft to four cumulative rainfall events, whereas the monitoring well experiences a 3ft increase in water level. While the change is gradual over a period of a week, there is no lag in initial response in the monitoring well. The change in water level in the bedrock well is so small that it is difficult to visualize when it begins. This further suggests a lack of responsiveness of the bedrock aquifer at this location, as well as a lack of direct communication between the surficial and bedrock aquifers.

Figure 33: Site 1 Monitoring Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water level is measured in ft on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis.

Figure 34: Site 1 Bedrock Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water level is measured in ft on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis.

7.2 | Site 2

The wells in site 2 are located in the Dry Hill Gneiss (Figure 9, 10, 11). This location is unique because it is located in a cranberry bog that frequently has shallow standing water, suggesting that the ground is frequently saturated. The composite graph of the two wells is unique in comparison with the other three sites because they frequently overlap, and the monitoring well is not at a consistently higher elevation like it is at the other sites. This suggests that the bedrock aquifer may in fact be recharging the glacial aquifer on some occasions.

The monitoring well had the lowest elevation of all the monitoring wells, but it still followed the trends of the other monitoring wells and had many smaller fluctuations throughout the larger trends of the water level changes (Figure 19). The bedrock well had a similar water level elevation to the majority of the other bedrock wells, and had the same seasonal trends as well (Figure 20). Both had comparable ranges in water level fluctuations to the other wells, and their highs and lows occurred at similar times. In comparison to each other, their overall response to water level fluctuations were generally similar in magnitude (Figure 24).

Both the monitoring and bedrock wells responded similarly to the precipitation events between 10/24/2017 and 11/01/2017 (Figure 35). The water level of the bedrock well rose sharply by 1.5ft within 8 hours of the initial rainfall event, and the monitoring well rose by .5ft in the same period. Both wells were similarly responsive to the smaller 10/29/2017 rainfall event, and rose by approximately 3ft by the end of the monitoring period. While the magnitude of change may not be as large as it was in some of the other sites, the immediacy and steepness of the increase suggests that this portion of the aquifer is more responsive to precipitation events than the other locations and that there is a significant amount of communication between the surficial and bedrock aquifers, perhaps due to the water table being so near the surface at that location. This well is also more prolific than some of the other locations, as the initial blow test produced 4gpm, and two significant fractures were noted during drilling. This is further enforced by the hydraulic conductivity of 0.02008m/day. These wells are highly connected.

Figure 35: Site 2 Bedrock Well, Monitoring Well, and Discrete Rainfall Event. The bedrock well is in black, the monitoring wel isl in red, and rainfall between 10/24/17 and 11/01/17. Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis. There is data missing starting on 10/30/2017.

7.3 | Site 3

The wells at site 3 are located in the Dry Hill Gneiss (Figure 9, 10, 11). The bedrock well at this site is 300ft deep, while the other bedrock wells were only drilled to 100ft. The water level elevation of the bedrock well is approximately 50ft lower than the monitoring well, which is the largest difference between monitoring and bedrock wells in the study. The distance between water levels in the monitoring and bedrock wells suggests a lack of connection between the surficial and bedrock aquifers. The elevation of the water table of the bedrock well is significantly lower than the other three bedrock wells, which could be due to development in the town center area. Both the monitoring and bedrock wells follow the same seasonal fluctuations as the other sites (Figure 19, Figure 20). The monitoring well has a larger range of response than the bedrock well does. The monitoring well doesn't begin to respond to the initial rainfall event until approximately 8 hours after the start of the event. By the end of the 10/24/2017 to 11/01/2017 monitoring period, the water level of the monitoring well rises by 5.5ft (Figure 36). Throughout the entire period, the bedrock well rises by almost 2ft (Figure 37). Unlike with the monitoring well, however, there is no immediacy to the response. The water level in the bedrock well is already on a generally upward trend before the precipitation event even occurs, so it is hard to say if the continued rise in water level is in response to these events or is simply a continuation of that upward trend.

The blow test of the bedrock well yielded 2.25gpm, which suggests that the well isn't the least productive of the four, but the pumptest yielded the lowest K-value of 0.00006032m/day, suggesting that it has the lowest hydraulic conductivity. The reason for this contradiction is likely a programming issue in Aqtesolv. The program distributes hydraulic conductivity evenly over the entirety of the well bore, and since site 3 has a wellbore depth that is the three times the depth of the other bedrock wells, this is most likely the cause of this discrepancy. Because these wells are located in granitic gneiss, the water that feeds these wells is coming from distinct fractures, not continuous porosity. The significant fractures that were found while drilling were located between 230ft and 290ft. While the bedrock and monitoring wells have similar fluctuations, the lack of response to the precipitation event and the depth of the fractures suggest that there is a lower level of communication between the surficial and bedrock aquifer systems in this region.

Figure 36: Site 3 Monitoring Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis. Data is missing starting at 10/30/2017.

Site 3 Bedrock Well and Discrete Rainfall Event

Figure 37: Site 3 Bedrock Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis. Data is missing starting at 10/30/2017.

58

7.4 | Site 4

Site 4 is likewise drilled into the Dry Hill Gneiss (Figure 9, 10, 11). The monitoring well at this location was only drilled to a depth of 4ft before encountering bedrock. The elevation of the water level of both the monitoring well and bedrock well fits in with the majority of the other wells, and the bedrock well has similar fluctuation in water level to the other bedrock wells. The monitoring well only has water in it for a few occasions out of the year, usually between February and May, though there was water in the well for extended periods between August and November of 2018.

Site 4 is missing data in the monitoring well for the majority of this rainfall event, so there is no data available for analysis. The bedrock well starts to respond to the initial rainfall event just a few hours after its completion (Figure 38). By the end of the monitoring period, the water level of the bedrock well has risen by 3ft and hasn't yet leveled off. There isn't much of a surficial aquifer in this location, which can be attributed to a thin veneer of glacial till. The magnitude and timing of the response of the deep well suggests that the precipitation is making it to the bedrock aquifer at site 4, as opposed to ending up in surface water or being transpired by plants. This suggests that, while there may not be a significant volume of water in the surficial aquifer, there is decent communication between surface water and the bedrock aquifer.

Site 4 Deep Well and Discrete Rainfall Event

Figure 38: Site 4 Deep Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the right x-axis.

7.5 | Annual cycles

The annual high water levels at each of the sites have very little variability throughout the duration of the study, whereas the summertime low water levels at each sites vary by an average of approximately 5ft. This suggests that, regardless of drought conditions, human use patterns, or snowmelt, the aquifer is resilient in its ability to recharge to a consistent level. The amplitude of the seasonal fluctuations is different from year to year, but each well seems to have a consistent upper limit. The consistency is likely due to the fact that Shutesbury is located on a ridge, and the steepness of the slope toward the Quabbin reservoir is likely preventing the system from retaining large volumes of water as it drains into the reservoir. The study can only speak to the responses during the last 4 years, but these years have included a summer drought of 2016, an unusually snowy winter in 2015, and an impressively wet summer in 2018, and provide a diverse set of scenarios to compare.

Each of the wells display fairly consistent seasonal changes in water level. The double headed recharge that was particularly defined in early 2015 reflects a rise in water level with fall recharge, a fall in water level that corresponds to frozen ground, and water levels rise again with spring snowmelt and precipitation. Late summer and early fall months have the lowest water levels, and the water level begins to increase again during the winter and early spring. Summer rain doesn't appear to be a major recharge factor, as water levels consistently lower in the summers of 2015, 2016, and 2017, with little change to the downward slope even when large rainfall events do occur. The rapid increase of water level in the fall is likely attributed more to the seasonal shift in water use patterns as temperatures cool and plant transpiration slows than a seasonal increase in rainfall. This spring plateau is likely due to the combination

of snowmelt and rainfall infiltrating into the groundwater system as temperatures rise and the ground thaws.

7.6 | Response to a Discrete Rainfall Event

Only one rainstorm event between 10/24/2017 and 11/01/2017 is used for analysis because it was the most discrete and was not immediately preceded by another rainfall event (Figure 18). Because of its timing in mid/early fall, there was no snowmelt to factor into the magnitude of recharge, and, based on air temperature at the time, it is highly unlikely that the ground was frozen. The lack of interference from previous rainfall events and absence of snowmelt made a discrete event a priority over analyzing the response to many events. Some of the other events may have ended up saturating the dry soil, but the Fall has lower rates of transpiration and evaporation relative to summer events.

The bedrock wells at sites 1, 2, 3, and 4 responded to the event with 0.5ft, 3ft, 2ft, and 3ft increases in water level, respectively. The monitoring wells at sites 1, 2, and 3 (4 has no data) responded to the 10/24/2017 to 11/01/2017 precipitation events with 3ft, 3.5ft, and 5.5ft increases. The bedrock and monitoring wells at site 2 respond similarly to the rainfall event because the water table appears to be close to ground level. The glacial till at site 4 is so shallow that it only responds to large rainfall events. The monitoring wells at sites 1 and 3 had significantly higher responses to the precipitation events than their respective bedrock wells, which indicates that a lower amount of water is entering the bedrock aquifer system. The water that is not percolating downward is likely ending up in springs, vernal pools, is being used by people, or is being transpired by plants.

7.7 | Drought vs Wet Summer

The summer of 2016 was a period of severe drought for Western Massachusetts (Dumcius 2016). This is reflected in the observation that the lowest water levels in all wells for the duration of the study occurred during this period, in addition to the water levels dropping below the reach of the data logger in the monitoring well at site 1. Despite this significant drought, the water levels did not fall more than 10ft below their peak level, and began to recover in the late fall of that year. The precipitation levels during 2016 were lower, the frequency of rainfall events was reduced (Figure 15), and hotter days began sooner and ended later than in the other years (Figure 13). However, by the following spring, water levels returned to the same level as in previous years. The wells at all of the sites continually demonstrate an ability to fully recharge even following a severe drought.

In contrast, the summer of 2018 was wetter than previous summers in the study, and as of November 8*, 2018, the region had received 137% of the normal annual precipitation volume, and likely put the year in the top 3 rainiest years since the 1890's (Rawlins, pers comm, 2018). The lowest water levels in 2018 were significantly higher than the lows of the other years, and had the smallest range in water level fluctuations. While the study doesn't carry into the spring months, the late fall water levels were comparable to the late fall water levels of the previous years. Because the late fall water levels didn't increase in tandem with the record high rainfall amounts, it is possible that the aquifer is reaching an upper limit and, when exceeded, water in storage is lost to springs and seeps into bodies of water like the Quabbin Reservoir or vernal pools. The ability of this aquifer to consistently return to the same water levels every winter suggests an overall resiliency in the system in the face of drought.

7.8 | Climate Change and the Shutesbury Water Supply

The predicted changes to the climate of Massachusetts will impact the timing and amount of aquifer recharge. Precipitation will affect the total amount of water that is available for recharge, as well as the timing of recharge events. The projected warmer and wetter winters are expected to be a major factor in the changing patterns of recharge as well. Frozen ground could increase winter runoff (Dudley et al 2010, Runkle et al 2017). Ground water recharge is inversely related to runoff in that by definition, water that runs off is water that does not infiltrate, and therefore is unavailable to the groundwater system. However, it is likely that warmer temperatures will result in earlier thaws and later freezes (Storey 1955), meaning that the increase in winter rainfall will lead to a higher recharge potential.

Because the Shutesbury aquifer can be characterized as relatively thin glacial sediments over crystalline bedrock with low storage capacity, snowmelt will also likely be a key component of future recharge (Dudley et al 2010), and could cause overall recharge to be greater than precipitation volumes in late winter and early spring. The earlier snowmelt, heavier winter rainfall, increased spring evapotranspiration, and longer drier summers are expected to increase the duration of evapotranspiration (Hayhoe et al 2006). Recharge may increase in the winter, but water levels may fall more in the summer. Collectively, this suggests a longer period in which the region may be vulnerable to drought.

The longer, warmer summers will likely cause a greater magnitude of lowering water levels, potentially larger than occurred during the summer of 2016. Heavy rain during a drought often doesn't fully replenish groundwater systems because of the reduced capacity for infiltration. Because of the response to the discrete rainfall events, it is clear that some amount of water is making it to the bedrock wells from precipitation. The difference in magnitude between the monitoring and bedrock well responses does suggest that some of that water is being lost to transpiration, human use, or other causes. Coupled with the recovery patterns in the late fall, this suggests that precipitation isn't the only factor in water level changes in this region.

Given the timing and intensity of the recovery from the annual low points, it is possible that vegetation is a bigger factor than rainfall driving goundwater levels. Summer rain doesn't appear to be a major recharge factor, as the water levels at all four sites fell in 2015-2017, even in the face of major rainfall events. Major storms could potentially become runoff and smaller storms could be used by vegetation, preventing water from making its way into the bedrock aquifer. When the plants go dormant in the fall and winter months, they decrease their water uptake. Lower transpiration rates and lower temperatures in the fall months are likely cause for evapotranspiration rates (Hayhoe et al 2006, Whately et al 2012), which is likely what is allowing the groundwater system to recover so rapidly. A more targeted study should be done to examine the impact of evapotranspiration on the recharge of the bedrock and surface aquifers in this region.

8 | CONCLUSION

The aquifer system that supports the town of Shutesbury has proven itself to be resilient during the course of this study. The wells consistently recovered to a similar water level each spring with minimal yearly variability, even in the case of the relatively severe drought. There was also a fairly small, less than 10ft range in water levels within each year, suggesting that the system can be considered reliable.

While the K-values and the blow test results suggest that the aquifer isn't particularly productive, the consistency of the surface and bedrock aquifer's ability to recover from diverse seasonal drawdowns suggest that the aquifer is a robust source of water for the town. However, the comparably low water levels in the bedrock well at site 3 suggest that a cautious approach to development around the town center would be wise. Thankfully, none of the wells showed a similar downward trend to the Pelham well or the New Hampshire study, although the time scale of this study was much shorter, so it is harder to draw conclusions about long term trends.

Long term predictions for the impacts of climate change in the region suggest that an increase in awareness regarding water use would be beneficial. The potential increase in winter recharge from snowmelt and precipitation will likely outweigh the impacts of the predicted summer drought periods. More research on how growing seasons will shift and how those changes will impact groundwater recharge would be helpful to better understanding the system. Overall, this study suggests that the aquifer is resilient. The levels do fluctuate seasonally, which can likely be attributed to human use patterns and vegetation. This study supports the conclusion that the aquifer is able to recharge to a consistent water level in a variety of climate scenarios. However, the town would benefit from comprehending how their community interacts with the ecosystem and the groundwater levels so that they can foster an understanding of what is influencing the aquifer that they depend on.

9 | WORKS CITED

American Ground Water Trust. 2002. "Drought and Ground Water". The American Well Owner, 2002, Number 3. https://agwt.org/node/43

Ayotte, J.D., B.M. Kernen, D.R. Wunsch, D.M. Argue, D.S. Bennett, T.J. Mack. 2010. Preliminary Assessment of Trends in Static Water Levels in Bedrock Wells in New Hampshire, 1984 to 2007.

Bull, J.M. 1997. Geochemistry and petrology of the late Ordovician Fourmile Gneiss, Pelham Dome, Central Massachusetts. M. S. Thesis Contribution NO 71, Department of Geosciences, University of Massachusetts.

Climate Change in Massachusetts and Its Impacts. Mass.gov. Executive Office of Energy and Environmental Affairs. https://www.mass.gov/service-details/climate-change-in-massachusetts-and-its-impacts

Climate Solutions New England. Western Massachusetts' Climate: Past and Future Changes. The Sustainability Institute.

DCR Office of Water Resources and MassGIS. 2017. Past drought declaration maps and history. Mass.gov. Department of Conservation and Recreation.

Dudley, R., G.A. Hodgkins, J.B. Shanley, and T.J. Mack. 2010. Quantifying Effects of Climate Change on the Snowmelt-Dominated Groundwater Resources of Northern New England. Fact Sheet - U. S. Geological Survey, January.

Dumcius, G. 2016. More than 70 percent of Massachusetts now in severe drought or worse. Mass Live. Drought Monitor.

Hayhoe, K., C.P. Wake, T.G. Huntington, L. Luo, M.D. Schwartz, J. Sheffield, E. Wood, B. Anderson, J. Bradbury, A. DeGaetano, T.J. Troy, and D. Wolfe. 2006. Past and future changes in climate and hydrological indicators in the U.S. Northeast. Climate Dynamics 28:381–407 DOI 10.1007/s00382-006-0187-8.

Hansen, B.P., and A.C. Simcox. 1994. Yield of Bedrock Wells in Massachussetts. Water-Resources Investigations Report 93-4115. USGS.

Kernen, B. 2010. Assessing Water Use and Availability Trends in New Hampshire. NH Department of Environmental Services.

Mack, T.J.. 2009. Assessment of ground-water resources in the Seacoast region of New Hampshire: U.S. Geological Survey Scientific Investigations Report 2008–5222, p 188.

New England's Drinking Water. 2017 Region 1: EPA New England. https://www3.epa.gov/region1/eco/drinkwater/ne_drinkwater.html Ozbeck, A., M. Gul, E. Karacan, O. Alca. 2018. Anisotropy effect on strengths of metamorphic rocks. Journal of Rock Mechanics and Geotechnical Engineering. Vol 10, Iss 1, pp 164-175.

Pourmokhtarian, A., C.T. Driscoll, J.L. Campbell, K. Hayhoe, A.M.K. Stoner, M.B. Adams, D. Burns, I. Fernandez, M.J. Mitchell, and J.B. Shanley. 2017. Modeled Ecohydrological Responses to Climate Change at Seven Small Watersheds in the Northeastern United States. Global Change Biology 23 (2): 840–56. doi:10.1111/gcb.13444.

Rawlins, M.A.. 2018. Personal Correspondence with Al Werner. Climate System Research Center, Department of Geosciences, University of Massachusetts.

Ridge, J.C., G. Balco, R.L. Bayless, C.C. Beck, L.B. Carter, J.L. Dean, E.B. Voytek, and J.H. Wei. 2012. The new north American varve chronology: a precise record of southeastern laurtentide ice sheet deglaciation and climate, 18.2-12.5 KYR BP, and correlations with Greenland ice core records. American Journal of Science. Vol 312, pp 685-722.

Runkle, J., K. Kunkel, R. Frankson, D. Easterling, A.T. DeGaetano, B. Stewart, and W. Sweet. 2017. Massachusetts State Climate Summary. NOAA Technical Report NESDIS 149-MA, 4 pp.

Storey, H.C.. 1955. Frozen Soil and Spring and Winter Floods. Yearbook of Agriculture 1955. Pages 179-184.

USGS. 422103072241102 MA-PDW 23 PELHAM, MA. USGS Massachusetts Water Science Center.

USGS. 2018. 422103072241102 - MA-PDW 23 PELHAM, MA. Groundwater Watch. USGS.

"What Climate Change Means for Massachusetts". EPA. August 2016. EPA 430-F-16-023

Whately, Steinschneider, and Brown. 2012. "A Climate Outlook for New England". UMASS Hydrosystems Newsletter. April 6, 2012. Issue 2.

Werner, Al. 2019. Personal Communication. Mount Holyoke College Geology Department.

Zen, E., R. Goldsmith, N.M. Ratcliffe, P. Robinson, R.S. Stanley, N.L. Hatch, A.F. Shride, E.G.A. Weed, and D.R. Wones. 1983. Bedrock geologic map of Massachusetts. US Geologic Survey.

Water Wells and Systems www.cushingandsons.com

Town of Shutesbury ATTN: Al Werner, Becky Torres 1 Cooleyville Rd. Shutesbury, MA 01072

RE: Billing for Monitor Well Project

This is the billing and day sheets for the work we performed recently. The billing is as follows:

\$18,480.00 Contract Base Price for Work: 2,000.00 Extra drilling, 200 ft. @ \$10.00/LF 336.00 Extra 6" casing and grout site 1-D and 2-D, 16 ft. @ \$21.00/LF Machine Time, Stand by: Site 2-D: 1 hr. 40 min. Site 3-D: 5 min. Site 4-D: 1 hr. Total 2.75 hrs. @ \$285.00/hr. 783.75 Additional well materials left on site: \$75.00 5 bgs. sorted silica sand 24.80 1 bg. bentonite chips 10 ft. .010" 2"Sch 40 PVC FJ screen 62.80 10 ft. 2"Sch 40 PVC FJ riser 49.00 1 ea. 2" PVC plug 7.13 **Total materials:** 218.73

Total amount due:

\$ 21,818.48

8/29/14

If acceptable, kindly process for payment. Any questions do not hesitate to call.

Sincerely, Bart C. Cushing

Office: 631 Rt. 12N, Keene, NH 03431 Mailing: PO Box 668, Walpole, NH 03608 Phone: 800-831-8883 603-352-8866 Fax: 603-357-8572

DRILLING, BORING, & PUMP CONTRACTORS OFFICES: Houte 12 North, Keene, NH 03431 + MAIL PO Box 200, Walpele, NH 03608 800-831-8833 / 803-332-8866 / PAX: 803-357-8572 DAILY WORK REPORT Customer: Shutes bury classing algell pryced Phone Contact person: Development of the second pryced Phone Time on site: Recond Time on site: Recond Time of site: 21:15 Description of Work and Times: <u>6102 - 8:00</u> Mob Surry Nill to Shutes bury Mass <u>8:00 - 8:45</u> Mud Math on the secter S2-D 9:455 - 10:30 R/R ever development of the bedrey 12:00 - 3:00 Strup For development of the bedrey 12:00 - 3:00 Strup For und contary while of The DB BBCS Set 40 of C'TIC cassing rebery drive space, Seet <u>12:00 - 3:165</u> Second second proved use Arman <u>8:100 - 3:165</u> Second second proved use Arman <u>100 - 3:165</u> Second second proved by the Arman <u>11:00 - 3:165</u> Second second proved use Arman <u>8:100 - 3:165</u> Second second proved use Arman <u>100 - 3:165</u> Second second proved by the second <u>100 - 3:165</u> Second second <u>100 - 3:165</u> Second <u>100 proved by the Arman <u>10 6' looking cond</u> <u>10 6' lookin</u></u>	
DRILLING, BORING, & PUMP CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431 + MAIL PO Box 200, Walpole, NH 03608 800-801-3883 / 603-352-8866 / PAX: 603-357-8572 DAILY WORK REPORT Customer: <u>Shutesbury Makitaring Wall project</u> Phone Contact person: <u>PATE 8-20-14</u> SiTE: <u>Shutesbury Makitaring Wall project</u> Phone Contact person: <u>Al Weather Conditions</u> <u>PATE 8-20-14</u> Support Equip. <u>223</u> Site Person: <u>Al Weather Conditions</u> <u>PATE 8-20-14</u> Support Equip. <u>223</u> Site Person: <u>Al Weather Conditions</u> <u>Al Market</u> Support Equip. <u>213</u> Site Person: <u>Al Weather Conditions</u> <u>Al Market</u> Support Equip. <u>213</u> Site Person: <u>Al Weather</u> <u>Conditions</u> <u>Al Market</u> Striker: <u>Daw Weather Conditions</u> <u>Al Market</u> Striker: <u>Daw Weather Conditions</u> <u>Bioo - 8:00</u> <u>Mok Surg will to Shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shutes bury Meas</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shute shute for provels</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shute shute for provels</u> <u>8:00 - 6:45</u> <u>Mud Matk and to shute shute shute shore</u> <u>Seet</u> <u>8:00 - 5:00</u> <u>8:16</u> <u>Mud Matk and to shute shore</u> <u>Seet</u> <u>8:00 - 5:00</u> <u>8:16</u> <u>Mud Matk and to shute shore</u> <u>Seet</u> <u>6:00 galleass</u> , <u>8:54</u> <u>up for for dorthout you the ArM</u> <u>3:15</u> <u>offorte</u> <u>6:00 galleass</u> , <u>8:54</u> <u>Mud Matk and</u> <u>7:77</u> <u>8:16</u> <u>6: 7074</u> <u>Mud</u> <u>8:160 - 3:165</u> <u>6:772 (9² Casing</u> <u>1) 6' locksurg cap</u> <u>1) 6' locksurg cap</u>	Sons
DAILY WORK REPORT Customer: Shutes have Meditaring Wolf project Phone Contact person: Made Weather Conditions: PATE B-20-14 SITE: Shutes have Meditaring Wolf project Phone SITE: Shutes have Meditaring Wolf project Phone Support Equip. 223 Support Equip. 213 Support Equip. 213 Time on site: Block Support Equip. 213 Mode Med. Cont & Support Mate Support Equip. 215 Goode Wolf Med. Cont & Supt	DRILLING, BORING, & PUMP CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431 • MAIL: PO Box 200, Walpole, NH 03608 800-831-8883 / 603-352-8866 / FAX: 603-357-8572
Customer: Shutes bury Mailtaring Wall project Phone Contact person: SITE: Shutesbury Made Weather Conditions:PATE/ B-20-14 Rig and Number: 203AMA Support Equip. 223AMA Support Equip. 223AMA Support Equip. 223AMA Support Equip. 223AMA Driller: Shawar Bearl XApproval Signature Time on site: 3:15Approval Signature Time off site: 3:15Approval Signature Bico - B:45AMA for the Shutes bury MassA Bido - B:45AMA for the shutes for pit to be dug 12:00 - Bida air down 21 wet gravelsA 10:30 - 12:00 Sit up for wide refer y the for pit to be dug 12:00 - 3:00 Bida Mud Bedreck at 26'BidesA Shee wide refer and referry drive shoe, seatA Shee wide refer & drives for y the ArmA Shoe wide refer & drives for y the ArmA 10:00 - 3:15Ascore siteAddA dogallows . Set up for 6'' drilling withe ArmA drill logA for the ArmA 4'- 2'A gravelsA for the ArmA B'A for the shoeA B'A for the shoeA B'A for the shoeA B'	DAILY WORK REPORT
SITE: Shotesbury Made Weather Conditions:	Customer: Shutes bury Menitoring Well project Phone
Support Equip. 223 Site Person: AL Wersler. Driller: Shaw Bearl Approval Signature Striker: Daw Mussland Time on site: <u>8:00</u> Time off site: <u>3:15</u> Description of Work and Times: <u>6:00 - 8:00</u> Mob Surry Nill to Shutes bury Mass <u>8:00 - 6:45</u> Look at sites <u>8:00 - 6:45</u> Look at sites <u>8:00 - 6:45</u> Look at sites <u>8:00 - 6:45</u> Mud Math on to site <u>52-D</u> <u>9:45 - 10:30</u> <u>87/8</u> air down 21' wet gravels <u>10:30 - 12:00</u> Sit up for mud rettary waits for pit to be dug <u>12:00 - 3:00</u> <u>87/8</u> Mud <u>bedrack at 26'</u> , <u>87/8</u> to <u>38/86'</u> <u>shoe usbo Cack</u> , Portand gravt Uia tramme <u>60 qallens</u> , Set up for <u>6''</u> drilling in the Aird <u>3:15</u> <u>secore site</u> <u>3:15</u> <u>secore site</u> <u>10:30 - 3:15</u> <u>secore site</u> <u>10:6: locking cap</u> <u>Mi</u>	SITE: Shotesbury Mass Weather Conditions: PATE/8-20-14 Rig and Number: 203
Striker: Daw Wieslad Time on site: <u>Reo</u> Time off site: <u>3</u> :15 Description of Work and Times: <u>6600 - 8:00</u> Mob Surry NIH to Shotes bury Mass <u>8:00 - 6:45</u> Look at sites <u>8:00 - 6:45</u> Look at sites <u>8:00 - 6:45</u> Mud Mall on to site <u>52-D</u> <u>9:45 - 10:30</u> <u>87/8</u> air dow <u>21</u> wet provels <u>10:30 - 12:00</u> Sit up for mid rotary white for pit to be dug <u>12:00 - 3:00</u> <u>87/8</u> mud <u>bedrock at 26'</u> <u>87/8</u> to <u>78/66'</u> <u>set 40</u> of 6" Ttc casing, rotary drive fore, <u>Seat</u> <u>60gaileus</u> , <u>Set up for 6" drilling in the Aim</u> <u>3:15</u> <u>offsite</u> <u>3:15</u> <u>offsite</u> <u>112:00 - 3:15</u> <u>secore site</u> <u>3:15</u> <u>offsite</u> <u>12:00 - 3:15</u> <u>secore site</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15</u> <u>secore site</u> <u>10:00 - 3:15 Secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site</u> <u>3:15 offsite</u> <u>10:00 - 3:15 Secore site</u> <u>10:00 - 3:15 Secore site}</u> <u>10:00 - 3:15 Secore </u>	Support Equip. 223 Site Person: <u>AL Wernser</u> X MMMM
Time off site: 3:15 Description of Work and Times: <u>6100 - 8:00</u> Mob Sury Nill to Shotes bury Mass <u>8:00 - 8:45</u> Look at sites <u>8:00 - 8:45</u> Mod Mall on to site 52-D <u>9:45 - 10:30</u> <u>87/8</u> air dowe 21 wet provels 10:30 - 12:00 Sit up for und rothery white for pit to be dug 12:00 - 3:00 <u>87/8</u> mud bedrack at 26', 87/8 to 38 BGs Set 40' of 6" Ttc casing, rothery drive shoe, Seat Shoe into rock, Portland grout Uia tramme. <u>60 gallows</u> , Set up for 6" drilling in the Aim <u>3:15</u> offorte <u>40'ay 6" Ttc 19" casing</u> <u>4'-26' gravels</u> 1) Rotary Drive shoe <u>21'-34</u> ' weathered 2) Bis of Aud <u>34'-38' compited track</u> 1) Bassel <u>1) 6" locking cap</u>	Striker: Day Winslaw Approval Signature
6100 - 8:00 Mob Svory NIH to Shutes bury Mass B:00 - 8:45 Look at sites R:45 - 9:45 Mud Math on to site 52-D 9:45 - 10:30 87/8 air down 21 wet gravels 10:30 - 12:00 Sit up for mud rottary waits for pit to be dug 12:00 - 3:00 87/8 mud bedrock at 26', 87/8 to 38'865 Set 40' of 6" TtC casing, rotary drive shoe, seat Shoe usb rock, Portland growt Via tramme (agailans, Set up for 6" drilling in the Aim 3:15 offsite drill log Materials 0'-4' silly Suds 40'a 6" TtC 19" casing 4'-26' gravels I) Rotary Drive shoe 26'-34" weathered 2) Bis of Mud 34' - 38' compitentrick I) Bassal (b) Portland I+II I) 6" locking cap	Time off site: <u>3:15</u> Description of Work and Times:
B:00 - 6:45 Inok at sites B:00 - 6:45 Mud Matt au to site 52-D 9:45 - 10:30 B7/B air down 21 wet provels 10:30 - 12:00 Sit up for mud rottary white for pit to be dug 12:00 - 3:00 B7/B Mud bedrock at 26', B7/B to 30'BG5 Set 40' of 6" TtC casing, rotary drive shoe, seat Shee into rock, Portland grout Una tromme 60 gallows, Set up for 6" drilling in the Aim 3:15 Stevere site 3:15 offsite drill Log Matarials 0'-4' silly Suds 40' a 6" TtC 19" casing 4'-26' gravels I) Potary Drive shoe 26-34' weathered 2) Bis of Aud 34'-38' compitential I) Bausal 6) Portland I+II 1) 6" locking cap	6:00 - 8:00 Mob Surry will to Shutes bury Mass
9:45 - 10:30 87/8 air down 21 wet gravels 10:30 - 12:00 Sit up for mild rottary white for pit to be dug 12:00 - 3:00 87/8 mild bedrock at 26', 87/8 to 38'86's Set 40' of 6" Ttc casing, rotary drive the, seat Shee 1100 rock, Portland grout via tramme. (Digallows, Set up for 6" drilling in the Aim 3:100 - 3:15 Secore site 3:15 offsite drill log Matarials 0'-4' silly Saids 40'a 6" Ttc 19" casing 4'-26' gravels 1) Rotary Drive shoe 26-34' weathered 2) Bis of Mud 34'-38' compitent rock 1) Bausal (D' locking cap M/1	<u>8:00 - 8:45 Look at sites</u> <u>8:45 - 9:45 Mild Not on the internet</u>
12:00-3:00 87/8 mud bedrack at 26', 87/8 to 38'86's Set 40' of 6" TtC casing, rotary drive store, seat Shee into rook, Portland grout Via tremmie GOgallows, Set up for 6" drilling in the Aim 3:100-3:15 Secore site 3:15 offsite drill Log Matariala 0'-4' silty Suds 40'og 6" TtC 19" casing 4'-26' gravels 1) Rotary Drive shoe 26'-34' weathered 2) Bis of Mud 34'-38' compitent rock 1) Beusenl () Portland I +II 1) 6" locking cap	9:45-10:30 87/8 air down 21 wet gravels 10:30-12:00 Set up for mydrottary white Drait to be li
Shae 11to rock, Portland grout Uia tremmie (a) gallows, Set up for 6" drilling in the Aim 3:15 Secore site 3:15 offsite drill log Matarials 0'-4' silty Saids 40'og 6" T+C 19# casing 4'-26 gravels 1) Rotary Drive shae 26-34' weathered 2) Bys of Mud 34'-38' compiterstrock 1) Beusenl (b) Portland I+IT 1) 6" locking cap	12:00- 3:00 81/8 mud bedrock at Z6', 87/8 to 38'BGS Set 40' of 6" TtC casing, rotary drive shoe sent
3:15 offsite drill Log Matarials 0'-4' silty Saids Ho'ay 6" T+C 19" casing 4'-26' gravels I) Rotary Drive shoe 26'-34'' weathered 2) Bys of Aud 34'-38' compiterstrock I) Beusenl 6) Portland I+II I) 6" locking cap M/1'	3100-3115 Secure with per 6" drilling in the AIM
0'-4' sillty Said 3 4'-26' gravels 26'-34'' wasthered 34'-38' compiterstrock 1) Bassel 6) Portland I+II 1) 6" locking cap M/1'	3:15 offsite drill Log Material
26 It weathered 2) Bis of Mud 34'-38' compiterationsk 1) Bassen! () Portland I+II 1) 6" locking cap M/1'	0-4' silly Sands 40'ay 6" T+C 19# casing 4-26 gravels 1) Rotary Drive shoe
b) Portland I+II 1) 6" locking cap M/1'	34-38 compiterstrock 1) Bassenl
	1) 6" locking cap
771-	MI

i.

Pg 1

DRILLING, BORING, & PUMP CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431 • MAIL: PO Box 200, Walpole, NH 03608 800-831-8883 / 603-352-8866 / FAX: 603-357-8572
DRILLING, BORING, & PUMP CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431 • MAIL: PO Box 200, Walpole, NH 03608 800-831-8883 / 603-352-8866 / FAX: 603-357-8572
OFFICES: Route 12 North, Keene, NH 03431 • MAIL: PO Box 200, Walpole, NH 03608 800-831-8883 / 603-352-8866 / FAX: 603-357-8572
DAILY WORK REPORT
Customer: Shutes bury Mersiter events Phone
Contact person:
SITE: Shutes bury Ma_ Weather Conditions: DATE 8-25-14
Rig and Number: 203
Support Equip. 223
Site Person: Al Werner X Mich Man
Driller: Shawa B
Striker: Daz 41
Time on site: $7:45$
Time off site: 3:30
Description of Work and Times:
7:45 ON SITE
7:45 \$3-0 (" air 20')
9:00-9125 Plant tert at 110
9:25-9:55 (" ' Greak Static IN SI-D 91.2 BG5
4:55-10:05 Black Hall of
10:05 10:25 1" Tost 0
10:25 - 10:35 W1 + + + +
10:35 Invit all indiana
10.34 - 10.43 6 at 140 - 160
DOUTEST OF
16,55 - 11.70 6 A/P 160 to 180
11:20 - 11:40 Blow test Ø
Mico higo Irip out set up 63-5
11145 - 12:20 6 air 0-13 Bedrock 13' set well
<u>10 slot screeн 13'to 5'</u>
Kiser Z'ABG
#I Sand to 3' i chips 1'B65.
Matariabs 10 of 10 slot screed
10 of ciber
1 push plus
7) #1 Saud
1) chip
1) 5 Plug
1) Protective Pisco
M/T 2.D. 2

P1-F2

DRILLING & BORING CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431, Rie. 114, Lyndonville, VT 05851 MAIL: PO BOX 200, Welpole, NH 058658 1-600-331-86833 / 802-254-4650 / FAX: 603-357-8572 DAILY WORK REPORT

Customer: ____ Shotes bury Merritor Wells ___ Phone Contact person: SITE: Shotes bury Ma Weather Conditions: TE 8-25-14 Rig and Number: 203 Support Equip. <u>323</u> Site Person: Al. Werner Х Driller: Shawar B Approval Signature Striker: Daw W
 Time on site:
 7:45
 Mob/Demob Times at shop:

 Time off site:
 3:30
 Miles to Site:
 Description of Work and Times: Keep track of all times and materials used. 12:20-1:30 Move to 54-D trim branches set up. 1:30-2:30 54-D 87/8 air 0'-28' 84- Bedrack at 4 Set 20'of 6" THE with drive shee, 40 gallows of growt 4 bas Portford, via tremmin, drive + seat isto rock well develop ment with pump, want work 2:30-3:30 off site 3:30

Mastarials 20' of 6" casing 1) drive Shoe 4) bas of portland Benseal 1)6" Looking cap

Pa 1

DRILLING & BORING CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431, Rte. 114, Lyndonville, VT 05651 MAIL: PO 50X 200, Walpole, NH 03603 1-600-331-6683 / 302-254-4650 / FAX: 603-357-6572

DAILY WORK REPORT

Customer: Shutes bury Monitor wells Phone
Contact person:
SITE: Shutes bury Ma Weather Conditions: PATE B-26-14
Rig and Number: 203
Support Equip. 223
Site Person: AI werver X
Driller: Strawn Be Approval Signature
Striker: Daw W
Time on site: 7:30 Mob/Demob Times at shop:
Time off site: 4:00 Miles to Site:
Description of Work and Times:
Keep track of all times and materials used.
7:30 ou site
7130-8:45 54-D 6'air 1R'to 100' RES
8:45-9:30 Blow test letrequer check status and
\$3-D 53-5 51-D 51-5
9:30-10:45 Blow well some Converse Trip out
54-5 based in to Hars bed tack not well
Screen 4' to 3'
Riser 4'ABGS
saud to 1'Abx
chips 6" B65
cement in stud ALOP
matersials 1 of 10 flat screen
10 of 2" 51585
3) #1 Sould
1) chin
1) ouch alug
1) TOLUG
1) protective rise
1) Saksente
metarials left for future well by AL
5) Bos #1 South 1) Oush Aluc
1) Ba chips
10' of 10 SLOT SCIERAL MIT
In a riser N-D: 7 Lr.

Pgz

DRILLING & BORING CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431, Rie. 114, Lyndonville, VT 05851 MAIL: PO BOX 200, Walpole, NH 03608 1-600-831-6683 / 802-254-4650 / FAX: 603-357-8572

DAILY WORK REPORT

Customer: Shutes lovey Menitor Wells Phone Contact person: SITE: Shote bucy Mass Weather Conditions: DXTE 9-26-14 Rig and Number: 203 Support Equip. 223 Site Person: Al Werner X Driller: Shaw B Approval Signature Striker: Daw W Time on site: 7:30 Mob/Demob Times at shop: Time off site: 4100 Miles to Site: Description of Work and Times: Keep track of all times and materials used. 10:45-11:30 Park at Touttail cement stand pipe, well AQUEJopment 53-5 11:30 - 12:30 Set over 53-D, get load of H20 6" air 180' to 285' problem with banner 12:30-2:30 Blow test & 2:30 - 3:00 Trip out strip hommer, broken puston 2:00-4:00 Cement Standpipes 52-5, 51-5, develope Weills -Matarials 4 Sakrette.

DRILLING & BORING CONTRACTORS OFFICES: Route 12 North, Keene, NH 03431, Rie. 114, Lyndonville, V7 05651 MAIL: PO BOX 200, Walpole, NH 03508 1-600-331-6683 / 802-254-4650 / FAX: 603-357-6572 DAILY WORK REPORT Customer: Shutter bury Monitor werls Phone Contact person: SITE: ShotBs bury Mabs Weather Conditions: F 8427-14 Rig and Number: 203 Support Equip. 223 Site Person: Al Werner X Driller: Shawe B Approval Signature Striker: Dan W Time on site: 7:30 _Mob/Demob Times at shop:___ Time off site: ______30 Miles to Site: Description of Work and Times: Keep track of all times and materials used. Repairs, down hole with c' hammer 7:30- 8:15 8:15 - 8:25 285 40 300 6 air BLOW test 2'/4 gpm 8:25 - 8:40 840 -9:30 Trip out pick up demob

100 DBC - 0

N 42° 23 412, w072° 25: 095 CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

Customer TOWN of SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>BCC</u> Date Completed <u>8-22-14</u> by <u>3 Beal</u> <u>75 20'3</u> Phone: <u>413-687-8046</u> work <u>413-256-3048</u>
Well Data	Pump Data
Total Depthft. yieldgpm	Type installation:
Casing Length 40 ¹ ft. static ft.	Sub Cont.: Ph.#
Depth to Bedrock ft. off-set ft.	Foundation Stone Cement Slab
Other Materials: B)BSS Portland	R. Hammer yes no
)) Benseal	Panel to C. Box:ft
1) 6" Locking cap	Elec. Type:
BH 51720	Type Plumbing: PVC Copper Iron
Well Location: SITE # 1-D 380 Pellum Hic Rd. (1.8 mi from Jct. Lawarth + Pellum Hic Rd.	Map:
0- 25' gravels /silty claymix 25'- 100 Quartz / gravite	

e.

WOTZ^o 2.5 · 109' CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

25.

N42°

463

Customer TOWN of SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>BCC</u> Date Completed <u>8-22-14</u> by <u>SBent</u> #203 Phone: <u>413-687-8046</u> 1255 413 256 3048								
Total Depth 25 Well Data gpm	Pump Data Type installation:								
Casing Length ft. static ft.	Sub Cont.: Ph.#								
Depth to Bedrock 25 ft. off-set ft.	Foundation Stone Cement Slab								
Other Materials: 10 of 10 Slot Screen 20 of FIBET	R. Hammer yes no								
6) Bast Isaud 4) Bas chips, 1) 5 Plug	Panel to C. Box:ft								
1) Pushpoint 1) Protective Casing	Elec. Type:								
	Type Plumbing: PVC Copper Iron								
Well Location: SITE # 1-S le ham Hill Rd.	Мар:								

1242° 26.954 WO72° 24.992

(l)

CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

Customer TOWN of SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>B</u> CC Date Completed <u>B-21-14</u> by <u>5.Beal</u> #=203 Phone: <u>413-687-8046</u> 1256 3048
Well Data Total Depth 100 ft. yield 44 gpm Casing Length 40 ft. static ft.	Pump Data Type installation: Sub Cont.: Ph.#
Depth to Bedrock 26 ft. off-setft. Other Materials: 2Bq3 MJd 1 Bewsend 6 Portland I+II 176" locking Gp Bet 5.720	Foundation Stone Cement Stab R. Hammer yes no Panel to C. Box: ft Elec. Type: Type Plumbing:
Well Location: SITE # 2-D GY Leveret Pl ACIROSS from DPW out in Woods. 0:4 silty Sands 4-26 gravels 26-34 weatherd rock 34-600 gravite	Map:

CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

Customer TOWN of SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>BCC</u> Date Completed <u>B-Z1-74</u> by <u>S1Bcal</u> # 203 Phone: <u>413-687-8046</u> work <u>413-256-3048</u>
, Well Data Total Depth 2.5 ft. yield gpm	Pump Data Type installation:
Casing Length ft. static ft.	Sub Cont.: Ph.#
Depth to Bedrock 25 ft. off-setft.	Foundation Stone Cement Stat
Other Materials: 10 of 10 Stot Screen 20 Moren	R. Hammeryes no
4) #15ands, 3895 chips, 1) mud	Panel to C. Box:ft
1) JPlug 1) Protective Riser	Elec. Type:
	Type Plumbing: PVC Copper Iron
Well Location: $S_{TE} \neq 2 - S$	Map:
0'- 4' silty Sands	
4-25 graners	

٩.

(Y) (TBD) (Y) (TBD) (USHING & WATER WEL Job R	z SONS, INC. JL DRILLERS Report
Customer TOWN of SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>BCC</u> Date Completed <u>B-27-74by</u> <u>SBeal</u> FF203 Phone: <u>413-687-8046</u> work <u>413-256-3048</u>
Well Data Total Depth <u>305</u> ft. yield <u>21/4</u> gpm Casing Length <u>30</u> ft. static <u>ft.</u> Depth to Bedrock <u>13</u> ft. off-set <u>ft.</u> Other Materials: <u>30° af 6" T+C 1) locking cap</u> . <u>1) Drive Shoe</u> <u>6) Portland</u> <u>1) Bewseal</u> <u>Bit 5.720</u> Well Location: <u>SITE # 3-D</u> <u>Town common Behind Church</u> <u>Go in on dirit not parement</u> <u>BI2ING- CURB BIX</u> 3'- 13' dry gravels 3'- 300' gravels	Pump Data Type installation: Sub Cont.: Ph.# Foundation Stone Cement Slat R. Hammer yes Panel to C. Box: ft. Elec. Type: Type Plumbing: PVC Copper Iron Map:
Fractures 234' 260', 267', 282' 282'	

N42°	27	065
w072	²z4	5-69

CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

Customer TOWN OF SHUTESBURY AL WERNER, PM	Pump By: Date Signed <u>Confract</u> by <u>BCC</u> Date Completed <u>8-94.14</u> by <u>SBeal</u> #203 Phone: <u>413687-8046</u> Work <u>413256 3042</u>								
Well Data Total Depth ft. yield gpm	Pump Data Type installation:								
Casing Length ft. static ft.	Sub Cont.: Ph.#								
Depth to Bedrock 13 ft. off-setft.	Foundation Stone Cement Slab								
Other Materials: 2 8 of 105 lot screed	R. Hammer yes no								
10'of riser 1) Push Plug	Panel to C. Box: ft								
7) #1 5and 1) J Plug	Elec. Type:								
1) ahip 1) Protective Riser	Type Plumbing: PVC Copper Iron								
Well Location: SITE # 3-S	Map:								
1-13' Dry gravels									

(2)

N42 28,251

W072° 24,871

CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

	Date Completed <u>8-26-14</u> by <u>Shaww B # 20'3</u> Phone: <u>413-687-8046</u> 125 413 256 3048
Well Data Total Depth 100 ft. yield 1/4	Pump Data Type installation:
Casing Length <u>ZO</u> ft. static ft. Depth to Bedrock <u>4</u> ft. off-set ft.	Sub Cont.: Ph.# Stone Cement Stab
Other Materials: <u>4 Portland</u> <u>1 Bewsend</u> <u>1 6" tockning cap</u>	R. Hammer yes no Panel to C. Box: ft Elec. Type:
Well Location: SITE # 4-D Behind Athletic Club AT Wendell Rd / Plaza Rd.	Type Plumbing: PVC Copper Iron Map:
Fractures 41 61 94 0'-4 dry gravel	

N42° 27.057' W072° 24.572

CUSHING & SONS, INC. WATER WELL DRILLERS Job Report

Customer Town of AL WERNER	SHUTTESBURY 2, PM	Date Signed <u>Co</u> Date Completed Phone: <u>413 G</u>	Pump By: <u>nfract</u> by 1. Q-26-14 by 1. Q-26-14 by 1. Wor	BCC Shaw B & 413 250	#203 5 30Y8	
· · · · · · · · · · · · · · · · · · ·	Well Data		[Pump D	Data	
Total Depth 4	ft. yield	gpm	Type installation:			
Casing Length	ft. static	ft.	Sub Cont.:		Ph.#	
Depth to Bedrock	ft. off-set	ft.	Foundation	Stone	Cement	Slat
Other Materials: 1 of 10	Slot Screen, Pre	stective	R. Hammer		yes	. no
10 of Ris	er Rí:	ser	Panel to C. Box:	11	ft	
1)chip			Elec. Type:			
3)815#1	saud	2110	Type Plumbing:	PVC	Copper	Iron
Well Location: SITE 7	4 4-5		Мар:		l.	TE
DI. H' bry grave	15					

1. V	/ELL LC	OGATIC	N GP	S (Req	Not) No	Sc th_	oordii YZ	nates	must b	e in l	WGS CG/	584 da	t <i>um, in a</i> West	ecimal	degr	2	Ч	57	6								
Add	ress at \	Vell Lo	cation	_1	Cash	egvil	le	i21.				X	Propert	y Owner	Tow	N U	ſ	5	HUTC	SBUR	э							
Sub	division/	Propert	y Descri	ption		<u> </u>							Engine	ering Firm														
City/	Town	SHV	TSBU,	13	N	4	tr	n public	right-	of-way?	N	Ma	iling Ad	dress 🧾	Cool	egvil	le	Rð.										
Asse	essors N	lap		· ·	Ass	sessors	Lo	t#				City	y/Town	Silvin	BUR				Sta	ate 🦯	14							
Boar	d of Hea	alth pen	mit obtai	ned		Y	es	D	Not	Required		Per	rmit Nun	nber			_	Da	te Issue	d								
2. W	ORK P	RFOR	MED	3. DR	ILLIN	IG ME	НО	D	4. PE	RMIT IN	FORM	NATIC	ON	6 ADD	TIONAL	WEL	L IN	FDR	WATIO	N SE	$\mathcal{E}_{\mathcal{G}_{\mathcal{G}}}$							
			η	Overt	ourde	n E	Bedr	rock	DEP	21E site #									Are th	929								
N N		W			H		1]	ਸਿ	DEP	Groundwat	er			Develop	bed	XY		N	wells	nested	LΥ							
5 W			VERBUI	RDEN			<u>י</u> ן י		Disch	arge #				Adall Gal	in la nat				Surfac	e Saal	_							
From	To	To To				0100			op in Drill	Fast	01	Lo Ao	oss or Idition	in bedro	sneo ick	Y 🔂		N	Туре	e Seal	C							
(ft)	(ft)	Code	e Color		Com	ment		S	tem	Drill R	ate	of	Fluid	Number	of		,		Area o	if group	2							
0	13	G	BR					ΠY	N 🛛	□ F [<u>]</u> S			wells in	group				(sq. ft)									
	ļ			· ·] s			Total W	eH	20	1/1		Depth	to	17							
								<u> </u>			Depth	30		00		Beulock		/ >										
									DY	ΠY			DY	ΠY	Y]S			7. CASI	ING			ŝ.		in the second	
														From	To		Тур	e I	Thi	ckness	Dia							
											12			+2	30				+ /?		6							
															IS IS							H						
							_				15			8. SCRE	EN	17 ⁴)*					11							
							_] S			From	То		Туре)	Sto	t Size	Diar							
								ΩY]s																	
WEL	LLOG	BEDR	ROCK LI	THOL	OGY	Drog		Ever		Extra	0000	c \	/isible															
rom	То	Code	C	Comment		In Drop		in Drop		in Drop in Drill Stem	n	Large		Slow A	Addition		Rust						<u> </u>					
(ft)	(ft)	0000				JIEN		Graps	·	Rate			tuning	9. WATE	R-BEAR	UNG Z	ON	S										
/3	100	GR					₹N						YEN	Fre	m 	_		To			eld (gpi							
70	200	en .	6	1	.									<u> </u>		_	27	1			- 19							
200	300	on	trekt	med	*																							
							N						Y T N	10. WAT	RIEVE	L	۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹ - ۱۹۹۹	14.00			- 1976 -							
							N		N				YON	Date Me	asured	Sta	tic D	epth	BGS (ft)	Flowin	ig Rate							
						JYC	N				LD		YDN	N	07	ME	715	SUR	FD									
						Y	N	JY 🗆		- 🗆 s 🗖	L 🗌		YDN															
ANN	ULAR	SEAL /	FILTER	PACK	6	\$.	10 - 1 - 1		e e E ato	$\frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial \mathcal{J}_{\mathcal{A}}} = \frac{1}{c}$							dia Viti	- Ali	ANGER AND		1							
rom (ft	BGS)	To	(ft BGS)	_	Mate	rial 1		We	ight 744	Ma	terial 2	2	We	eight	Wate	r (gal)		Ba	tches	Method	of Plac							
÷	-	4	28			M		56								7	_		/									
.,					⊢-												+				╡┝╼							
					H						╡┝─┤										╡┢╡							
	and get	nadativić s. Salače nak r Majerati	K −C	1				> >	<i></i>						1		-			<u>1 </u>								
CON	IMENTS		tre	Act	Ine.s	Ô	_	1.57	, 20	5,02	67	2,	69	282	21	85												
WEL		ERSS	TATEM	FNT	This	s well w	as (dniled (or aiter	ed under	my di	rect s	upervisi	on, accord	ling to th	e appl	icab	le ru	les and	regulation	ons, an							

Testano Internet

L		Bureau (MONITC	of Reso DRING I	urce Prote WELL REP	ction PORT			Site	3-5							
17-11A		CATION		No	te: GPS	coordir	nates i 7º	must be in	WGS84d	alum, in	decima.	degre	es. Zv	5	71.	
Add	man at l	Vali Los	Hien CP	5 (Require	Coulo	1.10	21		M Broom				75	+1.170	52.10	4.2
Cub	liusian/		Dessi		/	WEE -C	10.				1000	10 01			5001-	J
SUD		SHUT			14-	la aublia	right of		Li Engin	eering Fim	1 Card	le 110	Pri	1		
Area	rown _	20		20 10 A.		ni public	ngnt-oi	I-way?	City/Tow	 مربز ک	TSBU //		ru.	Sta	ato //	114
Boar	d of Hor	ah	it obtai	A:		.0(#	Not 5	Pequited	City/Town	imbor	1-13010	7	Da		ale <u>ri</u>	<u> </u>
o w		propu						PHERINEOR	Penniciat			WELL	INEOS	MATIO	N ROLLEY	2010-2010
2. 14	ORN PE	Rrenn	EU	Overburd		drack		TE site #	MATION	0. AU			IN FOR	UNICE		
	N	W	-				DEP 2	roundwater	100 m	Develo	ped	X Y [N	Are the wells r	ese nested	ΠY2
				AK			Discha	nge #	-			-	-	-		COLUMN D
5. WE	ILL LOO	- OV	ERBU	RDEN LITH	IOLOGY	- Dro	op in	Extra Fast or	Loss or	Well fir	nished lock	TY D	N	Surfac Type	e Seal	CE
(ft)	10 (ft)	Code	Color	Cor	mment	SI	em	Slow Drill Rate	of Fluid	Numbe	ur of			Area o	faroup	
D	13	G	BR	DR.	2	ΠY	MN	🗆 F 🗋 S		wells in	group	_2	_	(sq. ft)	, 3.00p	20
		3.1	10		·	DY	N	□ F □ S		Total W	/ell	1.2		Depth	to	13
		-		-		DY				Depth	Jacob Harris	13		Bearoc	ik Statistics	/
								OF OS		7. CAS	NG		1007,15			14
					-					From	TO	P	/pe	Sec.	YO	Diamet
-	-		-	12						72	13	164	42	1200	10	<u>_</u>
-	1.1					DY							TT	1		
				1		ΩY.		FOS		A SCR	EEŃ		11			
						DY D		FOS		From	То	Ту	pe	Slot	Size	Diamete
				1		DYI		FOS		5	13	Pr		.0	10	2"
WEL	LLOG	BEDRO		HOLOGY	Drop	Extra	Fas	dra stor Loss	or Visible				Ц	1		
om	To (ft)	Code	Co	mment	In Drill Slem	Large Chips	SI D	ow Addition	on Rust id Staining	No.14 a Carto				•		
-+	1147						Ra	ate IIIII		a wat	SCOLAR MIL		To		YT	eld (gom)
-+			1	-			NDF			1	ONE	-				ter (Bhui)
-						OY D	NDF									
						DYD	NDF									
						O Y D	NDF			10. WAT	ER LEVE	1	525.5	STIE &		
			_			DYD			ADYDN	Date M	easured	Static	Depth I	BGS (ft)	Flowing	g Rate (gpn
-										N	ONE	+	-		-	
ANIA	ULADA		TEP	PACK						and interaction	S. States	Consister.		asaa	NAMES &	
om (ft	GLAR SEAL / FILLER PAGK BGS) To (ft BGS) Material 1					Weig	ht	Material	2 W	/eight	Water	(gal)	Bat	ches	Method	of Placeme
(2	1		C	T	8	0#]						7	R
	1	2		B	C	50) 74]			_			7	R
	2	13		S	0	350	7 <u>1</u>					-			7	R
0.044	MENTE]				-		L	
-OM	MENIS			(and - 1)		م احماليوار م	li	المربية المرام الم	ite of a surface of		ding in it.	o opolio-	blo ref	ac and	ogulatio	hat and
NELI	DRILL	ERSIST	ATEME	NT this	report is	complete	and ac	curate to the	best of my ki	ion, accord		a abbiica	une (UI	69 800 I	eguiatio	
Statement of the local division of the local										10 11	· /				- K	1 milton

	家	Massac Bureau MONIT(husett: of Reso ORING	s Departm Jurce Prote WELL REP	ent of Env ction PORT	ironmer	ital Pro	stection	Site: 4	Ð							لت. يسلمه سالحت ؟
			-	No	te: GPS	coordi	nates	must be in	WGS84 d	atum, in	decima	i degree	₽S.	-			
	WELLEILO	JUATIO	GP	S (Require	d) North		2	28	251	Wes	2 7	- 2	· Y	8	7/		
Ad	dress at l	Well Loc	ation	Jerve	n. ke/114	<u> </u>	471	Rd.	🗶 Ргоре	rty Owner	Tou	in of	2	HUTE.	Saur	Ð	_
Sul	odivision	Property	Descri	ption					Engin	eering Firm	n						
City	//Town	SHUT	FSBU,	ny N	14	In public	right-o	of-way? 🖊	Mailing A	ddress	1 Coul	leyville	Ro				
Ass	essors N	lap	_	A:	ssessors L	ot #			City/Towr	Sur	7530.24	<u></u>		Sta	ite 1	24	
Воа	rd of He	alth perm	nit obtai	ned	🗌 Yes	Þ	Not I	Required	Permit Nu	mber _			Dat	te issue	d		
2. V	VORK PI	RFORM	IED -	3. DRILLI	NGMETH	OD	4.PE		MATION	6. AD	DITIONAL	WELL	NFOR	MATIO	N Dea	1914	
		1		Overburd	en Be	frock	DEP 2	1E site #						A an Alba			
	N	W					DEP C	Groundwater		Develo	oped	X Y	ЛИ	wells n	ested	ΠY	X
5.14		ē ov					Discha	arge #	-	-	20.00						-
Televite Televite		G O			IOLOG I	Dri	op in Irill	Fast or	Loss or Addition	Well fi	nished rock	Ø Y [N	Surface Type	e Seal	C	M
(ft)	(ft)	Code	Color	Co	mment	S	em	Slow Drill Rate	of Fluid	Numb	or of		-	Area of	aroun		_
Ċ	Y	G	BA	DR	5					wells in	a group	2		(sq. ft)	group	21	D
						ΠY		F s		Total V	Vell			Depth to	o		
						ΩY	N			Depth		100		Bedroci	k	7	
						ΠY	🗆 N			7. 0AS	ING	1. 192.		(275)			
		100				ΠY	N	🗆 F 🗆 S		From	То	Ту	pe	Thic	kness	Diam	neter
						ΩY		🗆 F 🗋 S		+2	18	57	34	19-	#	6	*
						ΩY	<u>N</u>				1						
		ļ								The second second				-		The Period	
			200000000		•					8. SCR	EEN	C Raise		CONST.	Not the lite		and a second
										From	То	Ту		Slot	Size	Diam	eter
LARE	LLOC	ØED DO			1											-	_
					Drop In Drill	Extra	Fa	ist or Loss	or Visible			╞╼╬╾				1.	
rom (ft)	(ft)	Code	Co	mment	Stern	Chips		Drill of Flu	id Staining	9 WAT	B BEAR	INGZON	IES	1932100	No.	1995	
V	100	60	_		YN	YN				F	rom		То	Istig venues	Yie	ald (gpn	1)
-	100				OYON					SAM.	11 for	thes	NOT	- Deteo	4.11	4 0.00	
																- JF	
								SOLC		10. WAT	ER LEVE	L.			15.5%		
							N [] F			Date M	easured	Static	Depth E	BGS (ft)	Flowing	g Rate (g	jpm)
							ND F				NOT	Re	cont	and			
				the second s							4 (H. 4 ⁽¹⁾		_				
- AN	NULAR	SEAL / F	LTER	PACK	in the state	The second									and an	19210	58 23
rom (I	() (C)	To (ft	X S	Mate		Veij	ght (_	Material	2 N	reigrit	Water	(gal)	Bate	cnes	Method	or Place	ment
	U		-	H		1	9		-		2	<u>u</u>	/		<u>L</u>	ţĦ	
				H	Ħ		-	1 HF	1						<u>[</u>	╡┢╡	
				H	Ħ				1							1H	
. col	MENTS								-						h	<u> </u>	
WE		LERS ST	ATEM	ENT This	is well was report is o	drilled o complete	r aitere and ac	d under my o courate to the	lirect supervis best of my kr	ion, accor nowledge	ding to the	e applicai	ble rule	es and re	egulation	ns, and	4
ller	SHA	then 13	TAL	-	S	upervisir	g Drille	er Signature	-900	une!	suptro-	Ce	tificati	on #	5	5	6
прал	y Cu	SHING	= 3 -	0.15, 2	NC		D	ate Job Com	plete	7/2	/	Rig	Permi	t# 👔	14	19	6

-	
1	

D

Massachusetts Department of Environmental Protection Bureau of Resource Protection MONITORING WELL REPORT

 	 and determined to be supported by the support	

111215		# - =5		No	te G	PS c	oordin	ates	must	be in	WGS84	4 da	tum, in C	lecima	l degr	ees.				
1. W	ELLLO	CATIO	N GP	S (Require	d) N	lorth_	4 2	0 (Z	3-	251		West	7 2	<u> </u>	2Y	87	1		
Add	ress at V	Vell Loc	ation	Jet	Ule	nde	Rd.	5 1	DAZ	AS	Pr 🗷 Pr	oper	ty Owner	Ton	in a	<u>f S</u>	NUTE	SOUR	Э	
Sub	tivision/i	Property	Descri	iption							🗍 En	igine	ering Firm	•						
City/	Town 5	SHUT	TSBV	Nig N	14	Ji	n public i	right-c	of-way'		Mailin	g Ad	dress	1 Coul	legvil	le Ro				
Asse	ssors M	ар			sesso	- ors Lo	t#				City/T	own	SHUT	FSBUR	2		Sta	ite A	14	. Ill
Boar	d of Hea	ith perm	nit obtai	ined		Yes	X	Not I	Requir	ed	Permi	t Nur	nber	۰. ľ		Da	te Issue	d		
2.W	ORK PE	RFORM	IED -	3. DRILLI	NGM	ETHO		4. PE	RMIT	INFO	MATION	5	5 ADD	TIONA	WEL	LINFOR	DITAR	N	200	1
and the second second			al text que	Overburd	en	Bedr	rock	DEP 2	21E site	#	and the part of a s		in the difference				A			
	N	W			1		ET.	DEP 0	Groundy	vater			Develo	ped	X Y	П и	wells n	ested	Y	X
5 W	11100		/ERBU			GY		Discha	arge #	xtra	1	-	Atall Em	in bool	-	-	Surfac	Soal		
From	To		LINDO		ICEO		Drop Dr	ill Ill	Fa	ast or Now	Loss Additi	or on	in bedro	isnea ock	Υ	X N	Туре	e Geal	C	
(ft)	(ft)	Code	Color	Cor	nment		Ste	m	Dril	Rate	of Flu	lid	Number	rof			Area o	group	20	0
0	4	G	BR	Dreg		_	DY	N					wells in	group			(sq. ft)		~	
		-	-										Total W	ell	L		Depth t Bedroc	o k	4	4
					-								2 OFEI	NG	and softe	AS DOUBLES	-	ar anala	1000	15 19 19 19
	-	-		-	-	-							From	To		Туре	Thic	kness	Dian	neter
													+2	3	P	VC	Sch	40	2'	/
					_			JN	O F] A [1			
								IN	🗆 F	□s] A [
] N	ĒF	□s] A	8. SCRE	EN		(T.A. S.			- Trans	
	-							N	F	□s] A	From	То		Гуре	Slot	Size	Diam	ieter
	Rifflachertra.	_			_	_			F			A	3	4	P	rici	.0	10	2	
WEL	LLOG	BEDRO		THOLOGY	Dr	op	Extra	Fa	ist or	Loss	or Visib	le		-		┥┥┥				10000
rom (ft)	To (ft)	Code	Co	omment	Ste	m	Chips			of Flu	id Staini	ng i	9 WATE	R-BEAR	ING Z	ONES		19.9 Mar		2.00
			-		ΠY								Fr	m		То	Carly 2 March	Yie	ld (gpn	n)
-				17.5	ΩY							IN	1	No.	VE		_			
1					ΠY							JN		100						
					ΩY			F	: 🗆 s [N								
								F				N	10. WATE	RLEVE	r -	nt si t	1	append X		
-			_									N	Date Me	asured	Stat	ic Depth I	BGS (ft)	Flowing	Rate (g	gpm)
-	-+	-		1000] [[N	-	Non	1					
ANN		PAL /	UTER	PACK								1 1		-	States		*	11.19	S. Carl	
rom (ft	BGS)	To (f	BGS)	Mate	erial 1		Weigt	nt	B	Aaterial	2	We	eight	Water	(gal)	Bal	ches	Method of	of Place	ement
	Ð	1	!	C	7		807	<u>1</u>					-				27	7	12	
	1	L	1	5	D		150	#										T		
					Ц						<u> </u>	_							뉴	
	CLORED CT	05.							4]					2-0-0				
COM	MENTS	E.	2017 U.S.			Q=0.82														
WED	DRILL	ERS ST	ATEM	ENT Thi	s well	was o	Irilled or	altere	d unde	er my o	lirect supe	IVISI	on, accord	ing to th	e appli	cable rul	es and i	egulation	is, and	
	Sula	WA P	EAL	uns	repor	0.05 00	aubiere i	anu du				Seld	M	al	1	addine!	00.#	5	5	8
ler	(- 5	Size 3	Twe	50	pervising	y Lornie m	er olgn	aure			3/2	i. Lilu		in Dave	чти »! Г	4	9	6
nnanv	LU	SHINC		ک برخو خواری خو	NC.			U U	ate Jol	ս սօт	piete		016	0117		ag merm	π.#r [1.1	1 * -	-

ł	影	Massad Bureau MONIT	chusetts of Reso ORING I	: Departme urce Protec NELL REP	ent of Er ction ORT	ivironme	ntai Pro	tectio	m 5,	te 1-	D				andlike endedt vikaskaseskier		President and a set	
				No	te: GP	S coordi	nates	must	be in	WGS84 da	atum, in	decimai	dearee	s				-
1.1	NELL LC	CATIO	N GP	S (Require	d) Nor	th Y	2 °.	2	3	412	West	72	°Z	.5	C	95		and the second state of the second
Add	dress at V	Vell Loo	ation	3801	21han	Hice	Rd.			Prope	rty Owner	Tow	in of	Ś	INT	SBUR	э	
Sut	division/	Property	y Descrij	otion						Engine	ering Firm	1						1
City	/Town _	SHUT	FSBU/	ry N	14	in publi	c right-o	f-way?	N	Mailing Ac	ddress	1 Coul	eyville	Ro	ei			
Ass	essors N	lap		As	sessors	Lot #				_ City/Town	Silvi	TBUR	<u>, </u>		Sta	ate 🥂	174	
Boa	rd of Hea	aith perr	nit obtaiı	ned	Y	es [X Not I	Require	ed	Permit Nu	mber _			Da	te Issue	ed		
2,1	VORK PL	REOR	NÉD	3. DRILLI	NG MET	HOD	4. PE	RMIT	NFOR	MATION	6. AD	DITIONAL	WELLI	NFOR	MATIO	N		
			1	Overburde	en B	edrock	DEP 2	1E site	#						Are th	000	_	_
	N	W		A		ាធា	DEP G	Groundw	vater		Develo	ped	X Y	<u>л[</u>	wells	nested	LΥ	N 🔀
FERMA							Discha	arge #		1	-					0		
From	1 To	Code	Color	Cor	nment	D	rop in Drill Stem	Fa	ist or	Loss or Addition of Fluid	in bedr	nished ock	X Y [] N	Type	e Seal	<u> </u>	M
(ft)	(ft)		20					Drill	Rate		Numbe	er of	2		Area o	f group	2	0
	1 2-	16	UPL								weasar	group		-	(sq. n)			
								Пе			Depth	/eil	100		Depth Bedroo	to :k	2	5
	+	+	+								7 CAS	ING		1990		al south		
											Erom	То	Ти	ne	Thi	tkness	Dia	meter
											+2	38	57	-121	10	141	6	
								□ F			1		H	T	1			
		1				DY		□ F	🗆 s									
						ΠY		D F	□s		8. SCR	EĘŇ	1 5 A.M.		a la			
						ΩY		🗆 F	□s		From	To	Тур	e	Slo	t Size	Dian	neter
						DY		F	□s		—	-						
5. WE	LL LOG	BEDR	OCK LI	THOLOGY	Drop	Extra	a Fa	xtra ist or	Loss o	r Visible		-						
From	To	Code	Co	mment	In Dri	I Larg	e S S D	ilow Drill	Additio	n Rust Staining		1			1			and second states of the
(11)	(n)						R	ate			9. WATI	R-BEAR	ING ZON	IES	124	T		
27	100	GR								ALYMN	Fi	mor		To			ald (gpr	n)
												None	· NO	[7]	3	-		
													1					
											10. WAT	ERLEVE	1	1.75.11	(152)	No. Walt	S Parts	100000
				-		NITY				ADYON	Date M	easured	Static I	Depth I	BGS (ft)	Flowin	g Rate ((gpm)
						NUYE				ADYON		NOT	REC	ori	സ്			
						NOYD	NDF											
11. AN	NULAR	SEAL (FILTER	PACK	n parts				164			102.0	in all	in.		1. G. 40		e e
From (ft BGS)	To (ft BGS)	Mate	enal 1	We	ight	A	Aaterial 2	2 W	eight	Water	(gal)	Bai	ches	Method	of Place	ament
	0		38	C	M	7	52.4					50	-	1	1			
														_			ᆛ님	
					<u> </u>											100	井井	
	(ABAES) TO							ΙĻ										
12,00	MINEN (S			1.27 Cold 1		1.11		4			1	dia a di				- anulati-		
13, WE		LERS S	TATEM	ENT this	s well wi report i	as drilled as complete	or altere e and ac	a unde courate	er my dr to the	best of my kr	ion, accor iowledge.	aing to the	e applicat	DIE TUI	es and	regulatio	ns, and	
Driller	SHA	wit F	3092			Supervis	ing Drille	er Sign	ature		411-	mit-	Cer	tifical	1011#		1 3	6
Compar	ny Cu	SHIN	655	ans, J	NE		D	ate Joł	o Comp	lete	8/23	3/14	Rig	Релт	8 8 1	17	19	6

				No	ote: (GPS d	oordii	nates	mus	t be in	WGS84	l da	tum, in	decima	i degi	ees.			
1.W	ELL LC	CATION	GP:	S (Require	ed)	North	<u> </u>	· ·	2	3	412		West	72	<u>-</u>	25		095	
Addr	ess at V	Vell Loca	ition .	380		elha	m 17	166 /	20.		_ 🗶 Pro	opert	y Owner	Tom	1.1. 0	7	SHUT	2-5BUA	<u>'9</u>
Subo	livision/	Property	Descrip	otion							_ 🗆 En	gine	ering Firm	·					2
City/	Town _	SHUTT	FSBU/	203 1	M	_ 1	n public	: right-o	of-way	? 🕅	Mailing	g Ad	dress _	1 Coo	legvi)	le R	J.		
Asse	ssors M	ар		A	ssess	sors Lo	t#				City/To	own	SHUT	TSBUR	<u>.</u>		S	tate 1	114
Board	d of Hea	ilth perm	it obtair	ned] Yes	D	Not	Requi	red	Permit	Νυπ	nber _)ate Issu	ied 🔔	N
2. W	DRK PE	RFORM	ED	3. DRILL	INGI	METHO	D	4. PE	RMIT	INFOR	MATION		6. ADI	ITIONA	LWEL	LINFO	ORMATI	ON /	ŭ ;
	11	1.7		Overburd	len	Bed	rock	DEP 2	21E site	e #							Aret	hese	
2	N	W	F	A I	9	TA)	H	DEP (Ground	water	2010		Develo	ped	N		wells	nested	LIY,
5AWE	illen(o)	ov	ERBUF	RDEN LIT	HOLO	DGY		pipon		Extra	Lorg		Well fir	uished		<u> </u>	Surfa	ice Seal	
From	То	Code	Color	Co	mmer	1)nill Inn	- F	ast or Slow	Additio	or Dri M	in bedr	ock	ĽΥ	N N	Туре		
(ft)	(ft)	0000	0						Dr	ill Rate			Numbe	r of)	Area	of group	21
0	25	G	BR			_				FUS		JA IA	wells in	group		-	(sq. 1	() 	
-	-					-				- Цэ : Пе			Total W Depth	/ell	2	5	Depth Bedro	n to ock	-
-										= II S			7 CAS	NG	CALCULATION OF	Sec. 1		St No.	
-	-		-							: DS			From	То		Туре	TT	nickness	Diam
- 1						-	DY					A	+2	15	P	VC	Se	440	2"
	1								DF	⊡ s		A							
	8								F	🗆 s		A]		
							ΠY		🗌 F	□ s		A	a. SCRE	EN	1.1.2.12	1	5255	121.00	
			-				O Y					A	From	To		Гуре		ot Size	Diame
in here a	Loc	05000	CK L IT		-							4	15	23				10	2
AACTT	LOG	BEDRO	GKLII	HOLOGI			Extra	Fa	ast or	Loss o	visibl	e			┼┢╼╣		╬╢╌╌	_	
t)	(ft)	Code	Cor	nment	S	item	Chips		Drill Rate	of Flui	d Stainir	9	9. WATE	R-BEAR	UNG Z	ONES			
					01				S	0.0] N	Fr	om	T	To		YI	eld (ĝpm)
					0				: 🗖 S		AUYE] N	N	TT RI	FEO	RDFI	>		
					DY				□s	🗆 L 🗖	ADYC] N							
+			1.000		DY						ADYD	I N				1.12.7	d factorization	1	
		-+											10. WAT	RLEVE	iL Chat	The set		Flanda	- Data (a
+					HY							N	Date Me		Stat		1 BGS (Л)	Flowin	g rate (g)
+					ΠY							N			neec	Unc		-	
ANN	ULAR S	EAL/F	LTER	PACK				ALC: NO							V-L-C-L				
om (ft B	GS)	To (ft	BGS)	Mat	erial 1		Welg	ht		Material 2	2	Wei	ght	Water	r (gal)	В	atches	Method	of Placen
	0	2		C	T		8	0≠	-		<u> </u>			1	_	-			TR
1.12 1.11	2	13	-	B	S		20	c=#										7	
1	3	25	>	2	믬		30	07		╡┝┥					-				
COM	IENTS							1000 C	<u> </u>										
VELL	DRILL	ERSIST		NT Th	is wel	l was d	rilled or	altere	d und	er my di	rect super	V 510	n, accord	ing to the	e applic	able ri	ules and	regulatio	ns, and

NOTE: Well Completion Reports must be filed by the registered well driller within 30 days of well completion.

Massachusetts Department of Environmental Protection Bureau of Resource Protection MONITORING WELL REPORT

000

. . .

Site	2-0
-	

-					IVOI	e GPSC	oorum	ales	musi	De In	VVG304	uau	ин, ш с	recima	a uegre	703.		-		
1.V	NELL LO	OCATIO	N GP	S (Req	uirec	i) North	<u> </u>	· ·	26	45	٢		West	7 3	2.°.	54	99	2		
Add	dress at V	Nell Loc	ation	64	16	vene H	Rd.				_ 🗶 Prop	perty	/ Owner	Toi	\mathcal{M}	<u>f</u> S	HNTE	SBUR	F	
Sub	division/	Property	Descri	ption_							Engi	inee	ring Firm	Ξ					· ·	
City	/Town _	SHUT	TSBU	Ny	N	14	n public	right-c	f-way?		Mailing	Add	ress	<u>1 Cou</u>	legvill	e Ro	<u></u>			
Ass	essors N	iap			As	sessors Lo	t#				City/Tov	wп	SHUT	FSBUR	·		Sta	te 🖊	14	
Boa	rd of Hea	aith pem	nit obtai	ined		🗌 Yes	X	Not I	Requir	ed	Permit M	Num	ber			Da	ite issue	d		
2. W	ORK PE	RFORM	IED _	3. DR	LLI	NGMETRO	D	A. PE	RMIT	NFOR	MATION	3 5	6. ADD	ITIONA	LWELL	INFO	MATIO	N		*
		1.7		Overt	ourde	en Bedi	rock	DEP 2	21E site	#					571		Are the	ese		م .
	N	W		M	R	Ā	H	DEP C	Groundy	vater			Develo	ped	N LS		wells n	ested	L Y	A N
5. W	ELL LO	G O۱	/ERBU	RDEN	LITH	IOLOGY		Dische	E	xtra	Loss of		Well fin	ished	57		Surface	e Seal		
From	То	Code	Color		Con	nment		pin Mi	Fa	ast or Slow	Addition	n I	in bedro	ock	N	N	Туре			M
(ft)	(ft)	0000	000				Ste		Dril	I Rate			Number	r of	2		Area of	fgroup	29	>
	γq		BR	-								A 	wells in	group		-	(sq. n)			
4	26		PR							. Пе.			Total W Depth	eil	10	0	Depth t Bedroc	io k	26	
				-						<u>П</u> е		<u>^</u>	7 015	ŃG	Terrorette				and a second	La les d
<u> </u>	-												From	To	-	Type	Thic	kness	Diame	ter
						D .						A	+2	38	2	71	19	7:#	6	
												A							6	
] N	□ F	□s		A								
] N	F	□s		A	& SCRE	EN		-	APRIL P			
] N	F	□s		A	From	То	Т	уре	Siot	Size	Diame	ter
									F	□s		A		·						
5. WE	LLLOG	BEDR	OCKLI	THOLO	DGY	Drop	Extra	Fa	Extra ast or	Loss	or Visible									
From	То	Code	C	omment		In Drill Stern	Large Chips	8	Slow Drill	Additio of Flui	n Rust	9							A STATE	CALCULAR ST
(11)	(11)	60		14			<u> </u>	F	Rate				9. WATE	R-BEA	RING ZO	INES		T v	iold (ana)	
26	34	GIC	W24	There is	d here							N	rr ·				-		ielu (gpm) L/	-
	100	GA	truct	VILLE I	14.5							N		71		75	>		/	
											ADYD	N								
											ADYD	N	10. WAT	ERLEV	EL		as and	-	52	
									: 🗋 s		ADYD	N	Date Me	easured	Stati	ic Depth	BGS (fl)	Flowin	ig Rate (gj	ym)
											ADYD	N	NOT	HIFA	SURF	D				
											ADYD	N								
11. AN	NULAR	SEAL/	FILTER	PACK	Alto		1							121	47			12/195	Series 1	
From (ft BGS)	To (ft BGS)		Mate	erial 1	Weig	ht		Material	2	Wei	ight	Wate	er (gal) 9	Ba	itches	Method	of Placen	ient
	0	2	2	_	뛈		565	1 -		┝┥┝╸								E		
					片	H					1					1		ſ		-
				-	一						1			11					TH	
12 00	ARACHTS	billing	-	1	_				-											
12.00		anney formal includes	terite the second	2922234016-1	Thi		delite el los	allar	a	es mu d	iront curron	Victor		dine to t	he analis	able ru	lee and	anulati	has and	-
13. WE	LL DRIL	LERS S	TATEM	ENT	this	s well was report is c	omplete	and a	ccurate	e to the	best of my	kno	wiedge	ung to ti Ay	ne applic	adinie (n	nes ariu i		ana, anu	
Driller	SHA	mr T	BEAL	00555	0	St	pervisin	g Drill	er Sigi	nature	-51	in	211	ust.	20	ertifica	ו tion #	2	558	<u> </u>
ompar	y Cu	SHIN	Gξ.	Sous	: 2	TNC	53 - 52 A	D	ate Jo	b Com	piete	8	1/21/1	4 1	R	ig Perr	nit #		19	6
S								0.752												the second

Ē		Massac Bureau MONITC	husetts of Reso DRING	s Depan iurce Pro WELL R	tment otectio EPOF	of Envli on RT	ronmer	ntal Pro	otection	57	K 2	· 5'			Ċ.				
- Angles											50 E								-
Ser march	C			/	Vote:	GPS c	oordii	nates	musti	be in	WGS 8 4 a	atum, in	decimal	degree	es.				
1. V	TELL LO	CATIO	GP.	S (Requ	ired)	North	$\frac{Y}{2}$	<u>z </u>	26	95	5Y	West	$\frac{7}{2}$		-Y	<u>- 7</u>	<u> </u>	-	
Add	ress at V	Vell Loc	ation	69	4	rekett	ICO,				_ 🗷 Prop	erty Owner	1 OW	NOT	د	NUTE	SBUR	<u>ə</u>	
Sub	division/i	Ргорену	Descri	ption	144						_ 🗌 Engir	leering Firm	101	11-		,			
City/	Town	SHUT	FSBV/	ng	NY		n public	: right-c	of-way?	N	Mailing A	ddress	I COOH	egville	RO.			14	
Asse	essors M	ар			Asse	ssors Lo	t#				_ City/Tow	n <u>57707</u>	TABURE	}	_	Sta	te //	17	
Boar	d of Hea	ilth perm	nit obtail	ned		Yes	2	🖌 Not I	Require	d	Permit N	umber			_ Da	te Issue	d	and the same first	-Angenition of
2. W	ork pe	RFORM	IED	3. DRI	LING	METHO	D,	(4: PE	RMIT	NFOR	MATION	6. ADI	DITIONAL	WELL	NFOR	матю	N ja		
	M			Overbu	ırden	Bed	rock	DEP 2	1E site #	*		Develo	ped		אר	Are the	se	Πr	
				M	R		-	DEP (Discha	arge #	ater						wens	esieu		
'5. WI	ELL LOO	s ov	ERBUI	RDEN L	ITHO	LOGY	Dr	op in	E) Fas	dra st or	Loss or	Well fir	nished		RN	Surfac	e Seal	C	7
From (ft)	To (ft)	Code	Color		Comm	ent	S	Drill tem	SI	ow Rate	Addition of Fluid	in bedr	оск		-	Type			
A	T4	FS	BA	1				MN		□s		A wells in	r of group	2		(sq. ft)	group	21	D
Y	25	G	BR	1			DY	EN	DF	□s	0.0	Total W	/ell			Depth i	0		
-							DΥ	🗆 N	F	□s		Depth	Depth 25 Bedrock						
							ΠY	□ N	٦F	□s		T. CAS	ING	1,275	14	S. 20			100
							DY		F	□s		From	То	Ту	pe	Thic	kness	Diarr	neter
							DY		□ F			+2	15	P	4일	Sel	40	2	
					_		DY								╉		-		
													COLUMN STR			a citate	A	Manda	
-				-	-							a scho		Tie	0.4	Sin	Size	Diam	ater
				_								15	25	PIN		12	0	2	1.
WEI	LIGG	BEDRO		THOLO	GY		<u>.</u>	E	Extra					1 H	T				
	To				-	Drop In Drill	Extra Large	Fa	ast or Slow	Loss o Additio	r Visible n Rust								
(ft)	(ft)	Code	Co	mment		Stern	Chips		Drill Rate	of Fluid	1 Staining	S. WATE	R-BEAR	ING ZO	NES	1.2	5.83		19.5
						YON			- 🗆 s [] L 🗋	ADYDI	Fi	om		То		Yi	ald (gpm	a)
						IYDN		NDF			ADYDI	N	OT R	econ	EDE	D			
_						YDN						1		-	_				
-			1.01		Ë	YUN								Contraction of the		20123	1		AMELS
-+		+			븜							Date M	ER LEVE	Static	Denth I	BGS (ft)	Flowin	a Rate (r	(000
-+		-		1000	H	YUN						No	T Re	End	200				
-+		+			6	YON	JYD												
L ANN	ULAR :	SEAL /	TER	PACK	815	-1995 - 1998	VER IT	64 - N		100			$\tilde{n} \leq 1$						24-4
From (ft	BGS)	To (f	t BGS)	N	laterial	1	Wei	ght	M	aterial 2	2 1	Veight	Water	(gal)	Bai	ches	Method	of Place	ment
1	3	2	5		되论	2	20	224	╞╌╞	┥┝╕			-				7		
	2	/	3	++			150)=# 					-		2 2 922		17	16	
	0	~	-	+	듹냳	-	8	0=	╞	╡┾┥							- F	愲	
. com	IMENTS					<u></u>						1							
WEL	L, DR)LL	ERSIST	ATEM	ENT	This w	vell was o	drilled o	r altere	ed unde	r my di to the	rect supervi	sion, accor	ding to the	applica	ble rul	es and	regulatio	ns, and	
iller	SHA	nn B	BEAL			St	pervisi	ng Drill	er Signa	ature	Ba	211	inty	Ce	rtifical	ion #	5	.2	3
mpany	, Cu	SHING	= 5 5	50.15	In	2		D	ate Job	Comp	lete	8/21/1	(Rig	Perm	it#	4	9	6