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ABSTRACT

The climate is rapidly changing due to human activity, and these changes will
impact our water resources. In the town of Shutesbury, Massachusetts, a municipal
water supply does not exist. Instead, water comes from private wells that tap into a vast
and complex bedrock groundwater system. Prior to this study, little information existed
regarding the seasonal fluctuations, the sensitivity of the aquifer to short or prolonged
drought, or the ability of the aquifer system to support future development in
Shutesbury. Still less was known regarding how the aquifer system could potentially be
impacted by climate change. Reports of lowering water levels in New Hampshire and
the neighboring town of Pelham were a cause for concern. In 2014, eight monitoring
wells were drilled at four locations in order to monitor seasonal changes in water level
and to establish a baseline for future levels. Water levels were found to fluctuate
seasonally, and despite a snow-heavy winter and summer drought, spring static water
levels returned to similar levels each year. Based on the small amplitude of seasonal
fluctuations, the lack of a lasting impact of the drought of 2016, and expected future
increases in rainfall, it appears that the shared aquifer should continue to serve as a

viable source for the town.
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1 | INTRODUCTION

In New England, as with most of the United States, our relationship with local
water resources is based on the assumption that the resource in question will be
consistent and predictable. In most temperate latitudes, water levels are typically high
in the spring because of rainfall and snowmelt, and drop throughout the summer as the
weather gets hotter and drier, water use increases, and vegetation claims its fair share
(Whately et al 2012). Typically, rain shifts to snow during the late fall, snowpack begins
to melt during the spring, and the summers are warm and dry with occasional
interruptions by intense thunder storms. However, because of climate change, these
expected patterns are changing and are predicted to continue to change. Temperatures
are rising, precipitation trends are shifting (Table 1), and surface and ground water
resources are becoming less predictable.

The resilience of groundwater systems in New England became a concern in the
early 2000s as statements from drillers in New Hampshire began to report that wells
were needing to be drilled deeper and that static water levels were decreasing. A study
in 2010 found that, between 1984 and 2007, the average static water level in New
Hampshire wells lowered by 13ft (Ayotte et al 2010; Kernen 2010; Figure 1). About 50%
of New Hampshire residents get their water from bedrock wells, and 80% of these wells
are private, so the only consistent reporting came from the initial drilling and

complaints of individual wells running dry. Further exacerbating the situation, the



population of New Hampshire has been growing, and the resulting increase in water
use caused concern about the resilience of their groundwater resource and the potential

impacts of climate change (Mack 2009).

WESTERN CHANGE FROM 30 YEAR AVERAGE 1980-2009 (+ or =)

MASSACHUSETTS SHORT TERM MEDIUM TERM LONG TERM
30 VEAR 2010-2039 2040-2069 2070-2099
AVERAGE*
Low HIGH Low HIGH Low HIGH
INDICATORS 1980-2009 EMISSIONS EMISSIONS | EMISSIONS EMISSIONS | EMISSIONS EMISSIONS
MINIMUM TEMPERATURE (°F)
Annual TMIN 35.4 1.6 2.0 28 5.1 3.7 8.7
Winter TMIN 14.2 21 25 3.4 54 4.7 89
Spring TMIN 333 29 1.5 4.7 41 58 73
Summer TMIN 55.5 1.5 21 2z 5.6 3.4 9.8
Fall TMIN 38.2 0.1 1.9 0.3 5.3 0.8 8.7
MAXIMUM TEMPERATURE (°F)
Annual TMAX 57.7 1.6 1.7 3.0 4.7 39 81
Winter TMAX 340 1.7 1.6 25 36 36 6.1
Spring TMAX 56.0 26 16 51 4.8 6.8 8.7
Summer TMAX 79.7 1.6 19 31 5.4 39 89
Fall TMAX 60.5 0.8 1.8 1.2 5.3 A 8.5
TEMPERATURE EXTREME (DAYS PER YEAR)
<32°F 158 -9 -1 -15 -25 -19 -43
<0°F 13 -4 -4 -6 -9 -7 -12
>90°F 6 4 5 n 20 16 45
>95°F 1 1 1 2 5 5 18
TMAX on hottest day of the year 925 1.7 11 3.0 4.4 48 8.0
TMIN on coldest day of the year -14.1 3.6 4.3 6.0 9.9 79 16.8
GROWING SEASON (DAYS) 168 12 12 19 29 20 51
PRECIPITATION (IN.)
Annual Mean 46.2 4.9 4.0 57 6.2 75 9.3
Winter Mean 10.3 11 09 1.4 12 1.8 2.7
Spring Mean ns 1.3 14 18 1.9 23 32
Summer Mean 12.4 1.9 1.6 1.6 2.4 24 22
Fall Mean 1.6 0.5 01 08 0.6 1.0 1.2
EXTREME PRECIPITATION (EVENTS PER YEAR)
1" in 24 hours ns 20 1.7 20 28 30 4.2
2" in 48 hours 57 15 14 20 24 28 4.3
EXTREME PRECIPITATION (EVENTS PER DECADE)
4" in 48 hours 48 2.6 1.6 4.7 41 6.2 78
SNOW COVERED DAYS 87 -13 -13 -18 -33 -25 -44

Table 1: Western Massachusetts Climate. Minimum and maximum temperatures, temperature
extremes, length of growing season, precipitation, extreme precipitation events, and snow
covered days averaged from 1980 to 2009 for Western Massachusetts. Includes the short,
medium, and long term high and low emission predictions for these categories as well (Climate
Solutions New England).
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Figure 1: New Hampshire Water Levels. The mean quarterly static water levels in bedrock wells
in New Hampshire, 1984-2007. The graph measures feet below land surface, so the upward trend
indicates an increase in distance beneath the surface, demonstrating a lowering water level
(Ayotte et al 2010).

Five miles to the south of Shutesbury is a USGS monitoring well located in
Pelham, Massachusetts (Figure 2) that shows a similar downward trend in static water
levels (Figure 3). Since 1982, the water level has fallen by approximately 8ft. The
downward trend seen in New Hampshire in conjunction with the falling levels of a well
in an adjacent town prompted the town of Shutesbury, Massachusetts, to take stock of
the state of their primary water source. In Shutesbury, as in most of rural New England,
a municipal water supply doesn’t exist. Instead, water is produced from private wells
that tap into a vast and complex bedrock groundwater system. This is the reality for
about 40% of the New England population (NE Drinking Water 2017). These private
wells have no municipal management plan or system in place to monitor the water level
or quality besides the individual homeowner and the well driller. As such, little
information exists regarding the seasonal fluctuations, sensitivity to short or prolonged

drought, or ability of the aquifer system to support future development.
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Figure 3: Pelham Well Water Level. The depth to water level below land surface on the left y axis
and groundwater level above the logger on the right y axis, both in feet, from 1982 to 2018
(USGS 2018).
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2 | PROJECTED IMPACTS OF CLIMATE CHANGE IN

MASSACHUSETTS

2.1 | Historical Climate

Using the 30-year average from 1980 to 2009, the average daily low and high
temperature in Western Massachusetts is 35.4F and 57.7F, respectively. The average
winter low is 14.2F and the average summer high is 79.7F. The annual mean
precipitation is 46.2”, with approximately 16 extreme precipitation events (defined as
more than 1” of rain falling over a period of 24 hours) per year. During this time, there
were an average of 87 snow covered days (Table 1). Historical records indicate the
occurrence of a major drought in the 1960’s and a less severe one in the early 1980s.
Drought periods were recorded consistently in Massachusetts, starting in 2001, with a
major drought occurring in 2002 and during the course of this study in 2016 (DCR

2017).

2.2 | Climate Predictions for Massachusetts

2.2.1 | Future Temperatures

Average temperatures in Massachusetts are predicted to rise 1-5 degrees C by the
end of the century (Figure 4), with winter temperatures rising at a faster rate than
summer temperatures (NE EPA). This has increased the length of the shoulder seasons

(fall and spring), has shortened the time in which there is potential for snowfall and
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subsequent snowpack, and increased the duration of the summer season. These changes

in temperature are predicted to be greater in areas that have been historically colder

(Pourmokhtarian et al 2017), so higher elevations in Massachusetts and the more

northern regions of the state are projected to feel the most change. Climate Solutions

New England shows Massachusetts as having summers that are similar to the current

climate of South Carolina by 2100 (higher emission scenario) (Figure 5).

Temperature Change (°F)

Observed and Projected Temperature Change

—— Observations
Modeled Historical

10 -| | mmmm Higher Emissions

mmm Lower Emissions

| I—

-4 T T T T T T T
1900 1925 1950 1975 2000 2025 2050 2075 2100
Year

gher
Emissions

Lower
Emissions

Figure 4: Observed
and Projected
Temperature Change.
The increase in
Massachusetts air
temperature over the
last century and two-
model based
projections for future
temperature for low
and high emission
scenarios (Runkle et al
2017).



Changing Summers
in Massachusetts

. Higher-Emissions Scenario

Lower-Emissions Scenario

Figure from Northeast Climate
Impact Assessment CECIA
(2006); www.ucsusa.org.

2.2.2 | Future Precipitation

Precipitation in Massachusetts has been increasing over the last century (Figure
6), but as with temperature, the increase has not been uniform throughout the year.

While annual precipitation has increased by about 10% in the last century, it has

Figure 5: Changing Summers in
Massachusetts. In the high emission
scenario (red), Massachusetts summer
climate is predicted to shift to feel like
that of South Carolina by 2100. The
low emissions scenario is shown in
yellow.
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increased at a higher rate in winter months. Winter precipitation is predicted to increase

by another 11-14%, whereas summer rain is expected to decrease slightly (Mack 2009).

One report goes so far as to suggest that winter precipitation will increase by as much

as 30% by 2100 (Mass.gov). Because of the increasing temperature, most of this increase

in winter precipitation will occur in the form of rainfall (Hayhoe et al 2006).
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The increased heavy rainfall will increase local runoff in the winter, leading to
worsening flooding (Hayhoe et al 2006; Pourmokhtarian et al 2017). The peak
streamflow in the spring is expected to come earlier, which has implications for a
lengthened the low flow period in the summer and reduced groundwater recharge
potential. Precipitation from intense storms, in which a large amount of rain falls in a
relatively short amount of time, has likewise increased since the 1960s (Figure 7), and
another 13% increase is predicted by 2100 (Mack 2009). Intense rainfall events have a
significant implication for the environment, because intense rain can produce runoff
when the soil is completely saturated and cannot absorb more water, or when the
rainfall rate exceeds the infiltration rate of water into the soil. This increase in runoff can
lead to an increase in local flooding, and can limit the groundwater recharge potential

of these precipitation events (Hayhoe et al 2006; Mack 2009).
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2.2.3 | Future Snow

Massachusetts is projected to lose between 25-50% of its snow covered days by
the end of the century (Mass.gov) due to the increase in winter temperature and the
resulting shift to rainfall from what has historically been snowfall. The time in which
snow will exist is predicted to be reduced, due to delayed snowfall and earlier melting
(Hayhoe et al 2006).

Snowpack will melt earlier, eliminating the reserves that would otherwise melt
into the early summer. This will potentially have a major impact on spring base flow in
streams (Whately et al 2012), increasing frequency and duration of low flow periods
and lowering the availability for groundwater recharge from infiltration from surface
water (Dudley et al 2010).

The volume of water available for infiltration earlier in the melting season is
expected to increase. However, frozen ground could increase runoff into surface water
systems (Hayhoe et al 2006). Soil freezing is an important factor in the hydrology of

Western Massachusetts, as soil that is concretely frozen has been shown to cause up to

16
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100% of precipitation and snowmelt to runoff and not infiltrate (Storey 1955).
Additionally, snow cover is a major player in whether or not the ground freezes, as well
as the depth of the frost (Storey 1955, Dudley et al 2010). The predicted lowering of
snow pack volume increases the likelihood of a frozen, impermeable ground, but the
higher air temperatures increase the likelihood that it will be too warm for the ground
to freeze (Dudley et al 2010, Whately et al 2012). As such, with warmer air temperatures
and reduced frozen ground, it is most likely that the net affect will be an increase in

winter recharge.
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3 | SETTING AND GEOLOGY

Shutesbury is located on a topographic ridge just east of the Connecticut River
and west of the Quabbin Reservoir, and precipitation that falls on either side of the
ridgeline flows to those bodies of water. The aquifer relies on recharge from direct
precipitation, and because even the deepest wells in town are above these levels, the

Connecticut River and the Quabbin Reservoir are not considered sources of water for

the town (Figure 8).

= Topographic Profie from Cainn, River to Quabbin Res. 400’ well
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Figure 8: Topographic Profile. An east-west topographic profile from the Connecticut River to

the Quabbin Reservoir showing that the Shutesbury ridge is a groundwater recharge area.



3.1 | Geology

3.1.1 | Bedrock Geology

Shutesbury is located in the south-central part of the Pelham Dome (Zen 1983,
Figure 9). Most of the region is mapped as undifferentiated Poplar Mountain and Dry
Hill Gneiss with a band of biotite-tourmaline schist and quartzite that is classified as
pelitic (Zen 1983, Figure 10, Figure 11). The bedrock is Proterozoic in age and records
the convergent tectonics associated with the formation of Pangea. The region has been
mapped as Pelham Gneiss, which is metamorphosed granite, and is referred to as

granite by the well drillers in the well driller reports.

19



Figure 9: Pelham Dome. A portion of a map of the bedrock geology of Western Massachusetts
(Zen et al 1983) that places Shutesbury in the south-central portion of the Pelham Dome.
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Dry Hill Gneiss (Proterozoic Z)

Pink microcline-biotite and microcline-hornblende gneiss containing pink microcline
megacrysts and minor quartzite

Biotite-tourmaline schist and quartzite

Pelham Quartzite Member. White to buff quartzite and feldspathic quartzite commonly
with biotite and/or actinolite

_ Undifferentiatec Poplar Mountain and Dry Hill Gneisses (Proterozoic Z)

Figure 10: Bedrock Geology of the Pelham Dome. The snapshot from Figure 8 identifies the
bedrock in the regions where the wells are located as pink microline-biotite and microline-
hornblende gneiss containing pink microline megacrysts and minor quartzite, undifferentiated
Poplar Mountain and Dry Hill Gneisses, and a small band of Biotite-tourmaline schist and
quartzite, all of which are Proterozoic Z (Zen et al 1983).
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Figure 11: Bedrock Geology. Map of the bedrock geology in the town of Shutesbury. The wells in
the groundwater study are located in Granite and Pelitic Rocks, and are marked by a yellow
circle (Mass GIS).
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3.1.2 | Fractures

Gneiss is a crystalline rock and has a relatively low hydraulic conductivity
(Ozbek et al, 2018). The principal paths for groundwater flow are therefore various
types of fractures such as fracture zones, faults, shear zones, and joints (Hansen and
Simcox 1994). Fractures in the area consist of regional N—S trending fractures and
subhorizontal fractures at shallow depths associated with “unroofing” the bedrock (Al
Werner, pers comm, 2019). The width of these fractures can range from barely visible to
several inches, but the fracturing of the coarser gneiss tends to be wider and more
continuous (Hansen and Simcox 1994). The isotropic structure of the Dry Hill Gneiss
allows it to fracture anywhere and in any direction. The anisotropic structure of the
schist, on the other hand, occurs along the foliation of the rock, limiting the pathways

for water to travel.

3.1.3 | Surficial Geology

The surficial geology in this region is mostly thin glacial till, and has abundant
outcropping and shallow bedrock (Mass GIS, Figure 12). Glacial till is a mixture of clay,
silt, sand, gravel, and some larger rocks that were deposited directly by glacial ice. In
much of Massachusetts, it’s relatively thin (50ft thick or less) (Mass GIS, Figure 12). The
stratified drift deposits are made up of the same ingredients, but are better sorted, have
a higher hydraulic conductivity, and were also deposited during deglaciation by
meltwater processes. From the well drillers reports (Appendix A), the till in the region
of the study can be generalized as poorly sorted silty gravel. The till was deposited

around 16,000 years ago, during deglaciation of New England (Ridge et al 2012).
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Figure 12: Surficial Geology. Map of the surficial geology in the town of Shutesbury. The wells
in the groundwater study are marked by a blue circle (Mass GIS).

3.1.4 | Hydrology

In New England, groundwater is usually found fairly close to the surface of the
land, up to about 50ft deep. It occurs in three major geologic units: glacial till, stratified-

drift deposits, and bedrock (Mack 2009). Beneath the surficial deposits is the bedrock,
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consisting of crystalline igneous rocks and metamorphic rocks, like granitic gneiss
(Mack 2009). Crystalline bedrock is not very permeable, so it is not considered to be a
prolific source of groundwater. However, groundwater can be stored in glacial till, or in
subhorizontal fractures in the bedrock (Simcox 1994).

Recharge of these aquifers comes in the form of rainfall and snowmelt. The
groundwater that is stored in the glacial till and stratified-drift layers make up a large
portion of the water that is available to the bedrock aquifer. The amount that enters the
bedrock at any given place depends on the location of that point within the flow of the
entire aquifer and the connectivity of the fractures within the bedrock (Mack 2009,
Hansen and Simcox 1994). After spring rain and snowmelt, groundwater slowly
discharges into streams throughout the summer, and accounts for a large percentage of
the surface water flow during lower flow periods in the summers (Dudley et al, Hansen
and Simcox 1994). The system is recharged by precipitation at the land surface and then

discharges into streams, flowing from topographic high areas to low areas.
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4 | MONITORING WELL LOCATIONS

The town of Shutesbury installed 8 wells drilled at 4 sites located along the
ridgeline along a roughly N-S transect (Figure 13). Each of the sites has one monitoring
well that was drilled to bedrock (between 4 and 26 feet), and one deep well that is 100ft

deep (except at site 3 where the deep well reaches 300ft).
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Figure 13: Well Locations. A map of the town of Shutesbury with the four wells marked by red
stars. The ridgeline is indicated by a meandering yellow line.
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4.1 | Site1

Site 1 is located off of Pelham Hill Road in a level forested area (Figure 13).
Drilling for the bedrock well was completed on 8/23/2014, and the monitoring well
was completed on 8/22/2014. Water levels took two weeks to recover after the drilling
(Al Werner, pers comm, 2019). The total depth of the bedrock well is 100ft, and the
casing length is 40ft. The monitoring well was drilled 25ft deep to the top of the
bedrock. The well lithology from 0-25ft is a gravel/silty clay mix, and from 25-100ft is a
quartz/ granite. No significant fractures were detected during the drilling process

(Appendix A).

4.2 | Site 2

Site 2 is located near an old military navigation site that was once considered as a
site for a library, and is home to a small cranberry bog (Figure 13). The area is level,
partially forested, and frequently has a shallow amount of standing water on the
surface. Drilling for both wells was completed on 8/21/2014. The total depth of the
bedrock well is 100ft, and the casing length is 40ft. The monitoring well was drilled
until hitting bedrock at a depth of 26ft. The well lithology is silty sands from 0-4ft,
gravel from 4-26ft, weathered rock from 26-34ft, and granite from 34-100ft. Fractures

were detected at depths of 44ft and 58ft during the drilling process (Appendix A).

4.3 | Site 3

Site 3 is located behind the Shutesbury Town Hall (Figure 13) in a grassy field,
and both UMass Amherst and the USGS have monitored this well. Drilling for the

bedrock well was completed on 8/27/2014, and the monitoring well was completed on
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8/24/2014. The total depth of the bedrock well is 300ft, and the casing length is 30ft.
The monitoring well was drilled until hitting bedrock at a depth of 13ft. The well
lithology from 0-13ft is described as dry gravel, and granite from 13-300 ft. Significant
fractures were detected at depths of 234, 260, 267, 269, 282, and 288ft during the drilling

process (Appendix A).

4.4 | Site 4

Site 4 is located up a slight hill in a forested area behind the Shutesbury Athletic
Club (Figure 13). Drilling for the bedrock well was completed on 8/25/2014, and the
monitoring well was completed on 8/26/2014. The total depth of the bedrock well is
100ft, and the casing length is 20ft. The monitoring well was drilled until hitting
bedrock at a depth of 4ft. The lithology from 0-4ft is described as dry gravel, and granite
from 4-100ft. Fractures were detected at depths of 41, 61, and 94ft during the drilling

process (Appendix A).
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5 | METHODS

Water levels were measured in two ways during the study: seasonal manual
measurements and high frequency measurements using automated data loggers.
Manual measurements were collected to validate the logger data, whereas level loggers

using a 15 min interval were used to record small and rapid changes in water level.

5.1 | Manual Water Level Measurements

A weighted measuring tape was used to measure from the top of the well casing
to the top of the water and measurements were made to the nearest 1/10 of a foot.
These data were recorded in a spread sheet for comparison to the water levels recorded
by the water level loggers. This is supplementary data and is not discussed as part of

this study.

5.2 | Level Logger Measurements

In order to collect water level data from the eight wells, HOBO Onset water level
loggers (model U20L-01) with a range of 0 to 30ft were suspended by a thin stainless-
steel cable from the top of the well casing to below the seasonal low water levels. These
loggers function by recording the total pressure above the sensor, which includes both
the weight of the water and the atmospheric pressure, and have a water level accuracy

of 0.1%. The loggers were programmed to take recordings every 15 minutes, and their
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memory capacity required downloading every four months using Hoboware Pro. This
program has an embedded barometric correction wizard that efficiently uses a separate
barometric data file to correct for atmospheric pressure, affording absolute water level
determinations. A dedicated baro-logger was used to monitor and record these

atmospheric pressure changes from a station near the Town Hall in Shutesbury.

o S e Water L Owpar Table 2: Elevation Corrections
Well Elevation (ft) (Height (ft) |(Length (ft] |Elevation (ft ) . )
. = evation () |Helght (ft) Length (ft) |Flevation (f) The water logger elevation was
Site 1 MW 1208 174 4.3 120551 determined by taking the well
Site 1 DW 1208 125 29.1 1180.15|  site elevation plus the well
. casing height, and subtracting
Site 2 MW 1183 2.36 19.78 1165.56
the length of the cable that the
Site 2 DW 1183 2.02 19.95 1167.07)  Jogger hangs from. The water
Site 3 MW 1188 2.23 14.57 1175.66 table elevation was calculated
Site 3 DW 1188 167 69.8 1119.87| by adding the water level logger
AT PR = o AR elevation and adding it to the
ite = : : recorded water level above the
Site 4 DW 1190 3.07 29.1 1171.67|  logger. The equations in the
Water Logger Elevation = well elevation + casing height - cable length bottom of the table show this.
Water Table Elevation = water logger elevation + water level above logger

The format of the raw data was feet of water over the water level logger. Because
this is impossible to contextualize with the other wells, the data were normalized by
translating the relative water-level data to water elevation values. After discussion with
professor Eugenio Marcano, a DEM (digital elevation model) was used to determine the
elevation at each site. The casing height was added to the well elevation, and then the
cable length was subtracted from that value to determine the elevation of the level
logger (Table 2). This constant value was then added to the raw data in Microsoft Excel.

In order to put the normalized data back into Hoboware Pro, it was saved as a text file.
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Other data corrections were necessary in a handful of occasions in which data
were missing, or barometric data were not available to correct the pressure reading.
These intervals show up as data gaps in the time series. There were also intervals where
there is an abrupt increase in water level between two points that has no weather or
pressure related explanation. It appears that the logger had become stuck on a ledge in
the well and eventually became dislodged and then fell to its full potential depth at the
end of the cable, accounting for the abrupt change. In these instances, the difference
between the two data points in question was calculated, and the difference was added

to the lodged portion of the data to account for the change in elevation.

5.3 | Pumptest

On November 12, 2018, a pumptest was performed at sites 1, 2, and 4. A
submersible pump was used for 30 minutes, or until the drawdown reached the limits
of the sensor. The level loggers were set to record pressure changes at a 1 second
interval, and then 1 minute intervals for the duration of the test. The wells were left to
recover for 7 days, at which point they were collected and downloaded. For site 3, a
drawdown event in September of 2017 was used. Using the slug test software in
Agqtesolv, the recovery data was uploaded and processed. Curve matching was used to
determine K-values for each well. The K-value is the hydraulic conductivity, or the flow
rate of the aquifer. The program assumes that the entire well is porous, not that the
water is coming from a few productive fractures, so the K-value is, in a sense, averaged

over the entirety of the well-bore.
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5.4 | Weather Data

With the help of a local resident, air temperature and precipitation recorded at 5
minute intervals for the span of the study were collected from a weather station located
on West Pelham Rd. Daily snowfall data from the Quabbin Reservoir located just to the
east of Shutesbury was kindly provided by the Department of Environmental
Protection. Both sets of data were imported into Microsoft Excel files and then saved as

text files and uploaded to Hoboware Pro.
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6 | RESULTS

Data collection for this study began in early fall of 2014. Missing data is the result
of either the well logger running out of battery or storage, or because of missing
barometric data that prevented barometric correction. The monitoring well data at site 4
was used for barometric correction on occasions when there were no significant rainfall

events.

6.1 | Climate Results

6.1.1 | Temperature

The maximum temperature for the duration of the study was 94.89F, and the
minimum temperature was -17.60F. The average was 48.19F. Annual high temperatures
for the duration of the study ranged between 89F and 95F, whereas the annual lows
ranged from -17F to -6F. Between November of 2014 and April of 2015, there were 132
days where the temperature was below freezing. From November of 2015 to April of
2016, there were 137 days where the temperature was below freezing. From November
of 2016 to April of 2017, there were 158 days where the temperature was below freezing.
From November of 2017 to April of 2018, there were 160 days that were below freezing

(Figure 14).
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Figure 14: Temperature. Outdoor temperature in Fahrenheit from Sept. 2014 — Nov. 2018.

6.1.2 | Precipitation

The highest intensity of rainfall was a rate of 11in/hr in late August of 2016
(Figure 15). In general, the higher intensity (5in/hr) rainfall events occurred between
May and October. The larger rainfall events happen in the summer and fall months
when water levels in the wells are lowering (Figure 16). There is a lower volume of rain
in the winter and fall. The amount of snow that fell in a 24-hour period was recorded at
the Quabbin Reservoir between November and April. The snowfall coincides with the

timing of below freezing temperatures, and peaks where the rainfall decreases (Figure

17).
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Figure 15: Rainfall Rate. Measured in inches per hour from Sept. 2014 — Nov. 2018.
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Figure 16: Rainfall. Amount of rain in a 5-minute interval from Sept. 2014 — Nowv. 2018.
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Figure 17: Snowfall and Rainfall. A composite graph of the snowfall (light blue) and rainfall
(dark blue) data measured in inches from September 2014 through November 2018.
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6.1.3 | Isolated Rainfall Event

An isolated rainfall event was selected to analyze the response of the monitoring
and bedrock wells to direct precipitation. The rainfall events between October 24+, 2017
and November 1, 2017 are preceded by approximately 9 days of dry conditions (Figure
18). The first rainfall event in this sequence has the highest volume, with the other
events appearing to be much less significant. This event is used to evaluate ground

water level response to a discrete rain event (see Interpretations — below).

Specific Rainfall Event
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Figure 18: Specific Rainfall Event. A subset of the rainfall data from October 15 through
November 1 of 2017.

6.2 | Water Level Results

6.2.1 | Comparison of Monitoring Wells

A composite graph of all four monitoring wells shows the respective elevations
of their water levels in relation to each other (Figure 19). Site 1 is approximately 30 ft
higher than the others, with site 4, 3, and 2 following respectively. Sites 4, 3, and 2

inhabit a range in elevation of approximately 1170ft to 1190ft. Sites 1, 2, and 3 have
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similar temporal patterns, maintaining a relatively consistent spacing between them,
and site 4 displays changes in water level when the other three wells are at their highest
levels. Site 4 is the shallowest, at only 4ft deep, and is frequently dry. This well only
contained water during the highest peaks in water level throughout the duration of the
study. The other sites have similar magnitude of seasonal fluctuations, with the greatest
drop in water level occurring in 2016.

The higher water levels occur between January and June. Low levels occur
September through December. In 2015, each of the wells experience a peak in
December/January, fall to a lower level in March, and rise again in late April. These
fluctuations happen on smaller scales in the following years. Recovery from the
summer low levels begins around November. Water levels in 2018 don’t have a distinct,
singular low period, but rather consistently fluctuated in a much more limited range of

variability than previous years (Figure 19).
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Figure 19: Monitoring Well Composite Graph. Site 1 is in black, site 2 is blue, site 3 is green,
and site 4 is red.
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6.2.2 | Comparison of Bedrock Wells

A composite graph of all four bedrock wells shows the respective elevations of
their water levels in relation to each other (Figure 20). Site 3 is approximately 45ft lower
than the other three wells. Site 4 is consistently at the highest elevation, while sites 1
and 2 are about the same. All four sites have similar temporal patterns, maintaining a
relatively consistent spacing between them. Site 1 has the most stable water levels of the
four. All four wells have a similar magnitude of seasonal fluctuations, with the greatest
drop in water level occurring in 2016. Trends in high and low water levels throughout

the seasons mirror those in the monitoring wells (Figure 20).
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Figure 20: Bedrock Well Composite Graph. Site 1 is in black, site 2 is blue, site 3 is green, and
site 4 is red.
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6.2.3 | Site 1

A composite graph of the monitoring and bedrock wells at site 1 shows the 35ft
difference in water table elevation between the two wells. There is a similar magnitude
in water level fluctuation and temporal variations. The monitoring well is much more
responsive to short term fluctuations, whereas the bedrock well is more stable (Figure
21).
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Figure 21: Site 1 Monitoring and Bedrock Wells. A composite graph of the water elevation from
September of 2014 through November of 2018 from both the monitoring and bedrock wells at site
1. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.3.1 | Site 1 Bedrock Well

The annual maximum water levels of the bedrock well occurred during the late
fall and early spring months, and the lows occurred in the late summer and early fall
months (Table 3). The maximum water levels during the 5 years of study varied by
0.36ft, while the minimum water levels had a larger range of variability at 5.38ft. The
highest difference between high and low water levels occurred in 2016, whereas 2018

had the smallest difference. The bedrock well at site 1 has the most stable water level in



the study. Rainfall coincides with the downward slope of the seasonal fluctuations

(Figure 22).

Table 3: Site 1 Bedrock Well

Table 3: depicts the maximum
and minimum water level
values for each year as well as
for the entire study for the
bedrock well at site 1. The
right column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels in feet for the
duration of the study.

year maximum | minimum annual
water level | water level range
2015 1,176.41 1,173.07 3.34
2016 1,176.60 1,170.58 6.02
2017 1,176.54 1,172.74 3.80
2018 1,176.77 1,175.96 0.81
full study 1,176.77 1,170.58 6.19
range 0.36 5.38
Site 1 Bedrock Well and Rainfall
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Figure 22: Site 1 Bedrock Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the bedrock well at site 1 along with the rainfall data shown

previously. The well is in black and the rainfall is in blue.

6.2.3.2 | Site 1 Monitoring Well

ul‘uiel

The monitoring well is missing data from March through June of 2016 (Figure

23). The annual maximum water levels occurred during the late fall and early spring

40

months, and the lows occurred in the late summer and early fall months (Table 4). The

maximum water levels varied by 0.48ft, while the minimum water levels had a larger
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range of variability (3.19ft). 2016 had the highest difference between high and low water

levels, while 2018 had the lowest difference. Rainfall coincides with the downward

slope of the seasonal fluctuations (Figure 23). The lowest water level for this monitoring

well is unknown because the water level was below the data logger for a three-month

period from August through mid-November, as indicated by the relatively flat line.

This occurred during a period of drought in the region.

Table 4: Site 1 Monitoring Well

Table 4: depicts the
maximum and minimum
water level values for each
year as well as for the entire
study for the monitoring
well at site 1. The right
column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels in feet for the
duration of the study.

7152
1
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U 'uel
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ro4

ro.2

-

year maximum minimum annual
water level | water level range
2015 1,212.65 1,206.78 5.87
2016 1,212.47 1,205.51 6.96
2017 1,212.66 1,205.97 6.69
2018 1,212.18 1,208.70 3.48
full study 1,212.66 1,205.51 7.15
range 0.48 3.19
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Figure 23: Site 1 Monitoring Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the monitoring well at site 1 along with the rainfall data shown
previously. There is a period of missing data from March through June of 2016 that is labeled on
the graph, and a 30-day period of missing data in February of 2018. The well is in red and the

rainfall is in blue.
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6.2.4 | Site 2

A composite graph of the monitoring and bedrock wells at site 2 shows that the
water levels for these two wells are very similar. While the monitoring well is usually at
a lower water level than the deep well, they frequently overlap (Figure 24). There is a
similar magnitude in water level fluctuation and similar temporal variations. Both wells
are missing data from mid-December of 2014 through January of 2015 and again in

February of 2018.
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Figure 24: Site 2 Monitoring and Bedrock Wells. A composite graph of the water elevation from
September of 2014 through November of 2018 from both the monitoring and bedrock wells at site
2. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.
6.2.4.1 | Site 2 Bedrock Well

The annual maximum water levels in the bedrock well at site 2 occurred during
the late fall and early spring months, and the lows occurred in the late summer and
early fall months (Table 5). The maximum water levels varied by 0.92ft, while the

minimum water levels had a larger range of variability at 5.73ft. The highest difference

between high and low water levels occurred in 2016, while 2018 had the lowest



difference. Rainfall coincides with the downward slope of the seasonal fluctuations

(Figure 25).

Table 5: Site 2 Bedrock Well

11781

1176

1174

elevation, ft

1172

1170

1168~

missing data

0115

time maximum minimum annual
water level | water level range

2015 1,177.37 1,172.37 5.00
2016 1,177.73 1,169.61 8.12
2017 1,178.07 1,172.71 5.36
2018 1,178.29 1,175.34 2.95

full study 1,178.29 1,169.21 9.08

range 0.92 5.73

Table 5: depicts the maximum
and minimum water level
values for each year as well as
for the entire study for the
bedrock well at site 2. The
right column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels in feet for the
duration of the study.
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Figure 25: Site 2 Bedrock Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the bedrock well at site 2 along with the rainfall data shown
previously. There is a period of missing data in early 2015 that is labeled on the graph, and a
period of missing data in February of 2018. The well is in black and the rainfall is in blue.

6.2.4.2 | Site 2 Monitoring Well

The annual maximum water levels at the monitoring well occurred during the

late fall and early spring months, and the lows occurred in the late summer and early

43
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fall months (Table 6). The maximum water levels varied by 0.66ft, while the minimum
water levels had a larger range of variability at 6.02ft. The highest difference between
high and low water levels was in 2016, while 2018 had the lowest difference. Rainfall

coincides with the downward slope of the seasonal fluctuations (Figure 26).

Table 6: Site 2 Monitoring Well Table 6: depicts the maximum
i maximum | minimum annual and minimum water level
tme water level | water level range ;alulezs for each y;ar ;15 Z‘;Zell as
or the entire study for the
2015 1,178.42 1,171.93 6.49 monitoring well at site 2. The
2016 1,178.28 1,168.27 10.01 right column lists the range of
2017 1,177.76 1,171.12 6.64 water levels for that time
period, and the bottom row
2018 1,178.42 1,174.29 4.13 shows the variability in
full study 1,178.42 1,168.27 10.15 maximum and minimum
range 0.66 6.02 water levels in feet for the
duration of the study.
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Figure 26: Site 2 Monitoring Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the monitoring well at site 2 along with the rainfall data shown
previously. There is a period of missing data in early 2015 that is labeled on the graph, and a
period of missing data in February of 2018. The well is in red and the rainfall is in blue.

6.2.5 | Site 3

A composite graph of the monitoring and bedrock wells at site 3 shows 50ft

difference in water levels between the two wells (Figure 27). There is a similar
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magnitude in water level fluctuation and similar temporal variations. Both wells are
missing data in February of 2018.
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Figure 27: Site 3 Monitoring and Bedrock Wells. A composite graph of the water elevation from
September of 2014 through November of 2018 from both the monitoring and bedrock wells at site
3. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.5.1 | Site 3 Bedrock Well

The annual maximum water levels in the bedrock well occurred during the late
fall and early spring months, and the lows occurred in the late summer and early fall
months (Table 7). The maximum water levels varied by 1.7ft, while the minimum water
levels had a larger range of variability at 3.19ft. 2016 had the highest difference between
high and low water levels, while 2018 had the lowest difference. The bedrock well at
site 3 shows consistent daily fluctuations that may be attributed to tidal influences,
which could easily be the subject of its own study. Rainfall coincides with the

downward slope of the seasonal fluctuations (Figure 28).



Table 7: Site 3 Bedrock Well

maximum | minimum | annual
time water level | water level | range
2015 1,134.43 1,128.05 6.38
2016 1,135.04 1,127.30 7.74
2017 1,135.90 1,129.55 6.35
2018 1,136.13 1,130.49 5.64
full study 1,136.07 1,127.30 8.77
range 1.70 3.19
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Table 7: depicts the maximum
and minimum water level
values for each year as well as

for the entire study for the

bedrock well at site 3. The
right column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels for the duration of
the study.
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Figure 28: Site 3 Bedrock Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the bedrock well at site 3 along with the rainfall data shown
previously. There is a period of missing data in February of 2018 that isn’t labeled as it is quite
brief. The well is in black and the rainfall is in blue.

6.2.5.2 | Site 3 Monitoring Well

The annual maximum water levels at the monitoring well occurred during the

late fall and early spring months, and the lows occurred in the late summer and early

fall months (Table 8). The maximum water levels varied by 0.86ft, while the minimum

water levels had a larger range of variability at 4.23ft. 2016 had the highest difference

between high and low water levels, while 2018 had the lowest difference. Water levels
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dropped below the level logger in the late summer of 2016, as depicted by the flat line at

the lowest point on the graph (Figure 29).

Table 8: Site 3 Monitoring Well

tme | \aterlevel | water level | 23l range
2015 1,186.04 1,177.86 8.18
2016 1,185.59 1,175.67 9.92
2017 1,186.45 1,177.02 9.43
2018 1,186.15 1,179.90 6.25
full study 1,186.45 1,175.67 10.78
range 0.86 4.23
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Table 8: depicts the
maximum and minimum
water level values for each
year as well as for the entire
study for the monitoring
well at site 3. The right
column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels for the duration

of the study.
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Figure 29: Site 3 Monitoring Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the monitoring well at site 3 along with the rainfall data shown
previously. There is a period of missing data in February of 2018. The well is in red and the

rainfall is in blue.
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Site 4
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A composite graph of the monitoring and bedrock wells at site 3 shows 50ft

difference in water levels between the two wells (Figure 30). There is a similar

magnitude in water level fluctuation and similar temporal variations. Both wells are

missing data in early 2015 and again in February of 2018. The monitoring well is

missing data from late-September and early-October of 2017. There are large

fluctuations in the relationship between the water levels in the monitoring and deep

wells at this site. The monitoring well is dry for the majority of the duration of the

study.
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Figure 30: Site 4 Monitoring and Bedrock Wells. A composite graph of the water elevation from
September of 2014 through November of 2018 from both the monitoring and bedrock wells at site

4. The monitoring well (mw) is in red, and the bedrock well (dw) is in black.

6.2.6.1 | Site 4 Bedrock Well

The annual maximum water levels in the bedrock well occurred during the late

fall and early spring months, and the lows occurred in the late summer and early fall

months (Table 9). The maximum water levels varied by 0.27ft, while the minimum

water levels had a larger range of variability at 3.73ft. 2016 had the highest difference
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between high and low water levels, while 2018 had the lowest difference. In mid-

January, there is a drop in water level in the bedrock well that is the result of a UMass

class using the well for a pumptest. Rainfall coincides with the downward slope of the

seasonal fluctuations (Figure 31).

Table 9: Site 4 Bedrock Well

time maximum minimum annual
water level | water level range

2015 1,183.84 1,178.30 5.54
2016 1,183.64 1,175.57 8.07
2017 1,183.57 1,177.65 5.92
2018 1,183.58 1,179.30 4.28

full study 1,183.84 1,175.57 8.27

range 0.27 3.73
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Table 9: depicts the maximum
and minimum water level
values for each year as well as
for the entire study for the
bedrock well at site 4. The
right column lists the range of
water levels for that time
period, and the bottom row
shows the variability in
maximum and minimum
water levels for the duration
of the study.
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Figure 31: Site 4 Bedrock Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the bedrock well at site 4 along with the rainfall data shown
previously. There is a period of missing data in early 2015 that is labeled. The well is in black
and the rainfall is in blue.
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6.2.6.2 | Site 4 Monitoring Well

The monitoring well at site 4 is frequently dry (Figure 32). The annual maximum
water levels occurred during the late fall and early spring months, and the dry periods
occurred in the late summer and early fall months (Table 8). The maximum water levels
varied by 0.41ft, while the minimum water levels had a smaller range of variability at
0.11ft. The well had water in it during the late fall and early spring months. This well
has the most occurrences with missing or oddly corrected data, with data missing in

early 2015 and in February of 2018.

Table 10: Site 4 Monitoring Well Tab I‘_? 10: depicts .th_e
- — maximum and minimum
time maximum | minimum annual water level values for each
water level | water level range year as well as for the entire

2015 1188.78 1,186.66 2.12 study for the monitoring well
2016 1,188.76 1,186.73 2.03 at site 4. The right column
2017 1,189.02 1,186.75 2.27 lists the range of water levels
2018 1,189.17 1,186.77 2.40 for that time period, and the

Full study | 1,189.17 | 1,186.66 2.51 bottom row shows the

variability in maximum and

range 0.41 0.11 minimum water levels for the

duration of the study.
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Figure 32: Site 4 Monitoring Well and Rainfall. Water level elevation from September of 2014
through November of 2018 of the monitoring well at site 4 along with the rainfall data shown
previously. There is a period of missing data in early 2015 that is labeled, as is missing data in
February of 2018. The well is in red and the rainfall is in blue.
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6.3 | Pumptest and Blowtest Results

6.3.1 | Site 1
The pumptest and subsequent Aqtesolv analysis resulted in a K value of
0.00006132m/day. This very low flow rate coincides with the well drillers blow test that

resulted in Ogpm of water (Appendix A).

6.3.2 | Site 2
The pumptest and subsequent Aqtesolv analysis resulted in a K value of
0.02008m /day, and is the highest rate of the four wells. This flow rate coincides with the

well drillers blow test that resulted in 4gpm of water (Appendix A).

6.3.3 | Site 3
The pumptest and subsequent Aqtesolv analysis resulted in a K value of
0.00006032m / day. This very low flow contradicts the well drillers blow test that

resulted in 2.25gpm of water (Appendix A).

6.3.4 | Site 4
The pumptest and subsequent Aqtesolv analysis resulted in a K value of
0.0004667m / day. This low flow rate coincides with the well drillers blow test that

resulted in 0.25gpm of water (Appendix A).
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7 | INTERPRETATION AND DISCUSSION

7.1 | Site1

The bedrock well at site 1 is likely located in the pelitic schist (Figure 9, 10, 11),
which is thought to have a lower permeability than the granitic gneiss that the other
wells are located in. The low K value, blow test yield of Ogpm, and lack of significant
fractures found during the drilling process support this theory. The well could also
simply be isolated from any prolific fracture zones. The deep well at site 1 has the most
stable water level response, suggesting that the bedrock aquifer at that location isn't
very responsive to precipitation events. The monitoring well is similar to the other
monitoring wells in the study, with many smaller fluctuations throughout the larger
trends of the water level changes. The monitoring well at this site had the highest water
level elevation in relation to the other wells (Figure 19), whereas the bedrock well water
level was a similar elevation to the majority of the other bedrock wells (Figure 20). Both
had comparable ranges in fluctuations to the other wells, and their highs and lows
occurred at similar times. In comparison to each other, their overall response to seasonal
water level fluctuations were generally similar in magnitude (Figure 21).

After the rainfall events that occurred between 10/24/2017 and 11/1/2017, the
water level in the monitoring well began to rise in the midst of the initial rainfall event,

and rose 3ft by the end of the period (Figure 33). The bedrock well rose by <0.5ft during
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the same period (Figure 34), indicating that the monitoring well is much more
responsive. The bedrock well has a barely perceptible change in water level of <0.5ft to
four cumulative rainfall events, whereas the monitoring well experiences a 3ft increase
in water level. While the change is gradual over a period of a week, there is no lag in
initial response in the monitoring well. The change in water level in the bedrock well is
so small that it is difficult to visualize when it begins. This further suggests a lack of
responsiveness of the bedrock aquifer at this location, as well as a lack of direct

communication between the surficial and bedrock aquifers.

Site 1 Monitoring Well and Discrete Rainfall Event
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Figure 33: Site 1 Monitoring Well and Discrete Rainfall Event between 10/24/17 and 11/01/17.
Water level is measured in ft on the left x-axis at a 6ft scale. Rainfall is measured in inches on
the right x-axis.
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Site 1 Bedrock Well and Discrete Rainfall Event
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Figure 34: Site 1 Bedrock Well and Discrete Rainfall Event between 10/24/17 and 11/01/17.
Water level is measured in ft on the left x-axis at a 6ft scale. Rainfall is measured in inches on
the right x-axis.

7.2 | Site 2

The wells in site 2 are located in the Dry Hill Gneiss (Figure 9, 10, 11). This
location is unique because it is located in a cranberry bog that frequently has shallow
standing water, suggesting that the ground is frequently saturated. The composite
graph of the two wells is unique in comparison with the other three sites because they
frequently overlap, and the monitoring well is not at a consistently higher elevation like
it is at the other sites. This suggests that the bedrock aquifer may in fact be recharging
the glacial aquifer on some occasions.

The monitoring well had the lowest elevation of all the monitoring wells, but it
still followed the trends of the other monitoring wells and had many smaller
fluctuations throughout the larger trends of the water level changes (Figure 19). The
bedrock well had a similar water level elevation to the majority of the other bedrock

wells, and had the same seasonal trends as well (Figure 20). Both had comparable
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ranges in water level fluctuations to the other wells, and their highs and lows occurred
at similar times. In comparison to each other, their overall response to water level
fluctuations were generally similar in magnitude (Figure 24).

Both the monitoring and bedrock wells responded similarly to the precipitation
events between 10/24 /2017 and 11/01/2017 (Figure 35). The water level of the bedrock
well rose sharply by 1.5ft within 8 hours of the initial rainfall event, and the monitoring
well rose by .5ft in the same period. Both wells were similarly responsive to the smaller
10/29/2017 rainfall event, and rose by approximately 3ft by the end of the monitoring
period. While the magnitude of change may not be as large as it was in some of the
other sites, the immediacy and steepness of the increase suggests that this portion of the
aquifer is more responsive to precipitation events than the other locations and that there
is a significant amount of communication between the surficial and bedrock aquifers,
perhaps due to the water table being so near the surface at that location. This well is
also more prolific than some of the other locations, as the initial blow test produced
4gpm, and two significant fractures were noted during drilling. This is further enforced

by the hydraulic conductivity of 0.02008m /day. These wells are highly connected.
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Site 2 Bedrock Well, Monitoring Well, and Discrete Rainfall Event
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Figure 35: Site 2 Bedrock Well, Monitoring Well, and Discrete Rainfall Event. The bedrock well
is in black, the monitoring wel isl in red, and rainfall between 10/24/17 and 11/01/17. Water
level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the
right x-axis. There is data missing starting on 10/30/2017.

7.3 | Site 3

The wells at site 3 are located in the Dry Hill Gneiss (Figure 9, 10, 11). The
bedrock well at this site is 300ft deep, while the other bedrock wells were only drilled to
100ft. The water level elevation of the bedrock well is approximately 50ft lower than the
monitoring well, which is the largest difference between monitoring and bedrock wells
in the study. The distance between water levels in the monitoring and bedrock wells
suggests a lack of connection between the surficial and bedrock aquifers. The elevation
of the water table of the bedrock well is significantly lower than the other three bedrock
wells, which could be due to development in the town center area. Both the monitoring
and bedrock wells follow the same seasonal fluctuations as the other sites (Figure 19,
Figure 20). The monitoring well has a larger range of response than the bedrock well

does.
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The monitoring well doesn’t begin to respond to the initial rainfall event until
approximately 8 hours after the start of the event. By the end of the 10/24/2017 to
11/01/2017 monitoring period, the water level of the monitoring well rises by 5.5ft
(Figure 36). Throughout the entire period, the bedrock well rises by almost 2ft (Figure
37). Unlike with the monitoring well, however, there is no immediacy to the response.
The water level in the bedrock well is already on a generally upward trend before the
precipitation event even occurs, so it is hard to say if the continued rise in water level is
in response to these events or is simply a continuation of that upward trend.

The blow test of the bedrock well yielded 2.25gpm, which suggests that the well
isn’t the least productive of the four, but the pumptest yielded the lowest K-value of
0.00006032m / day, suggesting that it has the lowest hydraulic conductivity. The reason
for this contradiction is likely a programming issue in Aqtesolv. The program
distributes hydraulic conductivity evenly over the entirety of the well bore, and since
site 3 has a wellbore depth that is the three times the depth of the other bedrock wells,
this is most likely the cause of this discrepancy. Because these wells are located in
granitic gneiss, the water that feeds these wells is coming from distinct fractures, not
continuous porosity. The significant fractures that were found while drilling were
located between 230ft and 290ft. While the bedrock and monitoring wells have similar
fluctuations, the lack of response to the precipitation event and the depth of the
fractures suggest that there is a lower level of communication between the surficial and

bedrock aquifer systems in this region.
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Site 3 Monitoring Well and Discrete Rainfall Event
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Figure 36: Site 3 Monitoring Well and Discrete Rainfall Event between 10/24/17 and 11/01/17.
Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on
the right x-axis. Data is missing starting at 10/30/2017.
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Figure 37: Site 3 Bedrock Well and Discrete Rainfall Event between 10/24/17 and 11/01/17.
Water level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on
the right x-axis. Data is missing starting at 10/30/2017.
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7.4 | Site 4

Site 4 is likewise drilled into the Dry Hill Gneiss (Figure 9, 10, 11). The
monitoring well at this location was only drilled to a depth of 4ft before encountering
bedrock. The elevation of the water level of both the monitoring well and bedrock well
fits in with the majority of the other wells, and the bedrock well has similar fluctuation
in water level to the other bedrock wells. The monitoring well only has water in it for a
few occasions out of the year, usually between February and May, though there was
water in the well for extended periods between August and November of 2018.

Site 4 is missing data in the monitoring well for the majority of this rainfall event,
so there is no data available for analysis. The bedrock well starts to respond to the initial
rainfall event just a few hours after its completion (Figure 38). By the end of the
monitoring period, the water level of the bedrock well has risen by 3ft and hasn’t yet
leveled off. There isn’t much of a surficial aquifer in this location, which can be
attributed to a thin veneer of glacial till. The magnitude and timing of the response of
the deep well suggests that the precipitation is making it to the bedrock aquifer at site 4,
as opposed to ending up in surface water or being transpired by plants. This suggests
that, while there may not be a significant volume of water in the surficial aquifer, there

is decent communication between surface water and the bedrock aquifer.
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Site 4 Deep Well and Discrete Rainfall Event
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Figure 38: Site 4 Deep Well and Discrete Rainfall Event between 10/24/17 and 11/01/17. Water
level is measured in feet on the left x-axis at a 6ft scale. Rainfall is measured in inches on the
right x-axis.
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7.5 | Annual cycles

The annual high water levels at each of the sites have very little variability
throughout the duration of the study, whereas the summertime low water levels at each
sites vary by an average of approximately 5ft. This suggests that, regardless of drought
conditions, human use patterns, or snowmelt, the aquifer is resilient in its ability to
recharge to a consistent level. The amplitude of the seasonal fluctuations is different
from year to year, but each well seems to have a consistent upper limit. The consistency
is likely due to the fact that Shutesbury is located on a ridge, and the steepness of the
slope toward the Quabbin reservoir is likely preventing the system from retaining large
volumes of water as it drains into the reservoir. The study can only speak to the
responses during the last 4 years, but these years have included a summer drought of
2016, an unusually snowy winter in 2015, and an impressively wet summer in 2018, and
provide a diverse set of scenarios to compare.

Each of the wells display fairly consistent seasonal changes in water level. The
double headed recharge that was particularly defined in early 2015 reflects a rise in
water level with fall recharge, a fall in water level that corresponds to frozen ground,
and water levels rise again with spring snowmelt and precipitation. Late summer and
early fall months have the lowest water levels, and the water level begins to increase
again during the winter and early spring. Summer rain doesn’t appear to be a major
recharge factor, as water levels consistently lower in the summers of 2015, 2016, and
2017, with little change to the downward slope even when large rainfall events do
occur. The rapid increase of water level in the fall is likely attributed more to the
seasonal shift in water use patterns as temperatures cool and plant transpiration slows

than a seasonal increase in rainfall. This spring plateau is likely due to the combination
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of snowmelt and rainfall infiltrating into the groundwater system as temperatures rise

and the ground thaws.

7.6 | Response to a Discrete Rainfall Event

Only one rainstorm event between 10/24/2017 and 11/01/2017 is used for
analysis because it was the most discrete and was not immediately preceded by another
rainfall event (Figure 18). Because of its timing in mid/early fall, there was no snowmelt
to factor into the magnitude of recharge, and, based on air temperature at the time, it is
highly unlikely that the ground was frozen. The lack of interference from previous
rainfall events and absence of snowmelt made a discrete event a priority over analyzing
the response to many events. Some of the other events may have ended up saturating
the dry soil, but the Fall has lower rates of transpiration and evaporation relative to
summer events.

The bedrock wells at sites 1, 2, 3, and 4 responded to the event with 0.5ft, 3ft, 2ft,
and 3ft increases in water level, respectively. The monitoring wells at sites 1, 2, and 3 (4
has no data) responded to the 10/24/2017 to 11/01/2017 precipitation events with 3ft,
3.5ft, and 5.5ft increases. The bedrock and monitoring wells at site 2 respond similarly
to the rainfall event because the water table appears to be close to ground level. The
glacial till at site 4 is so shallow that it only responds to large rainfall events. The
monitoring wells at sites 1 and 3 had significantly higher responses to the precipitation
events than their respective bedrock wells, which indicates that a lower amount of
water is entering the bedrock aquifer system. The water that is not percolating
downward is likely ending up in springs, vernal pools, is being used by people, or is

being transpired by plants.
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7.7 | Drought vs Wet Summer

The summer of 2016 was a period of severe drought for Western Massachusetts
(Dumcius 2016). This is reflected in the observation that the lowest water levels in all
wells for the duration of the study occurred during this period, in addition to the water
levels dropping below the reach of the data logger in the monitoring well at site 1.
Despite this significant drought, the water levels did not fall more than 10ft below their
peak level, and began to recover in the late fall of that year. The precipitation levels
during 2016 were lower, the frequency of rainfall events was reduced (Figure 15), and
hotter days began sooner and ended later than in the other years (Figure 13). However,
by the following spring, water levels returned to the same level as in previous years.
The wells at all of the sites continually demonstrate an ability to fully recharge even
following a severe drought.

In contrast, the summer of 2018 was wetter than previous summers in the study,
and as of November 8, 2018, the region had received 137% of the normal annual
precipitation volume, and likely put the year in the top 3 rainiest years since the 1890’s
(Rawlins, pers comm, 2018). The lowest water levels in 2018 were significantly higher
than the lows of the other years, and had the smallest range in water level fluctuations.
While the study doesn’t carry into the spring months, the late fall water levels were
comparable to the late fall water levels of the previous years. Because the late fall water
levels didn’t increase in tandem with the record high rainfall amounts, it is possible that
the aquifer is reaching an upper limit and, when exceeded, water in storage is lost to
springs and seeps into bodies of water like the Quabbin Reservoir or vernal pools. The
ability of this aquifer to consistently return to the same water levels every winter

suggests an overall resiliency in the system in the face of drought.
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7.8 | Climate Change and the Shutesbury Water Supply

The predicted changes to the climate of Massachusetts will impact the timing and
amount of aquifer recharge. Precipitation will affect the total amount of water that is
available for recharge, as well as the timing of recharge events. The projected warmer
and wetter winters are expected to be a major factor in the changing patterns of
recharge as well. Frozen ground could increase winter runoff (Dudley et al 2010, Runkle
et al 2017). Ground water recharge is inversely related to runoff in that by definition,
water that runs off is water that does not infiltrate, and therefore is unavailable to the
groundwater system. However, it is likely that warmer temperatures will result in
earlier thaws and later freezes (Storey 1955), meaning that the increase in winter rainfall
will lead to a higher recharge potential.

Because the Shutesbury aquifer can be characterized as relatively thin glacial
sediments over crystalline bedrock with low storage capacity, snowmelt will also likely
be a key component of future recharge (Dudley et al 2010), and could cause overall
recharge to be greater than precipitation volumes in late winter and early spring. The
earlier snowmelt, heavier winter rainfall, increased spring evapotranspiration, and
longer drier summers are expected to increase the duration of evapotranspiration
(Hayhoe et al 2006). Recharge may increase in the winter, but water levels may fall
more in the summer. Collectively, this suggests a longer period in which the region may
be vulnerable to drought.

The longer, warmer summers will likely cause a greater magnitude of lowering
water levels, potentially larger than occurred during the summer of 2016. Heavy rain
during a drought often doesn’t fully replenish groundwater systems because of the

reduced capacity for infiltration. Because of the response to the discrete rainfall events,
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it is clear that some amount of water is making it to the bedrock wells from
precipitation. The difference in magnitude between the monitoring and bedrock well
responses does suggest that some of that water is being lost to transpiration, human
use, or other causes. Coupled with the recovery patterns in the late fall, this suggests
that precipitation isn’t the only factor in water level changes in this region.

Given the timing and intensity of the recovery from the annual low points, it is
possible that vegetation is a bigger factor than rainfall driving goundwater levels.
Summer rain doesn’t appear to be a major recharge factor, as the water levels at all four
sites fell in 2015-2017, even in the face of major rainfall events. Major storms could
potentially become runoff and smaller storms could be used by vegetation, preventing
water from making its way into the bedrock aquifer. When the plants go dormant in the
fall and winter months, they decrease their water uptake. Lower transpiration rates and
lower temperatures in the fall months are likely cause for evapotranspiration rates
(Hayhoe et al 2006, Whately et al 2012), which is likely what is allowing the
groundwater system to recover so rapidly. A more targeted study should be done to
examine the impact of evapotranspiration on the recharge of the bedrock and surface

aquifers in this region.
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8 | CONCLUSION

The aquifer system that supports the town of Shutesbury has proven itself to be
resilient during the course of this study. The wells consistently recovered to a similar
water level each spring with minimal yearly variability, even in the case of the relatively
severe drought. There was also a fairly small, less than 10ft range in water levels within
each year, suggesting that the system can be considered reliable.

While the K-values and the blow test results suggest that the aquifer isn’t
particularly productive, the consistency of the surface and bedrock aquifer’s ability to
recover from diverse seasonal drawdowns suggest that the aquifer is a robust source of
water for the town. However, the comparably low water levels in the bedrock well at
site 3 suggest that a cautious approach to development around the town center would
be wise. Thankfully, none of the wells showed a similar downward trend to the Pelham
well or the New Hampshire study, although the time scale of this study was much
shorter, so it is harder to draw conclusions about long term trends.

Long term predictions for the impacts of climate change in the region suggest
that an increase in awareness regarding water use would be beneficial. The potential
increase in winter recharge from snowmelt and precipitation will likely outweigh the
impacts of the predicted summer drought periods. More research on how growing
seasons will shift and how those changes will impact groundwater recharge would be

helpful to better understanding the system. Overall, this study suggests that the aquifer
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is resilient. The levels do fluctuate seasonally, which can likely be attributed to human
use patterns and vegetation. This study supports the conclusion that the aquifer is able
to recharge to a consistent water level in a variety of climate scenarios. However, the
town would benefit from comprehending how their community interacts with the
ecosystem and the groundwater levels so that they can foster an understanding of what

is influencing the aquifer that they depend on.
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&S Ons Water Wells and Systems

www.cushingandsons.com

Town of Shutesbury 8/29/14
ATTN: Al Werner, Becky Torres

1 Cooleyville Rd.

Shutesbury, MA 01072

RE: Billing for Monitor Well Project

This is the billing and day sheets for the work we performed recently. The billing is as

follows:

Contract Base Price for Work: $ 18,480.00
Extra drilling, 200 ft. @ $10.00/LF 2,000.00
Extra 6” casing and grout site 1-D and 2-D, 16 ft. @ $21.00/LF 336.00
Machine Time, Stand by:

Site 2-D: 1 hr. 40 min.
Site 3-D: 5 min.

Site 4-D: 1 hr.
Total 2.75 hrs. @ $285.00/hr. 783.75
Additional well materials left on site:
5 bgs. sorted silica sand $75.00
1 bg. benioniie chips 24780
10 ft. .010” 2”Sch 40 PVC FJ screen 62.80
10 ft. 2”Sch 40 PVC FJ riser 49.00
1 ea. 2” PVC plug 7.13
Total materials: 218.73
Total amount due: $21,818.48

If acceptable, kindly process for payment. Any questions do not hesitate to call.

Sincerely,

Bart C. Cushing
/
1
A
%
/]
/]
/]
4
N

Office: 631 Rr. 12N, Keene, NH 03431 Mailing: PO Box 668, Walpale, NH 03608

Phone: 800-831-8883 603-352-8866 Tax: 603-357-8572
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Cwor2” TS 495 CUSHING & SONS, INC.
WATER WELL DRILLERS

Job Report
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Well Construction Schematic
Larry G. Cushing & Sons, Inc.
Xeene, HH 800-831-8883

Customer_Shotes Wory Mo  pae Vell = _5)3

Site, Town Driller and Striker
Rig Number:

2 ABL-
Grade Curb Boxo

teel Protecton {circle)

Saekrete

.

~Packfill material:

Tetsesmcnmscsn oy

2" PVC Sch 40 FJ Riser

treccnnana

3
1. top of bentonite

NEL LIS

Bentonite: type: 27
a2t /3 1. top of sand
NANRAA Y] L8’ v top of screen
Sorted silica sand Grade: _#4

LTLTEYLYY

2" Sch 40 £ ] Slotted Screen Slot: _LQ.

R
PSRN

737

$Ir 24207027 b4

0702722007 \

L RRARARA g

CLIRIIII22 A

IrILII0E27 v’.“

AR ARARLAA i

[y L

rrI270777 e
‘.
.
4 ’
S 27
28 RN . to

tom of sereen
1

Sl =
A 237N boring botiom
. o




pue’ 26 9859
woizt 24992

0,

CUSHING & SONS, INC.
WATER WELL DRILLERS
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Phone: ‘f’g'ém'g.ﬂyém "/'3 2;6 ,?C’YX

\ Well Data Pump Data
‘Total Depth [Q0 ft. yield L/ gpm Type installation:
Casing Length____HO ft. static ft. | SubCont: Ph.#
i
Depth to Bedrock 26 ft. off-set ft, Foundation Stone Cement Stab
Other Materials: 2&_3 M d R. Hammer yes no
| Bewsead Panel 10 C. Box: ft.

G Pof"',a.d& I+ Elec. Type:

1) o fockrws Gp Re} 57722 | Type Plumbing: PVC ______Copper—______ Iron
Well Location;_ S, TE #2-D ¢Y l‘?mﬂf‘g Map:

/ZCJ?OS 1(.644—- DPW 06\'/_/"/
O~ '~l S l) 'l-y § awds
§'- - 26 gravels
2- 34 weatherd rock
a3yl o qras e
/ ¢

H®® fractvees dy . 50

Jote: Sketch pressure ank location, electrical service panel

scation, and other helpful information.
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CUSHING & SONS, INC.
WATER WELL DRILLERS
Job Report
Customer Pump By:
¢ ow N "'F SH VTFB"BUﬂt/ Date Signed Confeacl by p<C
/4(_ (,(/[—72,(&-/& //7/] DateCompleted.g’U‘M by.._ﬁﬁ‘s”-" Fr2os
Phone: Y1368 7-89Y6 \%3 w13 25¢ Joy¥
) WellData Pump Data
Total Depth 25 ft. yield gpm Type installation:
Casing Length ft. statc ft. Sub Cont.: Ph.#
’
Depth to Bedrock 23 ft. off-set —ft. Foundation Stone Cement Sial
t
Other Materials: _M_&{é_ﬁ&&eﬁ 20 _ry -1y R. Hammer yes no
$ 4 Chi | d Panel 10 C. Box: f.
i) 3?]05 )) Profective Rised Elec. Type:
Type Plumbing: PVC Copper Iron
Well Location: S s T & #2-S Map:
toagg! s: /'y Sara S
o'~ Y
‘/',_ 25 ?/‘.-4.1\-'4./5

Note: Sketch pressure tank location, electrical service panel
ocation, and other helpful information.



Well Construction Schematic
Lerry G. Cushing & Sons, Inc.
Eeene, HH 800-831-8883
Customer Vi "

Date Vell = __52-5

Site, Town

Driller and Striker

NS

Rig Number.__203

2! ABe-
Grade

Curb Box ongSieel Protectopdcircie)

Sakrete

NAANARA R AN

2S
N
N
N
N
\
A}

.

Backfill material:

SAANVNALYY

rev s
AANAAN
Y
NANWN
A5
S\

N
A

NANNAY

\\\\\\\\\\\\\\\\1\

2" PVC Sch 40 EJ Riser

AR AR ESS
A AN
A AN

\
\
RISSESY IX

N
N NN
SYSSANNNY

*reerrssscersatsantenann

tecennonconnne

3/3 . top of bentonite

Bentonite: type: 2’

W

i3 ft. top of sand

15~ 1. top of screen

Sorted siticasand Grade: _ ¥ {

SANVINNS

2" Sch 40 £ ] Slotted Screen Stot: 4O

AN SANM L SN NN

AN O

L3
L'*L ]

-
o
.
A
\
5
)
N
S

s

S5

[Feienas

25—1‘[. bottom of screen
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CUSHING & SONS, INC.
WATER WELL DRILLERS
Job Report

Customer Pump By:
I ow n T'C §I’l UWBUﬂ‘/ Date Signed(o.gfmtc’f by B( C
/4 I3 b(/mvm /dﬂ/) Date Completed _8-C% by __ & Bed FE203
Phone: y’? 6”‘8‘1}’6 m Y ? 256 BOY?
, Well Data \ Pump Data
. [ <\
Total Depth Jod ft. yield z gpm Type installation:
1
Casing Length 30 ft. static ft. Sub Cont.: Ph.4
; .
Depth to Bedrock 13 ft.offset_____ _fi. Foundation Stone Cement Slat
y) r
Other Materials: " rc } ) loek s l-’q Cﬁ.;p . R. Hammer yes no
}) Drive Show Panel to C. Box: ft.
(A ) Cortlan ¢I Elec. Type:
/ > Beﬂﬁe«_/ A+ & 722 TypePlumbing: PVC Copper Iron
Well Location: SITE s :_?__ D Map:

Toving Commen Bebine/ Chvech
C-—u /A/ ons C(rrcf IV()_'(WWN‘#.

Brawe  curB Bax
7-13  dry grvels
3. 300 o gqresmto
Frickure s 434 \
260
267
z,é‘i
282-
280

Note: Sketch pressure tank location, electrical service panei
ocation, and other helpful information.
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CUSHING & SONS, INC.
WATER WELL DRILLERS
Job Report
Customer Pump By:
Town 4 Sn VTESBULY Date Signedconfeacd by BC S
Ac Weaver, FrH Date Completed S=44"W vy S feel #2503
Phone: ¥e3 63’7‘5’0Y6 m Y13 25¢ 3or¥
T . Well Data Pump Data
Total Depth 43 fi. yield gpm Type installation:
Casing Length ft. stadc ft. Sub Cont.: Ph.#
!
Depth to Bedrock 13 ft.offset _____ [ Foundation Stone Cement Slab
¢ 2
Other Materials: _LS_;;LM&L&L___ R. Hammer yes no
]01‘1- ri1se” 1)_ Push '?1\39 Panel 1o C. Box: ft.
7) ads 5,...! ! ) 1 7 Elec. Type:
,) L0 ) Protechoe Riser Type Plumbing: PVC Copper Iron
Well Location: S /T & #+ 3-8 Map:
a'-13" Py qfaoe.]s

Note: Sketch pressure tank location, electrical service panel

ocation, and other helpful information.



Well Construction Schematic
Larry G. Cushing & Sons, Inc.
Eeene, HH 800-831-8883

Customer_86;

Date

Well = __353-5

Site, Town

Driller and Siriker

Rig Number:

2'n86
Grade

Curb Boxo {circle)

Sakrete

- Bdckfiil material:

AN G5
NNANIS
AN,
NAANY
AN Y

A AN Y A

MRANNNY
AAANS
SANAAN
SANANN

A

Q

5

\

N
NAN
N

SAANANN
AR

AS A SNNN

2"PVC Sch 40 EJ Riser

N\

rescsvescuans
AR
ASS SN L RN

z
1. 1op of bentonite

L

Bentonite: type

¢
—© f1.10p of sand

22220027202 Wrrrrriy
MR LR
R MAARRRA
Crsbr2ersrr R4
vlls2002007 L MR
c4rt0020770 Y rrrrrs
ML R LA
CrIIEIIVIIS 1 S crrrrrers
20208700077 NSRRI
ALt III007 $ Y itrrrse
19420000000 [ R SRR
(2480202022 R
viIIIIrIsr | ’ R AR
MALLLLLRA . . ML AL LA
CLIIEIIIIV S . VY rtrirry
44120072777 ‘. V Wrrrsrse
'/Ill‘lll/l . AR ARA
MMN R
Ry
22LEL2L I

e
R
R
RELIZRELA
XYY
LA A 4
1000077

AR
M2

S 10p of screen

REZE LTS

Sorted silica sand Grade: _ #/

T
AR A

2" Sch 40 F] Stotted Screen Slot: _£8.

)

L

FoFRe

EAAALXL R4
cbddhdod g

¢
27 f1. bottom of screen

R

43 1. boring totiom
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sy GOS0 00200000020007777
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Y27 28,251

©,
o 2 97’
WoT2? 24+ C70 | SHING & SONS, INC.
WATER WELL DRILLERS
Job Report
Customer Pump By:
Date Signed Cofed 7‘ by ‘B( -

Toww o ?anz’suﬂc/
AL Weerwer, i

Date Completed 8- %1%y _Fhauss B #2073

Phone: ¥13¢87-82Y6 m Y13 25¢- Sovs

' Well Data Pump Data
Total Depth 100 ft. yield 1’ Y gpm Type installation:
t
Casing Length___Z.0 ft. static ft. Sub Cont.: Ph.#
L}
Depth to Bedrock H ft.offsee __________ _ft Foundation Stone Cement Stab
Other Materials: ,_"LEQcﬂq.‘:A R. Hammer yes no
1 Bewsead Panel to C. Box: fi.
n
1 6 4 Elec. Type:
@ ;ﬁ <120 Type Plumbing: PVC Copper Iron
SyTE # Y- D Map:

Well Location:

RQLIN'// 4ﬂ’ef7c wb A7

\endde ] 12 /,0/4?4 R/
Factores .
Y
6l
4
o'-4 dry f[m':’”l
ef' 100" cimml-e

Note: Sketch pressure tank location, electrical service panel
ocation, and other helpful information.




Well Construction Schematic
Larry G. Cushing & Sons, Inc.
Eeene, HH 800-831-8883

Customer_Vbotmsbury Ma Dste Venn=_84-3

Site, Town Driller and Striker
Rig Number:

2Rg L~
Grade Curbd Box or (circte)

Sakrete

- Backfill material:

2" PVC Sch 40 EJ Riser

Mrcestvssscrasavmanns

fassaiods é 1. top of bentonite
b Bentonite: type: _ &%

4’ Y. 10p of send
9 Y. t0p of screen

Sorted silica sand Grade: _ &7

2" Sch 40 E ] Slotted Screen Slot: _ 18

.
.
:,’s
.
27702220772 [
CPLPILII27207 :
CrrI2227257 % y
PR AN t'..
AR LA Y b
COPIIIIEIIY Q¥ g
24002000072 WANLN
S .

b

‘/ . tottom of screen

Y ft boring totiom
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CUSHING & SONS, INC.
WATER WELL DRILLERS
Job Report

Customer Pump By:
I % “7[ S}—( vTES VAR L/ Date Signed L o fe4 Cf by B < C
AL WL‘??/UFR /d 7] Date Completed _ 826" by Shaase? BB #2053
Phone: Y136 7-8076 (&% w13 25¢- 30v¥
B i Well Data Pump Data
Total Depth__ & ft. yield gpm Type installation:
Casing Length ft. static ft. Sub Cont.: : Ph.#
Depth to Bedrock ¢/ y ft.offset_____ 1t Foundation Stone Cement Slat
'} 1
Other Malerials: J_'ﬁ_&Ma_EMw R. Hammer yes no
100t Riser Riser Panel to C. Box: fu
') C»A‘l;o Elec. Type:
3) 816 # 1sand Type Plumbing: PVC Copper Iron
{f <
Well Location: 92 7& F=H, S Map:

ol q' J,rs‘ eirawe,l,s

Jote: Sketch pressure ank {ocation, electrical service panei

scation, and other helpful information.




Bureau of Resource Protection
MONITORING WELL REPORT

Massachusells Department of Envivoninenial Protection . 'D

SHe! 3

Note: GPS coordinates must be in WG S84 datum, in decimal degrees.

Subdivision/Property Description

A:WELILOGATION | GPS iRequired) North Y 2.
Address at Welt Location _l c‘k.’l{'i?y:’lé 2/, X Property Owner

S76

. 2 7 96  west_T7 2 °. 2 Y.

{7J Engineering Firm

! O U‘f S;/ VTS Buﬂ?

City/Town SH VTESBUZy AW
v

Overburden

Assessors Map Assessors Lot #
Board of Health pernit obtained D Yes gNot Required Permit Number

in public right-of-way? Maihng Address I Cookgwllk /%/

CityfTown  SHvTFRuLy
7

state /# 37

Date Issued

RMATION

DEP 21E site #

Developed Z] Y D N

W
A (4 Discharge® -

Are these D Y E N

wells nested

OyON | OFOs | OuvOA| From To Type

OVERBURDEN LITHOLOGY . Extra W i
Drop in Loss or ell finished Surface Seal
Dr'i)l! ng!; or Addition in bedrock E Y D N Type E
Code | Color Comment Stemn Ol Rv;te of Fluid
Number of 2 Area of group 2 O

G |8 Oy &N | CFDOs | OL A | wells in group (sq.ft)

Oy ON | OFDOs | OL OA | totarwen , | Depthto .

Oy ON|[OFDs | OL A Depth 300" |Bedock /3

Oy ON|{OFOs | OL DA fizieasine TN E 58 e T '

Thickness Diameter

/5 G

gvon|OoFOs|OvOa| r2 | 720 [Blrl<l

OvyON|OFOs  OLOA

OvON|[OFOs [OLOA O]
OYDON|OrFOs | 0L O [EIBCREEN i
OYyON | OFOs! QLA | From To Type Slot Size Diameter
Ovan|ofros|ocoa|l — | — [T
5UWELL LOG | BEDROCK LITHOLOGY Extra B
—- Drop Extra Fastor | Lossor | Visible
From | 7o | coge | comment | ‘Sam | s | bl | offud | stainng ' .
® | @ Rate 9  WATER-BEARING ZONES © = ,,ff%ﬁ S
/3| /00| 67 OYRNOYBNOFOSOLOAOYR From To Yleld(gpm)
/o0 | 200 e OYENDOYRENOFOSOLOAOYEN 239 2¥T" 2 Yy
260 | 300 | Ot |funed ¥ DYRRNOVENOFOSDLOADYRN

OvONOYONOFOSOLOAOYON

= I
OYONOYONOFO SO L A Y O MAGWATERGEVEL e v L o

oy E]WEI y[Od N]D F1 5113 LOd Y[OM Date Measured Static Depth BGS (f})

Flowing Rate (gpm)

OvONOYONOFOSOLOADYON AXT P EASURED

DYDMDYDﬂE]FDs]DLDADYDN,

AT WL

TR

-
T S T A TR, K T T AT B
R TR b B TRy 0 e E

) 2% [c] [m]
LI

julm

T

IO

11 ANNULEAR SEAL/FILTER PACK 1 T R A o Pl
e e e e ————————————————
From {ft BGS) To (it BGS) Material 1 Weight Material 2 Weight Water (gal) Batches Method of Placement
Sey ™ L] 39 /

min

10

L0

———

"“ﬁqoﬁm@ 237 260,262,207 2¥2 2%

Driller S\*“"WN 3“““—
Company (,vx:?wuuc. Z Sews Tax

Gu ervising D ler Signalure

_ Date Job Complete Qt.:"/? 7. Zl ~ RigPe

_T.._

et # VW7

This well was dniled or altered under my direct supemswn according to the applicable rules and regulations, and
this report 1s complete and accurate to the best of my knowle

"’ ’Z’ﬁ/"’/g‘7 Cetification # 5 §_
4

z
JE

K

YO TE: Well € ompletion Reports must be filed by the registered well dritler within 30 days of well completion



Massachusetts Department of Environmental Prolectios

Bursau of Resource Protection
St 3-8

'}_"_.l
e

MONITORING WELL REPORT

Note. GPS coordinates must be in WG S84 dalurn, in decimal degrees

A WELLOCATION:

GPS (Required)

Y 2° 27 ©6l1_ wes 7 2

o

2iy AST7LIA e ;

North

Address at Well Location .f CUU(@‘; Vz/ L’ X Property Owner [ oput trf S. HVTES Burtsy
7 ¥ &
Subdivision/Property Description [] Engineenng Firm 5
City/Town SHV'_FSBWZQ V4sx In public right-of-way? Mailing Address 1 (o Ulﬁw / 4’ 2
v ) 7
Assessors Map Assessors Lot # City/Town ST, stae  /H¥? -
14
Board of Health pemit obtained D Yes gNol Required Permit Number Date Issued ‘
Overburden Bedrock DEP 21E site #
| 157 Are these
N w il D DEP Groundwater| Developed v O [ wells fstad mind Y Kin
Discharge # i 1
OVERBURDEN LITHOLOGY Exia | Well fini
Drop in toss or el} finished P Surface Seal
From To l Dr‘i’ll Fg,st or Addition in bedrock D k m N Type E
Code | Color Comment Stem iy of Fluid
(M U] Driil Rate
Number of 2 | Area of group 2 O
Ol i3 |6 Br DR« OYM@N! OF Os | OIL DA | welisin group (sq. ft)
4
I [ % Oy ON|OFOs ! OL OA | rotarwell | Depthto 3
I OYDON| OFOS | L Oa | Perth /3 Bedrock
I OvyON|OFOs | OLOA Rt )
| OyON|OfFOs | QOLOA ] From To Type Thickness Diameter
OyOnN|OFOs | OL0A| +2 | & Pllylc | |sc4 vo 2"
OYON|OFOs | OLOA |
Oy O~ | OFOs OLOA
g | |ovyoON|OFOs [ OL0A] fom | To Type SiotSize | Diameter
bcB! ovons|OrOs|[0OL0a] s | 2 [lPllel| 0ro | 2"
pr—————— _— ~ o
5. -L BEDROCK LITHOLOGY | Extra )
Drop Extra Fastor | Lossor | Visible
From To In Drilt Large Siow Addition Rust
i Cede Caomment Slam Chips | Dnll of Fluid | Staining :
() | ("’ I Rate 3 X ShES,
1 OYyONOYONOrFOsOLOADOYO From To
[ OYONOYONOFOSOLOAOYON  cvonée
OYONOYONOFOSOLOADOYON
OYONOYONOFOSOLOA
OYyONOYONOFOSO LA
. OvyONOYONDFOSOLOA
DYQ@YQJﬂFDS}DLDA
| Water (gal)
This weli was driled or altered under my direct supervision, according to the applicable rules and regulations, and
R this report s complele and accurate Lo the best of my knowle’figg / R e
Drilier 9"‘4“”" 3‘ e Supervising Drilier Signature 0t "’é ,,4 ~ Cerlification # i 5" i g ? -
Company Cussnwe 3 Sowr3, Tawc Date Job Complete _Z,ZZ Y// RgPermit# | 1 Y |7 _é

NOTE: Weli Completion Reports must be filed by the registered well driller within 30 days of well completion



Massachusetts Department of Envirorinental Protection S’;’k ; L{ = > ol

Bureau of Resource Protection %

MONITORING WELL REPORT %

: : Note: GPS coordinates must ve in WG S84 datum, in decimal degrees
; TION | GPs (Required) Noth { =2 ° 2 & 257/ West 7 2 ° 2Y¢ & 7/ g
Address at Well Location €T t"u’l‘(&// I 5 Ia b?x) rd & Property owner T e Lr/ Sw VTES Burisy |
Subdivision/Property Descnption {1 Engineering Firm . L
City/Town 5*(\17!‘58;//!5; /"H‘ In public right-of-way? Mailing Address 1 Cou[&,w/k /Z),
< 7
Assessors Map Assessors Lot # City/Town SH VIESR VLY sate ¥
L4
D Yes gNot Required Permit Number Date issued

Board of Health permit obtained

Overburden Bedrock DEP 21E site #
Are these
N W [Z] [d | [ H] | Ben Crovmawater Devetoped  X]v OIN | \isnested LI ¥ Kin
Discharge # R
PSIWELL/LOG| OVERBURDEN LITHOLOGY Extra i
- 2 Drop in Loss of Well finished Surface Seal
From To ‘ Dr?ll Fg:;:' Addition in bedrock E i D N Type
Code | Color Comment Stem of Fluid ~ ~
U] (7t} Drill Rate
Number of 2 Area of group 2 O
oY (¢ |82 MRy Oy@EN|OFOs | OL DA | wellsin group (sq. ft)
: & a8
Oy ON | OFOs | OL OA | totaiwel Depth to
OyON|OFOs | OL A | Depth /00 | Bedrock )4
Oy ON|OFOs | OLOA (7:0ASING R AR i ey L
OYyoON|OFDOs | OLOA] Fom | To Type Thickness Diameter
OvON|OrFOs | Oc0A| + 2 | 77 | IslHle] | f4- -
OyON|OFOs | OvOA -
OyON|OFOs | OLdA
OYyON|OFDOs | OLDOA EESCREEN. LE T 0 T {’”ﬁ“"«é*mg__f
OYyON[{OFOs | OL A} From To Type Slot Size Diameter
ZLE
| OyO~N)OFOs|Ov0OA) — — | II " | .
'5.WELL LOG;| BEDROCK LITHOLOGY Extra I
”'m" ﬁ Drop Extra Fastor [ Lossor | Visible H
From | T0 | Code Comment ‘Sam | e | B | iFag | stamn
L . . : S8 - S D
() (f?_ . m hips Pt of Flui 2ining .:sh;i-w EF : X\ T ’ By
vy | s00 |Gz  BYERNOYRNOFOSOLOAOY X From To Yield (gpm)
OYONOYONOFOSOLOAOYOMN  Susse ferefotrs we Dot M4 gon
COYONOYONOFOSOLOADYON -

OvONOYONOFOsOLOAOYON
OyONOYONOFOsSOLOAD Y O N
DYDJDYDHBFDSTDLDAIDYD Date Measured
OYONDYONOFOSOLOAOYON ~ weT | Rdcordid

DYD@DYDNTDF S[EILEH[EIYD
[OR SEAIENTER PACKIZRERISTS 7 s e R gfmw,m

From (R BGS) To(BGS) | Material 1 Weight Materai 2 Weght Water (gal)

O 1 J¥ | [ 376 26 / (= [2]
| | = e
l | LI I min

A R P T o ————
i SN ]
ikl Wiy S e dn g R
_.nr_..“re.‘ AU

Static Depth BGS {ft) | Flowing Rate (gpm)

7 = ;;‘ mlﬂ.-‘\..‘_h—i
Balches Method of Placement

LRSI
i ENTS ok

13 E%_u e
rod i uumx~ O L T T e - - ‘
- B ERS STATER .| This well was drilied or aitered under my direct supervision, according to tne applicable rules and regulations, and
13. Wi DR'J—LNERSﬁTA'[EMENT this report 1s complete and accurate to the best of my .(nowre}gg / SIAL T
Dritier S“"ﬁf’fﬁ"_?rﬂ(‘ ~ . Supervising Oriller Signature = __f_l’(» e Z Celificalion # ! 5“} S ;?

— { i

Company Lufm,uq{"%__fc_/_» ..7:0( o Date Job Complete Z/Z_ ' RigPermit# | fi ;7 !,.6 |

NOTE: Well Completion Reports must he filed by the registered well driller within 30 dayc of well completion



Massachuselts Department of Environinental Protecticn ,
Bureau of Resource Protection S?’(e 3 Ll . S -
MONITORING WELL REPORT

e Note: GPS coordinates must be in WG S84 daturn, in decimal degrees.
AWELLILOGATION'] GPS (Requied) Notn Y 2 ° 2% 25/ West_ 7 2° 2Y 22/
j_c;?L (/Q’Wﬂ @(’ { /:’/‘-’IE/I.[Z‘/' E’ Property Owner 'Tgw,u u‘f S. /NTFS'Buﬂ?

Subdivision/Praperty Description {J Engmeerng Firm .
Maiing Address 1 Cocleaw llo 2
s 7

Address at Well Location

City/Town 5"(W'FS'BWZ£') AW In public right-of-way?
174
Assessors Map Assessors Lot # City/Town SH VTESB U, State /”7? 33
L4
Board of Heaith pennit obtained L—_' Yes gNot Required Permit Number Date Issued
Bedrock DEP 21E site #
Are these
N W Developed Dy [N Ov X~
DEP Groundwat wells nested
(H | B [ | oschages .
06| OVERBURDEN LITHOLOGY | | Extra ;
. Drop | L Wel finished 7 Surface Seai
From  To | ort F;,st or Addiion | in bedrock Oy ®Ew Type S }7al
) ® Code | Color Comment Stem P %v;te of Fluid
Number of 2 Area of group 2 O
O 4 |G LM D/2ey Dy N|OFOSs | OL OA | wellsin group ! (sq.1)
| v OyON OF0Os | OL OA ) totaiwell Depth to LTL
l OYON|{QOeOs ! OL A | Depth ‘-{ Bedrock
'Oy ON | OFOs | OL OA {fni@ASIN B2 N
‘ OyON | OFDOs OLIOA] from To Type Thickness Diameter
Ovon{OFOs|OvOal+2 | 3 Plvic|! scdw | 2~
OvyOn|OF0Os ! OLOA |
Ovyon OFOs[OL0a [
OyON|OFOs OLOA \ O T A
i OyON, OFOs|{OLOA] From To Type SiotSize | Diameter
| | gvon|OFOs|(0Ot0A| 3 | 4 Plviicl |.oro | 2”7
e ] Exira
2 L BEDROCKLITHOLOGY, Drop Extra ! Fastor [ Loss or Visible l m ﬂ “ —
e DAt | Large | Slow | Addion | Rust | : ’
o @ | Code Comment Stem Chips Drll | ofFiuid | Staining — e
| Rate | A ~ I (oA < o X
5 Oy YO r‘l__.l FO sn.'_'j Lg yO From To Yield (gpm)
i DYyONOYONOFOSOLOAOYOM Ao AE
OvONOYONOFOSOLOADYON
OvONOYONOFOsOLOAO YO
) CYONOYONOFOSOLOAOYO T S G T e
_____ OvyONOYONOFOSOLOACIYO Date Measured | Static Depth BGS (fi) | Flowing Rate (gpm)
|‘ DYD»{]YDMEIFD%DLDA yON Aord™

R

] This well was drilled or altered under my direct supervision, according to the applicable rules and reguiations, and

SERTET Ry
<t A o RS'STATEMENT this report is complete and accurate to the best of my knowred T" N
Driller 9”‘“"‘"" 3"" s Supervising Driller Signature /"“’/é// Cerbification # . l
2 7
Company C usmve g So ~3, Jac _ Date Job Complete /Z(://'é’ Rig Permit # | i ¥iz |6

NOTE: Well Completion Reports must be filed by the registered well driller within 30 days of well completion



. ] Massachusetis Department of Environmentsi Frotection < Lo 1 - ’b v
Bureau of Resource Protection SRt
\ MONITORING WELL REPORT

Note: GPS coordinates must be in WG S84 datum, in decimal degrees
2 wes 7. 2° 28 _O9S

--w-—

1EWELILOCATION | GPS (Required) Noth Y 2 °. 2 3

Address at Well Location 8¢ A’z ( LWWI Hoee J2F. B Property Owner —ﬁw.u er S )/UTZ-’S Buﬂ‘:‘)
Subdivision/Property Description [J Engineering Firm e R
City/Town gﬂUTFS'BU/t';} Vdis In public nght-of-way? Mailing Address l Covl&-,w /{(’ 1?6/

Assessors Map i Assessors Lot # City/Town SHVTERV. a, State /57'7'

Board of Heaith pemit obtained D Yes gNol Required Permit Number Date tssued

A’ M o '}E’N
: W.gw~ $‘5 r‘;{:\\xu_.
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