
ABSTRACT

Primary Biliary Cirrhosis (PBC) is a relatively rare chronic liver disease
that mainly affects women. When someone’s immune system attacks the liver,
the bile ducts are damaged and accumulated in the liver. Over time, it will
lead to fibrosis and cirrhosis of the liver. PBC progresses differently among
patients and its severity is indicated by repeated measurements of longitudinal
biomarkers. In practice, insights on how biomarkers associate with death risk
contribute to better adjustment of personal care and improvement of treatment
regimen generally.

In this project, we are interested in the association between the biomarker
serum bilirubin and overall survival of PBC patients. When the liver fails
to excrete bilirubin, high levels of this serum can cause jaundice of the skin,
which is a common symptom of cirrhosis. This association is investigated
with three different statistical approaches: Cox Proportional Hazards Model,
Time-Dependent Cox Model, and Joint Model for Longitudinal and Time-To-
Event Data. For each of the three models, the following procedure is applied:
univariate analysis, variable selection, and multivariate analysis. The study
data comes from a PBC clinical trial conducted by the Mayo Clinic over 10
years from 1974 to 1984. The hazard ratios estimated from these three models
are compared.

Intuitively, the difference in the estimated hazard ratios can be explained
by the different levels of information considered. The Cox Proportional Hazards
model uses the baseline values of bilirubin. The Time-Dependent Cox model
uses the current values of bilirubin by accounting for the changes of bilirubin
over time. The Joint Model captures the internal progression of bilirubin and
measurement errors. For applications where sample size is large and computa-
tional resources are available, Joint Models should be used because they reduce
potential bias in parameter estimation relative to the other models in survival
analysis.
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Chapter 1

Introduction

1.1 Primary Biliary Cirrhosis (PBC)

Primary Biliary Cirrhosis, also known as Primary Biliary Cholangitis, is a

relatively rare chronic liver disease that mainly affects women (Kaplan, 1996).

PBC is considered an autoimmune disease, which means that the immune sys-

tem mistakenly destroys healthy cells and tissues. When the immune system

attacks the liver tissues, it causes slow and progressive damage to the bile ducts

in the liver, which aid with digestion and help the body get rid of cholesterol,

toxins and worn-out red blood cells (Mayo Clinic, 2021). The damaged cells

from bile ducts and other toxins build up in the liver and can sometimes lead

to irreversible scarring of liver tissues, as shown in Figure 1.1. Many research

experts think that PBC is triggered by genetic and environmental factors such

as bacterial infections or toxic chemicals (Canadian Liver Foundation, 2021).

More than half of PBC patients do not experience noticeable symp-

toms. Usually the disease is detected in blood tests which are administered

for other reasons (Mayo Clinic, 2021). PBC patients often experience com-

mon early symptoms such as itching, eye and mouth drying, and fatigue. In

1



1.1. Primary Biliary Cirrhosis (PBC) 2

Figure 1.1: Liver Cirrhosis (Bruce Blaus, Wikimedia Commons)

advanced stages of PBC, later signs and symptoms may include high choles-

terol, diarrhea, weight loss, abdominal pain, and yellowing of the skin. As

liver damage worsens, PBC patients suffer from serious complications such as

enlarged veins, swelling of the body, or liver cancer. Without early diagnosis

and proper treatments, PBC will lead to fibrosis and eventually cirrhosis of

the liver (Canadian Liver Foundation, 2021). Even though there is no cure for

PBC, researchers have studied possible treatments such as medications and

liver transplantation to slow the disease progression and to prevent complica-

tions. Doctors and healthcare workers have been analyzing PBC biomarkers,

the biological measurements of the state of diseases, to further their under-

standing of this chronic health condition. These liver biomarkers offer valuable

information on the disease prognosis and progression. In practice, meaningful

insights on how liver biomarkers are associated with patients’ survival con-

tribute to better adjustments of personal care, and improve PBC treatment

regimen, and allocate healthcare resources efficiently.
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1.2 Thesis Objectives

In this project, we are interested in the association between liver biomarker

serum bilirubin and overall survival of PBC patients. When the liver fails to

excrete bilirubin, high levels of this serum can cause yellowing of the skin, a

common symptom of cirrhosis (Schuppan and Afdhal, 2008). Insights on how

serum bilirubin is associated with the death risk of patients are valuable for

the PBC prognosis and progression. Researchers can personalize patient care

and monitor treatment efficacy accordingly.

This association is investigated with three different statistical approaches:

the Cox Proportional Hazards Model, the Time-Dependent Cox Model, and

the Joint Model for Longitudinal and Time-To-Event Data (Joint Model). The

difference among these models is the levels of information considered. The Cox

Proportional Hazards model uses the baseline values of bilirubin measured at

the initiation of the study. As a result, it does not take into consideration the

dynamic nature of bilirubin when this biomarker changes over time. The Time-

Dependent Cox model uses the current values of bilirubin by accounting for the

longitudinal progression of bilirubin over time. However, it assumes that the

level of bilirubin remains constant in the time interval between doctor visits. In

practice, bilirubin dynamically generates itself and has a distinct longitudinal

trajectory for each patient. Thus, this assumption is not realistic because it

does not consider the measurement errors induced by biological variations of

PBC patients. The Joint Model eliminates these shortcomings by capturing the

longitudinal history of bilirubin while accounting for the measurement errors.

Estimated hazard ratios from these statistical models are compared to assess

the model performances. The difference in these estimates indicates potential
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bias in the parameter estimation if some assumptions are overlooked and the

most appropriate model is not used.

Bias reduction usually comes with model complexity, in forms of required

sample size and computational cost. In this project, even though the Joint

Model appears as the most optimal approach because it accommodates the

limitations of other statistical models for censored data, the model has many

parameters to estimate and requires a large sample size to avoid convergence

issues in the estimation process. When the conditions are not properly satisfied,

it is not ideal to use the Joint Model since the estimates might be even more

biased than other statistical models. In addition to comparing the estimated

hazard ratios from the Cox Proportional Hazards model, the Time-Dependent

Cox model, and the Joint Model for Longitudinal and Time-To-Event Data,

the thesis will evaluate the benefits and drawbacks of the Joint Model when

its requirements are not fully met, and what is recommended to do in those

cases.



Chapter 2

Background

2.1 Survival Analysis

Survival analysis is a collection of statistical procedures that aim to study

the time until an event of interest occurs (Kleinbaum and Klein, 2010). In

biomedical research, time can be years, months, or age from the initiation of

a study until an event occurs; an event can be death, progression of diseases,

appearance of tumors, or any designated experience of interest. The response

variable time is a continuous outcome which is usually referred to as survival

time or failure time. The variable event is a binary outcome which takes on

value 1 if the event of interest occurs and value 0 otherwise. An example of

survival analysis in health problems includes studies of the association between

serum bilirubin and overall survival in Primary Biliary Cirrhosis (PBC). The

event of interest is life failure and the outcome is time until death occurs.

In survival analysis, the response variable time is always positive, which

means that its distribution is skewed right. This feature can be solved by data

transformations such as logarithmic or square root if the normality condition is

5
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required, for linear regression models for instance. Otherwise, nonparametric

Wilcoxon’s test can also be used because it requires no distributional assump-

tion. However, another distinguishing feature of survival data is censoring,

which occurs when the event of interest is not observed. Censoring may hap-

pen because: (1) event does not occur during the observation period; (2) sub-

ject is lost to follow-up during the study period; (3) subject withdraws from

the study for either unknown or known reasons (Kleinbaum and Klein, 2010).

Therefore, it is inappropriate to use a t-test, Wilcoxon’s test, or logistic regres-

sion because they do not account for censoring. This motivates an advanced

statistical model, the Cox regression model, to handle censored data.

In particular, there are different three types of censoring: (1) right censor-

ing - event of interest occurs after a certain time point (i.e., a PBC patient was

alive at the study termination or lost to follow-up during the study), (2) left

censoring - event of interest occurs before a certain time point (i.e., a person

was followed up until they became HIV positive; the exact time of their first

exposure to the virus is unknown; it might have happened before their first

recorded positive test), and (3) interval censoring - event of interest occurs be-

tween a known time interval (i.e., an HIV patient tested positive for AIDS; the

patient might have developed the disease at some point between their pre-last

and last doctor visits).

Censoring mechanisms can also be classified based on censoring infor-

mation. Censoring is noninformative when the subject withdraws for reasons

unrelated to the prognosis while informative censoring means that the subject

withdraws for reasons related to the expected failure time. In survival analy-

sis, censoring is often assumed to be independent, random, and non-informative

(Kleinbaum and Klein, 2010). To describe censored data, Kaplan-Meier curves
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use information on censoring and event times to visualize the survival proba-

bility and number of subjects at risk.

There has been extensive research to study Primary Biliary Cirrhosis

(PBC) with statistical models in survival analysis. Murtaugh developed an

updated Mayo model to predict short-term survival at any time in the course

of the disease for PBC using the values of prognostic variables measured at the

latest patient visit (Murtaugh et al., 1994). The predicted survivals showed

that the updated Mayo model was superior to the original one in terms of

accuracy. The New England Journal of Medicine published a research study

on the efficacy of liver transplantation in PBC patients with the Mayo model

(Markus et al., 1989). Liver transplantation was found to be an efficacious

treatment for PBC patients, based on the estimated survival probability. In

addition to studies on the survival time and treatment effect of PBC, there have

been research on the longitudinal measurements of PBC biomarkers because of

their sources of important information about the disease.
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2.2 Longitudinal Studies

Longitudinal analysis involves data sets that consist of repeated measure-

ments of covariates for each of the subjects. The defining characteristic of a

longitudinal study is that subjects are followed up over time (Diggle et al.,

2002). A longitudinal study can be designed either prospectively or retrospec-

tively. Such data are common in health sciences as they offer important insights

into the development of diseases and therefore improve the construction of pa-

tient care. For example, repeated measurements of serum bilirubin can be used

to monitor the progression of PBC. In longitudinal analysis, repeated measure-

ments of covariates can be visualized with spaghetti plots in which each path

represents a subject trajectory in the cohort.

The common objectives often arising in the study of longitudinal effects

are to investigate whether treatment means differ over time and to investigate

individual changes over time (Verbeke, 1997). In a longitudinal setting, there is

an obvious strong correlation between the repeated measurements of covariates

taken on the same subject. Thus, it is inappropriate to use t-tests or linear re-

gression because the assumption of independent observations is violated. Since

covariates for each subject have a unique trajectory path, subjects in the cohort

have different intercepts and slopes. This leads to linear mixed-effects models,

which offer flexibility for these differences by having subject-specific random

effects in addition to fixed effects for all subjects in the cohort.

In randomized clinical trials, patients are divided into placebo and treat-

ment groups. Each patient is followed up and the outcome covariate of interest

is recorded at predetermined times. However, in reality, these measurements

are usually not fully observed because of dropouts or loss to follow-ups before
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the completion of treatment studies. There are three different types of miss-

ing data mechanisms: Missing Completely At Random (MCAR), Missing At

Random (MAR), and Missing Not At Random (MNAR). Data is MCAR when

the missingness does not depend on observed or unobserved data, MAR when

the missingness conditions on unobserved data, and MNAR depends on both

observed and unobserved data (Rubin, 1976). In a longitudinal study, linear

mixed-effects models are used to handle incomplete continuous data with re-

peated measurements. These models work under the assumption that data is

missing at random.

There have been studies that employed statistical models to investigate

PBC treatment effects more closely by taking into consideration the disease

progression over time. Neuberger investigated the effect of D-penicillin in PBC

patients in double blind controlled trials implementing the occurrence rate

ratio, but was unable to establish any therapeutic benefit of D-penicillin (Neu-

berger et al., 1985). Lombard studied the treatment effect of Cyclosporine in

a PBC clinical trial followed up for six years with Cox univariate and multi-

variate analyses. The researchers concluded that given that blood pressure and

renal function are examined, Cyclosporin A has some therapeutic potential in

PBC (Lombard et al., 1993).

In addition to survival analysis and longitudinal studies, there has been

statistical research on PBC genetics. A genome-wide association study identi-

fied 12 new susceptibility loci for PBC to investigate genetic architecture of the

disease (Mells et al., 2011). Other researchers focus more on measurable sub-

stances in human bodies called biomarkers to analyze PBC. An international

follow-up study performed a meta-analysis to conclude that PBC biomarker

alkaline and bilirubin are surrogate endpoints of patient outcomes (Lammers
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et al., 2014).

In clinical trials, PBC patients are often examined and followed up for

a certain period of time during which their body substances are closely mon-

itored and mortality rates are registered. In these studies, time to death of

each subject is divided into small time intervals corresponding to each doctor’s

visit. For each of these time intervals, events of interest and measurements of

biomarkers are recorded. It is appealing to conduct statistical analysis using all

this information by combining statistical models involving time-to-event data

and repeated measurements. This motivates a joint analysis using statistical

models from survival analysis and longitudinal studies.
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2.3 Motivation for Joint Analysis

In biomedical research, there are different types of outcomes of inter-

est recorded over time. Two of these outcomes are longitudinally measured

responses and the time until an event of interest occurs. It is relevant to inves-

tigate their association structure to identify potential longitudinal prognostics

for the time-to-event outcome. Specifically, biomarkers are generate differently

among subjects and dynamically over time even on the same subject. Their

dynamic changes may result from the health conditions of subjects. A thorough

understanding of this nature can help researchers personalize patient care more

efficiently. Examples of this type of investigation are the association between

CD4 cell counts and time to AIDS, prostate-specific antigen levels and the time

to the development of prostate cancer, and serum bilirubin and time to death

in liver cirrhosis (Rizopoulos, 2012).

In this project, we are interested in measuring the association between

serum bilirubin and overall survival of PBC patients. The PBC dataset in-

cludes recorded outcomes such as information on survival and longitudinal

measurements on PBC biomarkers, including serum bilirubin. There are dif-

ferent approaches to study this relationship. Some physicians are interested in

investigating how strongly related the baseline level of bilirubin is to overall

survival of PBC patients. Others might be interested in the dynamic progres-

sion of bilirubin with respect to death risk since bilirubin is a time-dependent

covariate. Therefore, it is comprehensive to study this association with dif-

ferent approaches using either the baseline measurements or longitudinal mea-

surements of bilirubin to compare the results and decide the best statistical

estimator.
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For the purpose of this thesis, the association between serum bilirubin

and overall survival is studied with three different statistical models: Cox Pro-

portional Hazards Model, Time-Dependent Cox Model, and Joint Model for

Longitudinal and Time-To-Event Data. Intuitively, the Cox Proportional Haz-

ards model uses the baseline level of bilirubin. The Time-Dependent Cox model

uses the current level of bilirubin with the assumption that the progression of

bilirubin is unaffected by failure time of patients. The Joint Model uses the

current level of bilirubin on the condition that its progression is dependent on

the health condition of patients.



Chapter 3

Statistical Methods

3.1 Cox Proportional Hazards (Cox PH)

Sometimes called Cox regression model, the Cox PH is the most common

statistical model in survival analysis (Therneau and Grambsch, 2000). It as-

sesses the effects of multiple covariates simultaneously by the hazard function:

hi(t | wi) = h0(t)× exp(γTwi)

= h0(t)× exp(γ1wi1 + γ2wi2 + ...+ γpwip)

(3.1)

where wTi = [wi1, wi2, ..., wip] denotes the vector of covariates and γT denotes

the vector of corresponding regression coefficients. The Cox PH works under

the assumption that all subjects share the same baseline risk function h0(t)

which only depends on time t.

The baseline risk function h0(t) is unspecified to avoid mis-specifying the

distribution of survival time. The individual multiplier exp(γTwi) is a con-

stant, time-independent exponential function of linear regression of covariates

13
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unique to each subject. The Cox PH model assumes multiplicative effects of

the covariates on the hazard for an event. In other words, for Subject i, each

unit increase in γj associates with a multiplicative change in the hazard by

exp(wij).

From this setup, the hazard ratio (HR), which is an estimate of the hazard

rate between groups, is assumed to be constant over time:

hi(t | wi)
hk(t | wk)

=
h0(t)exp(γTwi)

h0(t)exp(γTwk)

= exp{γT (wi − wk)}
(3.2)

If HR > 1, the hazard rate increases, meaning that the hazard risk for the

first group hi(t | wi) increases by exp{γT (wi − wk)} compared to the hazard

risk for the second group hk(t | wk). If HR < 1, the opposite is true. The

HR is constant over time because it does not involve time t. This explains the

proportionality assumption in the Cox PH regression that the hazard for one

subject is proportional to any other subject at any time t.

Since the Cox PH regression model assumes that the hazard rate for

each subject is time-independent, it uses the baseline values of the covariates.

Specifically, the model does not take into consideration the progression of co-

variates γj over time. Therefore, the Cox PH is appropriate to study prognostic

factors such as sex or randomized treatments whose values stay constant over

time. This is unrealistic in practice to study biomarkers because longitudinal

measured covariates such as biomarker serum bilirubin are expected to vary

during follow-ups. This motivates the next model, the Time-Dependent Cox

model, to investigate how the time-dependent covariates associate with patient

outcome.
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3.2 Time-Dependent Cox

Before explaining the mathematics of the Time-Dependent Cox model, it

is essential to distinguish different types of time-dependent covariates. There

are two common types: exogenous and endogenous. An exogenous covariate,

sometimes called an external covariate, inherits a predictable pattern of change

and is unaffected by the true failure time (Kalbfleisch and Prentice, 2011). In

other words, the value of an exogenous covariate is known at any time t. For

instance, age is an obvious exogenous covariate whose pattern of change is

predictable. The age in the next five years is predicted easily if the current age

is provided and its future path is independent of failure time. Other examples

include environmental factors such as air pollution or predetermined covariates

such as treatment strategies according to specific criteria.

On the other hand, endogenous covariates are time-dependent but mea-

sured on the subjects in the study. As a result, they may be affected by the

health conditions of the subjects. In biomedical research, they are biomarkers

or clinical parameters with repeated measurements, including serum bilirubin

levels. For other diseases, endogenous covariates can be CD4 cell counts which

shows the robustness of the immune system; CD4 cell counts are repeatedly

measured to study the progression of human immunodeficiency virus (HIV).

Generally, it is difficult to analyze data involving endogenous covariates be-

cause of their complicated and dynamic features. In particular, endogenous

covariates generate themselves and are directly affected by true failure time,

and often require the survival of the subjects.

Compared to the Cox PH regression, the Time-Dependent Cox model,

sometimes referred to as the Extended Cox, allows more flexibility by taking
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into account the progression of covariates with repeated measurements over

time (Kleinbaum and Klein, 2010). The mathematical formula for its hazard

function is given in Equation 3.3:

hi(t | Yi(t), wi) = h0(t)× exp(γTwi + αyi(t)), t > 0

= h0(t)× exp(γ1wi1 + γ2wi2 + ...+ γpwip + αyi(t))

(3.3)

where the interpretation of wi and γT are the same as in the Cox PH model.

In particular, wi denotes the vector of baseline covariates while γ denotes the

vector of corresponding regression coefficients. The new term yi(t) in Equation

3.3 captures the longitudinal measurement history Yi(t) of a time-dependent

covariate yi up to time t. The corresponding regression coefficient quantifies

the association between this time-dependent covariate yi and overall survival,

after fixing other covariates with baseline values in the model. It also has a

multiplicative effect: a one unit increase yi(t) results in a multiplicative change

of exp(α) in the risk for an event. The interpretations for HR of the Time-

Dependent Cox model are similar to one of the Cox PH. The baseline risk

function h0(t) is also unspecified for the same reasons as the Cox PH.

The major computational difference between the Cox PH and the Time-

Dependent Cox models is that the Cox PH uses the short data format while

the Time-Dependent Cox uses the Counting Process format. In the short for-

mat, the last time point of follow-ups and the corresponding event status are

recorded. Each subject only has one row for baseline values of covariates which

are recorded at the initiation of the study. On the other hand, in the Count-

ing Process data format, there are multiple rows holding information for the

same subject to divide the total follow-up time into small time intervals with
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START and END points for time-dependent covariates. In addition, these rows

also hold information for repeated measurements of longitudinal biomarkers on

each time interval, which has event status 1 if the event of interest occurs and

0 otherwise.

Since the Time-Dependent Cox model assumes time-varying covariates

to be exogenous with predetermined patterns of change, it does not take into

consideration the measurement errors induced by biological variation from the

subjects. In other words, the Time-Dependent Cox assumes time-varying co-

variates remain constant during the time intervals between doctor visits and

are unaffected regardless of true failure time. In practice, the model is usu-

ally used to study association involving prognostic covariates such as age or

environmental impacts. Unfortunately, it is not ideal to study cirrhosis and

bilirubin with this model because the measurements of serum bilirubin are ex-

pected to fluctuate constantly1 between visits and are strongly associated with

the disease progression. Thus, HR estimates from the Time-Dependent Cox

can potentially be less accurate. This motivates the Joint Model for Longi-

tudinal and Survival Data (Joint Model), which takes into consideration the

internal progression of bilirubin by accounting for the measurement errors.

1We can imagine that the bilirubin generation is similar to the heartbeat, which does
not stay the same necessarily even in people with no health problems, though repeatedly
measured minutes apart. In the case when someone just finished exercising, their heartbeat
might be higher than usual. Alternatively, if the liver is not in a good condition, bilirubin
level might be higher than usual.
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3.3 Joint Model for Longitudinal and Time-

To-Event Data

The Joint Model handles the special features of endogenous covariates

when measuring the association between longitudinal biomarkers and overall

survival (Rizopoulos, 2012). It accomplishes this by using the estimated true

and unobserved value mi(t) of the longitudinal biomarkers at time t. The Joint

Model consists of two components: a survival submodel and a longitudinal

submodel. The longitudinal submodel estimates the true and unobserved value

mi(t) of biomarkers by including measurement errors, which is then used in the

survival submodel to correctly quantify the association of interest. These two

submodels are modeled jointly, which explains the name Joint Model.
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3.3.1 Survival submodel - Cox PH regression model

The hazard function for the survival submodel of is given in 3.4:

hi(t |Mi(t), wi) = h0(t)× exp(γTwi + αmi(t)), t > 0

= h0(t)× exp(γ1wi1 + γ2wi2 + ...+ γpwip + αmi(t))

(3.4)

where wi denotes the vector of baseline covariates and γT denotes the vector

of corresponding regression coefficients. The new term mi(t) in Equation 3.4 is

the true and unobserved value of longitudinal covariates at time t, as opposed

to the observed value yi(t) in Equation 3.3, which is subject to measurement

errors. The corresponding regression coefficient quantifies the effect of the

underlying longitudinal endogenous covariate mi(t) on overall survival, after

accounting for the impact of other covariates at baseline measurements in the

model. Unlike the other two Cox models, the baseline risk function h0(t) is now

specified explicitly. The possible distributions for the baseline hazard function

h0(t) are:

- Weibull, log-normal, and gamma;

- Step-functions and linear-splines;

- B-splines approximation;

- Restricted cubic splines;

- Piecewise-constant and regression splines.

All these specifications of the baseline function h0(t) share a common

objective: to allow more flexibility for non-linear patterns of the longitudinal

trajectories. In this project, the baseline hazard function is a piecewise-constant

spline with six knots placed at equally spaced percentiles of the observed event

times.
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3.3.2 Longitudinal submodel - Linear Mixed-Effects

As mentioned above, the Joint Model surpasses the other two Cox models

by using the estimated true and unobserved longitudinal value mi(t) of the

markers to take into account measurement errors. However, values mi(t) of

covariates are never observed. The longitudinal submodel of the Joint Model

estimates mi(t) by modeling the longitudinal history Mi(t) of the covariates,

which contains the true values of mi at time t. The longitudinal submodel

constructs Mi(t) with the Linear Mixed-Effects model to describe the subject-

specific time evolution of covariates.

In the Linear Mixed-Effects model (LME), the longitudinal outcomes are

normally distributed:

yi(t) = mi(t) + εi(t)

mi(t) = xTi (t)β + zTi (t)bi

(3.5)

where εi(t)
iid∼ N(0, σ2). The term xTi (t)β describes the fixed effects and zTi (t)bi

describes the random effects which are unique to each Subject i. Specifically,

the design matrix xTi (t) is for the vector of fixed effects β; the design ma-

trix zTi (t) is for the vector of random effects bi; and the error terms εi(t) are

time-dependent in Equation 3.5. LME accounts for measurement errors by

the additive terms εi(t), which are assumed to be mutually independent and

independent of random effects. The trajectory for each patient over time is

dictated by time-independent random effects bi ∼ N(0, D) where D is the

variance-covariance matrix. The random effects bi capture subject-specific de-

viations from the population mean estimates.
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3.3.3 Transformation in LME

In the Linear Mixed-Effects of the longitudinal submodel, the response

mi(t) is assumed to be normally distributed. Therefore, serum bilirubin is

transformed with the Box-Cox transformation to get the normal distribution.

However, the Box-Cox transformed serum bilirubin contains many very small

values, which is incomparable to the values of the other biomarkers in the

data. This results in a convergence issue since the estimate is unable to obtain.

Thus, in this project, all the other longitudinal biomarkers are log-transformed

so that their values are on a more comparable scale. Since the ultimate goal of

the project is to make predictions on the association between serum bilirubin

and overall survival, transformations do not have an impact on the estimates.
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3.3.4 Missing Data - Last Observation Carried Forward

Both the Time-Dependent Cox model and the Joint Model use the re-

peated measurements of the covariates of interest. However, not all measure-

ments during visits are available due to patients’ failure to return for follow-ups.

In the longitudinal submodel of the Joint Model, the LME assumes that the

missing data mechanism is missing at random (MAR). It corresponds to the

non-informative censoring when the reasons why subjects withdraw from the

study are independent of their disease prognosis in the two Cox models. In

other words, missing responses are unrelated to the observed ones. In this way,

it is valid to consider observed data a random sample of complete data.

Theoretically, it is reasonable to ignore the missing values under the MAR

mechanism. In practice, the LME model in the Joint Model works on the

condition that no missingness is present in the data. In this project, instead

of removing the observations with missingness, the last observation carried

forward approach is employed to impute the missing data in the hope that any

potential bias in parameter estimation is reduced and that the estimation is

converged. This naive approach is expected to result in a more stable estimation

despite non-monotone missingness mechanisms where patients’ follow-ups are

irregular.
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3.4 Evaluation of Proportionality Assumption

The Cox PH models work under the assumption that the hazard ratio

is proportional over time. In practice, this assumption is not always satisfied.

Thus, it is crucial to assess the proportionality because a violation may af-

fect the accuracy of the estimates and undermine the validity of the results.

There are three common ways to assess the proportional hazards assumption

(Kleinbaum and Klein, 2010):

- Graphical approach with survival curves

- Goodness-of-fit test with Schoenfeld residuals

- Time-covariates interaction terms

In this project, the goodness-of-fit (GOF) test is used to assess the ap-

propriateness of the Cox PH models. The testing approach uses Schoenfeld

residuals, which are defined for every subject who has an event, one for each of

predictors in the model (Kleinbaum and Klein, 2010). For example, if a Cox

PH model has n covariates, there are n Schoenfeld residuals for each subject

that has an event. The Schoenfeld residual for suspiciously time-dependent

covariate A that has the event is calculated:

Schoenfeld residual = Observed A - Weighted Average A (3.6)

where the weighted average of A is the hazard of the other subjects still at

risk at time t. The correlation between Schoenfeld residuals and failure times

is then tested. If Schoenfeld residuals are correlated with failure times, the

proportionality assumption is violated. Otherwise, the assumption is satisfied.

In the GOF test, the null hypothesis states that there is not a correlation
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between them. Thus, an insignificant p-value from this test indicates that the

proportional hazard is met. Each of the p-values checks the assumption for

its corresponding covariate under the assumption that the proportionality is

satisfied for the other covariates in the model (Kleinbaum and Klein, 2010).

In the project, the proportionality is examined to assess the appropriate-

ness of the Cox PH model and the survival submodel in the Joint Model. This

test ensures the validity and accuracy of the estimates from these statistical

models.
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3.5 Variable Selection - A Backward Approach

For the two Cox model, it starts with the univariate analysis to get an

overview of the data using functions from the package gtsummary (Sjoberg

et al., 2020). Covariates are selected at the significance level p1 = 0.1 from

the univariate analysis to include in the backward elimination with the thresh-

old of p2 = 0.05. Finally, multivariate Cox models are fit with the selected

statistically significant covariates from the variable selection. This is a com-

mon variable selection procedure in survival modeling. Examples of this ap-

proach can be found in the studies of overall survivals in colorectal carcinoma

(Schmitz-Moormann et al., 1987), gastric cancer (Maruyama, 1987), advanced

non-small-cell lung cancer (Paesmans et al., 1995), and supraglottic carcinoma

(Nicolai et al., 1997).

As mentioned, backward elimination is used to select a subset of informa-

tive covariates from the pool of candidate covariates. The goal is to exclude any

irrelevant covariates since the presence of extra variables increases bias in the

estimation. This selection procedure can also detect any multi-collinearity in

the model. As a result, model performance will be greatly improved by avoid-

ing any covariate redundancy. Forward selection with the same significance

level is also employed to verify that both backward and forward approaches

arrive at the same subset of covariates.

In the project, backward elimination and forward selection are carried

out with the functions add1 and drop1 supported by R, respectively. The

parameter estimation is based on the maximum partial likelihood. Any two

nested models with different subsets of covariates are compared by the χ2

likelihood ratio test performed in the functions. Particularly, the likelihood
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ratio test examines whether the inclusion or exclusion of covariates gives a

statistically significant improvement to the model fit.

For the Joint Model, backward elimination is used as the variable selec-

tion approach for the LME in the longitudinal submodel, after the univariate

analysis. The obtained subset of statistically significant covariates is fixed for

the LME in the Joint Model, where serum bilirubin is the response. Given the

fixed longitudinal submodel, backward elimination is employed again to select

the statistically significant covariates for the Cox PH model in the survival sub-

model. Since the functions add1 and drop1 do not support the Joint Model,

the function anova is used instead. The variable selection procedure is similar

to the one for the Cox models: the function anova also uses the likelihood ratio

test to compare two nested Joint Models (Kleinbaum and Klein, 2010). The

summary of this approach is presented by steps below:

1. Univariate analysis with the threshold 0.1

2. Backward elimination with the threshold 0.05

3. Forward selection with the threshold 0.05 to compare results with (2)

4. Multivariate analysis with chosen covariates from (2)
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3.6 Fitting and Estimation Methods in R

3.6.1 Cox PH and Time-Dependent Cox models

In the project, the R package for the Cox PH and the Time-Dependent

Cox models is the survival package (Therneau and Lumley, 2015). In this

package, parameters are estimated based on the maximum likelihood method

which involves the two key functions in survival analysis: the survival and

hazard functions. The survival function of the Cox PH is defined as:

S(t) = Pr(T ∗ > t) =

∫ ∞
t

p(s)ds (3.7)

The survival function S(t) describes the survival probability past a certain

time point t (Kleinbaum and Klein, 2010). It is a non-increasing function as

t ranges from 0 to ∞ with t = 0 corresponding to S(t) = 1. The function

gives the probability that the random variable of failure times T ∗ exceeds the

specified time t. T ∗ is assumed to be continuous and p(s) is the probability

density function. The survival function is closely related to the instantaneous

risk function, which is defined as:

hi(t | wi) = limdt→0
Pr(t ≤ T ∗ ≤ t+ dt | T ∗ ≥ t, wi)

dt
(3.8)

Let T ∗ denote the random variable of the failure time under the study, h(t)

is a non-negative function that describes the instantaneous risk for occurrence

of an event over the time interval [t, t+dt), on the condition that the individual

has survived up to time t. The relationship between survival function and
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instantaneous risk function of the Cox PH is:

S(t) = exp{−H(t)} = exp

{
−
∫ t

0

h(s)ds

}
(3.9)

where H(t) is the cumulative hazard function that describes the accumulated

risk up to time t.

The survival function S(t) is used to construct the likelihood for survival

data with censoring. Let p(t; θ) denote the probability density function of

a random sample from a distribution function P parameterized by θ. If an

event of interest is observed at time Ti, Subject i contributes to p(Ti; θ) in the

likelihood function; otherwise, Subject i contributed to Si(Ti, θ) when censoring

happens. Thus, a log-likelihood function of the Cox PH accounting for both

censored and uncensored observations is given by:

`(θ) =
n∑
i=1

δi × log{p(Ti; θ)}+ (1− δi)× log{Si(Ti, θ)}

=
n∑
i=1

δi × log{hi(Ti; θ)} −
∫ Ti

0

hi(s; θ)ds

(3.10)

where δi provides survival information in the random sample. In the estima-

tion of parameters of interest, γ, regardless of the unspecified baseline hazard

function h0(t), the partial log-likelihood function of the Cox PH model is:

p`(γ) =
n∑
i=1

δi

[
γTwi − log

{∑
Tj≥Ti

exp(γTwi)
}]

(3.11)

The estimators are calculated by taking the derivative of the partial log-
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likelihood with respect to γT :

∂p`(γ)

∂γT
=

n∑
i=1

δi

{
wi −

∑
Tj≥Ti wjexp(γTwj)∑
Tj≥Ti exp(γTwj)

}
= 0 (3.12)

The solution to this equation is γ̂, the estimated coefficient vector that is

consistent and asymptotically normally distributed.

The survival function of the Time-Dependent Cox is given in 3.13:

Si(t|Yi(t)) = exp

{
−
∫ t

0

hi(s | Yi(s))ds
}

(3.13)

The partial likelihood function of the Time-Dependent Cox with respect

to γ and α is:

p`(γ) =
n∑
i=1

∫ ∞
0

{
Ri(t)× exp{γTwi + αTyi(t)}

− log
[∑

j

Ri(t)× exp{γTwi + αTyi(t)}
]}

dNi(t)

(3.14)

where Ni(t) denotes the number of events for Subject i and Ri(t) is an indicator

variable. Ri(t) = 1 if Subject i is at risk at time t and 0 otherwise. The solution

to Equation 3.14 are γ̂ and α̂, the estimated coefficient vector and the estimate

of the association of interest, respectively. Both of them are consistent and

asymptotically normally distributed.
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3.6.2 Joint Model

The Joint Model is fit using the JM package, which is dependent on

the nlme and survival packages (Rizopoulos, 2010). The model consists of

longitudinal and survival components. The longitudinal submodel, which is the

Linear Mixed-Effects model, is fitted using package nlme version 3.1 (Pinheiro

et al., 2007); the survival submodel, which is the Cox PH model, uses the

package survival version 3.2-7 (Therneau and Lumley, 2015).

There have been many proposed estimation methods for Joint Models

such as semi maximum likelihood, Bayesian estimation using Monte Carlo

Markov Chain (MCMC) techniques, and a conditional score approach. In the

JM package, parameter estimation is based on the full maximum likelihood

approach. This traditional estimation method works under two assumptions.

The first assumption is that the vector of time-independent random effects bi

underlies both longitudinal and survival processes (Rizopoulos, 2012). Since

the vector random effects bi accounts for the association between the longitu-

dinal responses and the event outcomes, in addition to the correlation between

the repeated measurements in the longitudinal process, it can be written as:

p(Ti, δi, yi | bi; θ) = p(Ti, δi | bi; θ)× p(yi | bi; θ)

p(yi | bi; θ) =
∏
j

p(yi(tij) | bi; θ)
(3.15)

where θ = (θ>t , θ
>
y , θ

>
b )> denotes the full vector of parameters for the event out-

come, longitudinal outcome and random-effects covariance matrix respectively.

The other assumption is that the censoring mechanism and visiting process are

dependent on the observed past longitudinal history but independent of un-
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derlying, latent subject characteristics associated with prognosis (Rizopoulos,

2012). In other words, the censoring is assumed non-informative.

The log-likelihood corresponding to the joint distribution of observed out-

comes Ti, δi, yi for Subject i is:

log p(Ti, δi, yi; θ) = log

∫
p(Ti, δi, yi, bi; θ)dbi

= log

∫
p(Ti, δi | bi; θt, β)×

[∏
j

p(yi(tij) | bi; θy)
]
× p(bi; θb)dbi

(3.16)

where the conditional density for the survival part is p(Ti, δi | bi; θt, β) and the

joint density for longitudinal responses with random effects is∏
j p(yi(tij) | bi; θy)× p(bi; θb).

The log-likelihood function `(θ) =
∑

i log p(Ti, δi, yi; θ) is optimized using

a hybrid optimization of Expectation-Maximization (EM) and quasi-Newton

algorithms. Particularly, the estimation starts with the EM algorithm with a

fixed number of iterations and if convergence is not obtained, a quasi-Newton

algorithm is used (Rizopoulos, 2012). The initial values for the optimization

are from the fitted linear mixed-effects and survival submodels.
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Data Description

4.1 The Data

The dataset is from a Primary Biliary Cirrhosis (PBC) clinical trial with

312 patients conducted by the Mayo Clinic for a 10-year period from 1975

to 1984 (Murtaugh et al., 1994). Among these patients, 154 of them were

randomly put in the placebo group and the rest were in the treatment group.

By the end of the follow-up, which was extended to year 1988, 140 of the

patients died, 29 had received orthotopic liver transplantation and 143 were still

alive. After accounting for death and censoring, there were 1945 patient visits,

with repeated measurements capturing the progression of PBC longitudinal

biomarkers such as serum bilirubin, albumin, prothrombin time, the presence

of spiders - blood vessel malformation in the skin, etc. These biomarkers were

measured at specific visits at six months, one year, and annually thereafter. In

addition to these biomarkers, there were baseline covariates such as age, drug,

and gender. Below is the summary of the PBC data with a brief explanation

of biomedical terminology (Mayo Clinic, 2021):

32
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Categorical covariates:

• drug : placebo or D-penicillin groups

• sex : male or female groups

• ascites : swelling of abdomen from fluid accumulation (Yes/No)

• edema : swelling of leg, ankle and feet caused by excess fluid trapped in

body’s tissues (3 levels: No edema/Edema no diuretic2/Edema despite

diuretic)

• hepatomegaly: enlarged liver (Yes/No)

• spiders : blood vessel malformations in the skin (Yes/No)

• histologic: histologic stage for chronic liver disease based on liver biopsy

of the disease (4 levels: 1-4)

• status: alive/transplanted or deceased

2A type of drug that helps kidneys make more urine to help the body get rid of extra
fluid and salt
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Continuous covariates:

• age (years): time since the registration

• albumin (g/dl): blood protein

• alkaline (U/l): alkaline phosphatase (ALP) is an enzyme in the liver;

higher levels of ALP may indicate liver damage

• SGOT (U/ml): serum glutamic oxaloacetic transaminase (AST) is an

enzyme in the liver released into blood when the liver is damaged; elevated

blood SGOT levels may indicate liver damage

• platelets (per cubic ml/1000): colorless blood cells that help blood clot;

decreased white blood cells and platelets can be a sign of cirrhosis

• prothrombin (seconds): prothrombin time is the time it takes blood to

clot; increased PT may indicate liver damage

• year: number of years between enrollment and this visit date, remaining

values on the line of data refer to this visit

• years: number of years between enrollment and the earlier of death, trans-

plantation, or study analysis time

• bilirubin (mg/dl): substance produced during the normal breakdown of

red blood cells and passes through the liver; elevated levels of bilirubin

cause yellowing of the skin and may indicate liver damage



4.1. The Data 35

The primary objective of this randomized placebo controlled trial was

to investigate the treatment effect of the drug D-penicillin on overall survival

of the PBC patients. In this project, the main goal is to study how serum

bilirubin is in association with overall survival of PBC patients. In the study,

though there were 312 patients followed up for 10 years with specified visits at

six months, one year and annually thereafter, there were only 1945 observations

in the dataset due to censoring and termination.
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4.2 Data Exploration

Table 4.1 shows the statistics summary of the PBC clinical data. Serum

bilirubin is the only biomarker discussed in this section because the project

focuses on the association between bilirubin and overall survival. Please refer

to Appendix A for more details of statistics summary of other biomarkers.

In Table 4.1, 312 patients were randomized almost equally with 51% of

the patients in the treatment group and 49% in the placebo group. Among 312

patients in the study, 88% of them were females and only 12% were males. At

the end of the study, 45% of the patients died; 55% of the patients were alive

or liver-transplanted. The median number of years between registration and

the earlier of death, transplantation, or study time was 6.3 years; the median

age was 50.

In general, patients were equally randomized among the placebo and

the treatment groups between the alive/transplanted and the deceased groups

(Table 4.1). The percentage of male patients in the deceased group outnum-

bered the alive group. Overall, the statistics summary suggests that the level

of serum bilirubin was lower in the alive/transplanted group. The median age

for the alive/transplanted group was lower than for the deceased group, while

the study time for the alive/transplanted group was more than doubled for the

deceased group.
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Statistics Summary
Characteristics N = 312 Alive = 172 Deceased = 140
drug: placebo 154 (49%) 85 (49%) 69 (49%)

D-penicillin 158 (51%) 87 (51%) 71 (51%)
sex: male 36 (12%) 10 (5.8%) 26 (19%)

female 276 (88%) 162 (94.2%) 114 (81%)
years 6.3 (3.7, 8.9) 7.8 (5.7, 9.9) 3.7 (2.1, 6.7)
age 50 (42, 57) 47 (40, 55) 53 (46, 61)
bilirubin 1.4 (0.8, 3.4) 1.0 (0.6, 1.8) 3.0 (1.3, 6.4)

Table 4.1: Statistics Summary of PBC Clinical Data
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4.3 Data Visualization

There are many biomarkers in the data set but the visualization will

mainly represent the exploratory insights of biomarker bilirubin because of the

primary goal of the project. For further details of the data exploration with

other biomarkers, please refer to Appendix A: Exploratory Analysis.

Histogram

Figure 4.1: Baseline bilirubin measured at the study registration

Figure 4.1 illustrates the histogram distribution of the baseline values of

serum bilirubin. In Figure 4.1, the distribution is right-skewed, suggesting that

the liver conditions varied widely among 312 patients.
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Figure 4.2: Bilirubin before and after the Box-Cox transformation

Figure 4.2 shows that the distribution of longitudinal values of bilirubin is

right-skewed. Since these longitudinal measurements were used as the response

in the Linear Mixed-Effects model of the Joint Model, the Box-Cox transforma-

tion is performed to satisfy the normality condition. The distributions before

and after the Box-Cox transformation are represented in Figure 4.2. For more

details on Box-Cox transformation, please refer to Appendix C: Mathematical

Formulae.
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Boxplot

Figure 4.3: Baseline bilirubin between treatment groups and sex groups

Figure 4.3 shows the boxplots of the baseline bilirubin between treatment

groups and sex groups. In Figure 4.3, the placebo and the treatment group

have many outliers although the average baseline bilirubin levels are roughly

similar. In the second boxplot, females have more outliers and lower bilirubin

than males.
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Spaghetti Plot

Figure 4.4: Spaghetti plot of bilirubin by outcomes. Each path represents
different trajectories of the bilirubin for each patient. The y-axis is the longi-
tudinal measurements of bilirubin recorded at time t and the x-axis is the time
point t

Figure 4.4 shows the spaghetti plot of the serum bilirubin progression

overtime between the alive/transplanted and deceased patients. In Figure 4.4,

the alive/transplanted patients were more likely to have a lower level of bilirubin

than the deceased patients.
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Kaplan-Meier Curve

Figure 4.5: Overall survival probability. The survival probability starts at
1 when t = 0 and decreases over time. The tick marks illustrate censoring at
specific time points. The time at which the survival probability reaches 0.50 is
the median survival time

Kaplan-Meier survival curve is used to visualize the overall survival prob-

ability of 312 patients over the study time. In Figure 4.5, the median survival

time was around 9.4 years. At the beginning of the study, there were 312 pa-

tients at risk. After 6 years since the initiation of the study, there were 166

patients at risk. For more details on Kaplan-Meier survival curve and log-rank

test, please refer to Appendix C: Mathematical Formulae.
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Figure 4.6: Survival probability with respect to baseline bilirubin

Figure 4.6 shows the survival probabilities with respect to the baseline

bilirubin for which the clinical cut-off 1.2 mg/dl is used to classify the high and

normal levels of baseline bilirubin. The statistically significant log-rank p-value

indicates that there is a difference in the survival probabilities between the two

groups. The median survival time was around 6 years for the high bilirubin

and 14 years for the normal bilirubin.
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Figure 4.7: Survival probability in different sex groups

Figure 4.7 explores the survival of the patients in different sex groups.

In general, females had a higher probability survival than males. The log-rank

p-value of 0.0024 confirms that sex is statistically significant. The median

survival time was around 5 years for male patients while around 10 years for

female patients. The number of patients at risk for females was more than

10 times larger than the one for males after 6 years since the registration.

This huge difference between the two groups can be partly explained by the

distribution of patients between the groups. From the beginning of the study,

only 12% of the total patients were males while the rest were females (Table

4.1).
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Figure 4.8: Survival probability in different treatment groups

Figure 4.8 represents the survival of the patients in different treatment

groups. Interestingly, the survival probabilities in the placebo and the treat-

ment groups were roughly similar. Drug D-penicillin is not significantly signif-

icant from the log-rank test. The median survival times were around 9.5 and

9.7 years for the placebo group and the treatment group, respectively.



Chapter 5

Statistical Results

5.1 Univariate Analysis

Clinical Factors

Table 5.1 shows the results for clinical factors such as Age, Drug, and

Sex from the univariate analysis for the Cox PH and the Time-Dependent

Cox models. The Cox models give the same results for the hazard ratios, the

95% confidence intervals and the p-values for the clinical factors. Age and Sex

are both statistically significant at the threshold of 0.10. In contrast, Drug is

statistically insignificant with a p-value larger than 0.9. Consequently, Age and

Sex are included in the variable selection for the multivariate analysis.
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Univariate Analysis - Clinical Factors
Clinical Factor Hazard Ratio 95% CI p-value
Drug: placebo ref

D-penicillin 1.00 (0.72 - 1.39) >0.9
Age 1.05 (1.03 - 1.06) <0.001
Sex: male ref

female 0.52 (0.34 - 0.80) 0.005

Table 5.1: Results for Clinical Factors from Univariate Analysis
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Longitudinal Biomarkers

Table 5.2 shows the results for biomarkers other than bilirubin from the

univariate analysis for the Cox PH and the Time-Dependent Cox models. Since

the focus lies in the association between longitudinal measurements of serum

bilirubin and overall survival, the baseline measurements for the other biomark-

ers in the models are used in the Time-Dependent Cox. Thus, the two Cox

models only differ in the the information of bilirubin being considered. Specif-

ically, the Cox PH model uses the baseline measurements of bilirubin while

the Time-Dependent Cox uses the current measurements of bilirubin by taking

into account its longitudinal history.

The estimation from the univariate analysis for all biomarkers in the Cox

PH and Time-Dependent Cox models are exactly the same (Table 5.2). In other

words, the two Cox models have the same output for the hazard ratios, the

95% confidence intervals and the p-values. All the biomarkers are statistically

significant at the threshold of 0.10. Thus, they are included in the variable

selection for the multivariate analysis.
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Univariate Analysis - Longitudinal Biomarkers
Biomarker Hazard Ratio 95% CI p-value
Albumin 0.19 (0.13 – 0.28) <0.001
Alkaline 1.00 (1.00 – 1.00) 0.094
SGOT 1.01 (1.00 – 1.01) <0.001
Platelets 1.00 (0.99 – 1.00) <0.001
Prothrombin 2.12 (1.81 – 2.48) <0.001
Ascites: No ref

<0.001
Yes 7.58 (4.78 - 12.0)

Hepatomegaly: No ref
<0.001

Yes 3.06 (2.14 - 4.38)
Spiders: No ref

<0.001
Yes 2.42 (1.72 - 3.42)

Edema: No edema ref
<0.001Edema no diuretics 1.63 (1.04 - 2.55)

Edema diuretics 10.9 (6.61 - 18.0)
Histologic: 1 ref

<0.001
2 6.39 (0.86 - 47.5)
3 9.66 (1.33 - 70.1)
4 24.0 (3.33 - 174)

Table 5.2: Results for Biomarkers from Univariate Analysis
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Serum Bilirubin

Table 5.3 shows the results from the univariate analysis for the Cox PH,

the Time-Dependent Cox, and the Joint Model with bilirubin as the only co-

variate. The Cox PH and the Time-Dependent Cox models have the same point

estimates for the hazard ratios and p-values. However, the 95% confidence in-

terval for the Time-Dependent Cox is smaller than for the Cox PH model. This

is reasonable because in the Time-Dependent Cox, repeated measurements of

bilirubin are used; therefore, more information on bilirubin level reduces the

uncertainty of the estimated hazard ratio.

The survival submodel of the Joint Model is handled by the Cox PH model

with bilirubin measured from the longitudinal submodel as the only explanatory

covariate. The longitudinal submodel includes the set of statistically significant

covariates in the LME model from the variable selection. In the LME model,

repeated measurements of bilirubin are used as the response variable while

the baseline measurements for other biomarkers are used as the explanatory

covariates.

The interpretation of the hazard ratios for the Cox PH is that a one unit

increase in the baseline bilirubin is associated with a 16% increase in the death

risk. For the Time-Dependent Cox, a one unit increase in the longitudinal

bilirubin is associated with a 16% increase in the death risk. For the Joint

Model, a one unit increase in the longitudinal bilirubin is associated with an

83% increase in the death risk, after accounting for measurement errors.
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Univariate Analysis - Serum Bilirubin
Model Hazard Ratio 95% CI p-value

Model 1: Cox PH 1.16 (1.13 - 1.19) <0.001
Model 2: Time-Dependent Cox 1.16 (1.14 - 1.18) <0.001
Model 3: Joint Model 1.83 (1.66 - 2.02) <0.0001

Table 5.3: Results for Serum Bilirubin from Univariate Analysis
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5.2 Model Adjustment

After the variable selection, the Cox PH, Time-Dependent Cox, and Joint

Model have different adjusting covariates corresponding to Model 1, 2, and 3:

Model 1: bilirubin, albumin, age, edema, histologic, SGOT, and PT3

Model 2: bilirubin, albumin, age, edema, histologic

Model 3: bilirubin, albumin, age, edema

At the threshold level of 0.05, the sets of statistically significant covariates

for the three models from the variable selection are different. In order to

examine the consistency of the results, despite different model adjustments, the

multivariate analysis is re-conducted with the union of those sets of covariates

for each of all three models. For example, since bilirubin, albumin, age, edema,

histologic, SGOT, and prothrombin are statistically significant for the Cox PH

model, a multivariate analysis including these covariates is carried out for the

Time-Dependent Cox model and the Joint Model as well. This approach is

applied to the other two sets of covariates.

Results of the comparison among the estimated hazard ratios from three

models with three unions of those set of covariates are available in Appendix

B: Supplementary Analysis. The comparison shows that the results are fairly

consistent since the differences among estimated hazard ratios for each model

with three different sets of covariates are negligible. The statistically insignif-

icant covariates for each model from the variable selection do not add much

information to the investigated association.

3Prothrombin
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5.3 Multivariate Analysis

Table 5.4 shows the results from the multivariate analysis for the Cox

PH, the Time-Dependent Cox, and the Joint Model with bilirubin and other

covariates selected from the variable selection corresponding to each model.

Bilirubin is statistically significant in three models. The hazard ratios for

serum bilirubin are 1.11, 1.20, and 1.82 for the Cox PH, the Time-Dependent

Cox, and the Joint Model, respectively. Compared to the univariate analysis,

the hazard ratio decreases by 0.5 for the Cox PH model, and increases by 0.4 for

the Time-Dependent Cox. For the Joint Model, it is roughly similar, increasing

by 0.1 (Table 5.4).

The interpretation of the hazard ratio after accounting for other covariates

in each model is straightforward: For the Cox PH model, a one unit increase in

the baseline bilirubin is associated with a 1.11-fold increase in the death risk;

for the Time-Dependent Cox, a one unit increase in the longitudinal bilirubin is

associated with a 1.20-fold increase in the death risk; for the Joint Model, a one

unit increase in the longitudinal bilirubin is associated with a 1.82-fold increase

in the death risk with measurement errors taken into consideration. In other

words, for one mg/dl increase in the level of serum bilirubin, the death risk

increases by 11%, 20%, and 82% for the Cox PH model, the Time-Dependent

Cox, and the Joint Model, respectively.

Compared to the univariate analysis, 95% confidence intervals from the

multivariate analysis are smaller, indicating that the uncertainty about the

estimates is reduced. It is reasonable because more statistically significant

covariates are expected to add more information to the bilirubin levels and the

investigated association generally.
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Multivariate Analysis - Serum Bilirubin
Model Hazard Ratio 95% CI p-value

Model 1: Cox PH 1.11 (1.06 - 1.15) <0.001
Model 2: Time-Dependent Cox 1.20 (1.17 - 1.22) <0.001
Model 3: Joint Model 1.82 (1.64 - 2.03) <0.0001

Table 5.4: Results for Serum Bilirubin from Multivariate Analysis
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5.4 Proportionality Assumption

Cox PH Model

Table 5.5 shows that from the goodness-of-fit test, the hazards are not

proportional for bilirubin over time in the multivariate analysis of the Cox PH

model. This is within expectation because bilirubin dynamically generates it-

self for each subject over time. Thus, bilirubin is expected to have time-varying

effect on the hazard of subjects, which is captured in the Time-Dependent Cox

and the Joint Model. The results from the multivariate analysis of the Cox PH

model are still recorded for comparison, despite a violation of the proportion-

ality assumption.

Proportionality Assumption in Cox PH Model
Characteristics Chisq df p-value
Bilirubin 6.305 1 0.012
Albumin 3.043 1 0.081
Age 0.195 1 0.659
Edema 4.208 2 0.122
Histologic 6.603 3 0.086
SGOT 0.405 1 0.525
Prothrombin 1.482 1 0.223
GLOBAL 20.873 10 0.022

Table 5.5: Evaluation of Proportionality Assumption in Cox PH Model



5.4. Proportionality Assumption 56

Survival Submodel of Joint Model

At the significance level of 0.05, the survival submodel of the Joint Model

satisfies the proportionality assumption (Table 5.6). Thus, the estimates from

the Joint Model are likely to be valid and reliable.

Proportionality in Survival Submodel of Joint Model
Characteristics Chisq df p-value
Albumin 2.279 1 0.131
Age 0.204 1 0.651
Edema 4.848 2 0.089
GLOBAL 6.394 4 0.172

Table 5.6: Evaluation of Proportionality Assumption for Survival Submodel
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5.5 Diagnostic Plots for Linear Mixed-Effects

In Figure 5.1, the Q-Q plot of the residuals from the LME. In the Q-Q

plot, the majority of the points match the straight line. There seem to be no

serious outliers or influential observations that violate the normality assump-

tion. The distribution of the residuals has a bell-shaped curve. Thus, the

normality condition is likely satisfied. The scatterplot of the residuals and the

fitted values from the LME shows that there is no specific pattern in the graph

and the data points spread above and below the zero line. In general, the di-

agnostic plots indicate that the estimate from LME is likely accurate since the

underlying conditions are properly met.

Figure 5.1: Diagnostic plots for Linear Mixed-Effects Model



Chapter 6

Conclusion

6.1 Summary of Findings

The association between serum bilirubin and survival of Primary Biliary

Cirrhosis is investigated using different levels of the information of covariates.

The Cox PH model uses the baseline measurements of all covariates. The Time-

Dependent Cox model accounts for the progression of bilirubin while fixing

the measurements at the baseline level for the other covariates. For the Joint

Model, the Cox PH and LME in the two submodels uses the adjusting covariates

from the variable selection. The LME model in the longitudinal submodel uses

the longitudinal measurement for bilirubin and baseline measurements for other

covariates.

In Table 6.1, for the Cox PH model, one unit increase in the baseline

bilirubin is associated with a 1.11-fold increase in the death risk. For the

Time-Dependent Cox, one unit increase in the longitudinal bilirubin is associ-

ated with a 1.20-fold increase in the death risk. For the Joint Model, a one unit

increase in the longitudinal bilirubin is associated with a 1.82-fold increase in
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the death risk with the measurement errors taken into consideration. In other

words, one unit increase in the level of serum bilirubin increases the death risk

by 11%, 20%, and 82% for the Cox PH model, the Time-Dependent Cox, and

the Joint Model respectively.

Multivariate Analysis - Serum Bilirubin
Model Hazard Ratio 95% CI p-value

Model 1: Cox PH 1.11 (1.06 - 1.15) <0.001
Model 2: Time-Dependent Cox 1.20 (1.17 - 1.22) <0.001
Model 3: Joint Model 1.82 (1.64 - 2.03) <0.0001

Table 6.1: Results for Serum Bilirubin from Multivariate Analysis
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6.2 Discussion

From the summary of findings, with the progression of bilirubin and mea-

surement errors taken into consideration, the estimated hazard ratio from the

Joint Model is much larger than the ones from the Cox PH and Time-Dependent

Cox models. It seems that there is a non-negligible difference in the parameter

estimates after accounting for both progression of bilirubin and measurement

errors in the longitudinal history.

Despite the comparison of the hazard ratios from three models, it is es-

sential to be aware that the adjusting covariates for the Cox PH, the Time-

Dependent Cox, and the Joint Model from the variable selection are different,

corresponding to sets 1, 2, and 3 respectively:

Set 1: bilirubin, albumin, age, edema, histologic, SGOT, and prothrombin

Set 2: bilirubin, albumin, age, edema, histologic

Set 3: bilirubin, albumin, age, edema

In the Cox PH model, SGOT and prothrombin are statistically significant at

the baseline measurements. SGOT, or Aspartate Transaminase (AST), is an

enzyme normally present in blood at low levels; a high level of SGOT may

indicate liver damage (Mayo Clinic, 2019). Prothrombin is a protein produced

by the liver. In the PBC dataset, covariate prothrombin is Prothrombin Time

(PT) which is the time it takes blood to clot; increased PT may indicate liver

damage (Mayo Clinic, 2019). High levels of both SGOT and prothrombin in-

dicate potential liver damage, while elevated levels of bilirubin are also as-

sociated with liver cirrhosis. Therefore, baseline measurements of SGOT and

prothrombin may not add more information to the generating process of biliru-

bin and therefore, the investigated association between longitudinal bilirubin
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and overall survival. This might explain why SGOT and prothrombin are not

statistically significant in the Time-Dependent Cox model.

Though baseline SGOT and prothrombin are not statistically significant

in the survival submodel of the Joint Model, they are statistically significant in

the longitudinal submodel LME where longitudinal bilirubin is the response.

Based on the findings, it can be inferred that even though SGOT and prothrom-

bin with baseline measurements do not add valuable information to the studied

association involving longitudinal bilirubin, their baseline measurements are in-

formative on how bilirubin generates itself over time, given the measurement

errors.

A multivariate analysis is re-conducted with the union of those sets of

covariates for each of all three models (see Appendix B: Supplementary Analysis

for more details). Though the estimates for each of the three statistical models

with the same set of adjusting covariates are not exactly the same, the estimated

hazard ratios for each model are not radically different across different covariate

sets. In fact, the Time-Dependent Cox model has fairly consistent estimates

(Table 6.2).

Hazard Ratio - Bilirubin Analysis
Model Set 1 Set 2 Set 3

Model 1: Cox PH 1.11 1.15 1.14
Model 2: Time-Dependent Cox 1.20 1.20 1.19
Model 3: Joint Model 1.81 1.84 1.82

Table 6.2: Comparisons of Hazard Ratios for Bilirubin
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The PBC data is from a clinical trial conducted by Mayo Clinic over

10 years. Therefore, it is not possible to evaluate the model performances

with the true hazard ratio because it is not available. Nevertheless, there have

been simulation studies to evaluate the model performances of Cox PH, Time-

Dependent Cox, and Joint Model in literature. The results showed that Joint

Models lead to an estimate with a smaller SE and less bias (Ibrahim et al.,

2010). In other simulation studies, Arisido showed the robustness of Joint

Models in providing a more accurate and precise estimate of the hazard ratio

(Arisido et al., 2019). Thus, in this PBC study, the Joint Model is expected to

reduce bias in the estimate compared to the other two Cox models.

Even though both the Time-Dependent Cox model and the Joint Model

account for the progression of bilirubin, there are notable differences in the

assumptions behind these two models. The Time-Dependent Cox assumes

bilirubin to remain constant during the time interval between the visits. In

practice, this assumption is not realistic, because bilirubin generates itself and

continually fluctuates. Graphically, the Time-Dependent Cox has a step func-

tion for a longitudinal trajectory. This may result in very biased estimates

since the Time-Dependent Cox might overestimate or underestimate the true

and unobserved value of the biomarkers. On the other hand, the Joint Model

estimates the true value of bilirubin by including measurement errors in addi-

tion to its longitudinal progression. In Figure 6.1, the Joint Model smooths the

longitudinal trajectory, thereby reducing potential bias and providing a more

reliable estimate.
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Figure 6.1: Measurements in Time-Dependent Cox and Joint Model
Source: Joint Models (Rizopoulos, 2012)

Though theoretically, the Joint Model appears as the most optimal ap-

proach because it increases estimation accuracy by addressing the limitations of

the two Cox models, it also has disadvantages as a trade-off. The Joint Model

has many parameters to estimate from the survival and longitudinal submod-

els. Consequently, it requires a large sample size to avoid convergence issues

in the estimation process. Moreover, it is very computationally expensive to

implement the estimation for the Joint Model because of its model complex-

ity. When the sample size and computational resources are not fully met, the

resulting bias in the estimation from the Joint Model can surpass one from

other statistical models for censored data. Thus, when the sample size is not

large enough or the computation is not available, it is recommended to use the

Time-Dependent Cox model with caution. The trade-off is that hazard ratios

estimates can be potentially less accurate, depending on the data.

As mentioned earlier, there are different possible specifications for the

baseline hazard function h0(t) for the Joint Model with the same objective

to capture the non-linearity in the longitudinal trajectories. In this project,

the baseline hazard function is the piecewise-constant spline with six knots

at equally spaced percentiles of the observed event times. Theoretically, the
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increasing number of internal knots allows more flexibility and thus captures

various shapes of the h0(t). However, given the computational demand of the

Joint Model, the idea of increasing the number of knots to introduce more

flexibility is infeasible. Similarly, though theoretically it is possible to have

interaction or polynomial terms in the Cox PH model in survival submodel or

the LME in the longitudinal submodel, these options are not feasible for the

same reason.
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6.3 Future Work

As mentioned earlier, it is not possible to evaluate the model performances

of the Cox PH, the Time-Dependent Cox, and the Joint Model with the true

hazard ratio because it is not available. One possible direction to expand the

work is to use simulation studies with the similar setting to the PBC data.

Particularly, it is possible to simulate data with predetermined censoring rate

and hazard ratio. In that way, we can use simulated data to evaluate the

model performances by measuring the amount of bias present for each model,

and therefore draw conclusions on the PBC data analyses.

To avoid mis-specifying the distribution of the survival time, the baseline

hazard functions in the Cox PH and the Time-Dependent Cox models are

unspecified. However, it is possible to give the baseline function a specific

form such as Weibull, exponential, or lognormal distribution though generally,

even if the correct distribution can be parametrically specified, the Cox models

typically give results approximately close to those obtained from the parametric

model for censored data (Kleinbaum and Klein, 2010). For the Joint Model,

the baseline hazard function is specified as the piecewise-constant spline with

six knots at equally spaced percentiles of the observed event times. However,

there are other options with the same purpose to introduce more flexibility for

the longitudinal trajectories of the markers such as linear splines or restricted

cubic splines.

For variable selection, the χ2 likelihood ratio test is used for nested models

in each of the three statistical approaches. Other traditional variable selection

criteria such as Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) can be extended to survival analysis, where the penalty term is
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defined in terms of the uncensored events, instead of the number of observations

(Fan et al., 2005). Elastic net or LASSO regularization is not appropriate for

this PBC clinical data set because this is not a high dimensional setting where

elastic net or LASSO is used to obtain a parsimonious model. Usually, elastic

net or LASSO regularization is utilized to penalize the redundant covariates in

statistical genetics where the genomic data is of high-dimension.

In this project, the missing data is imputed using the last value carried

forward, which is a common approach when the data is missing at random.

Though this assumption fits in with the PBC data in the project, it is also pos-

sible to try multiple imputation methods for missing data in the longitudinal

measurements. The procedure is to impute the missing data multiple times by

injecting appropriate random variability, perform desired data analysis on the

complete imputed data, and average the parameter estimates across samples to

obtain a single point estimate. Multiple imputation methods are more compli-

cated and sophisticated, but the computation is often expensive and requires

a large sample size.

For simplicity, the alive and transplanted patients are combined into one

group. The future direction for this project is to use competing risk models

such as the cause-specific hazard model or the sub-distribution model (Fine-

Gray model) to correctly separate these two events. Another way to extend

the analysis is to use the Joint Model that uses more than one longitudinal

biomarker. It could be interesting to investigate the association between serum

bilirubin and overall survival in PBC, given the presence of another longitudinal

biomarker such as albumin or prothrombin.



Appendix A

Exploratory Analysis

This section includes the exploratory plots for the data exploration for the

other explanatory covariates in the PBC clinical data besides bilirubin such as

SGOT, prothrombin, and albumin. In particular, they include the histogram

and boxplots for baseline measurements; and spaghetti plots for longitudinal

measurements of biomarkers. In addition, Kaplan-Meier curves are used to

visualize the survival probability of 312 patients across different groups for

categorical covariates.
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Figure A.1: Distribution of albumin

Figure A.2: Distribution of alkaline before and after log transformation
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Figure A.3: Distribution of SGOT before and after log transformation

Figure A.4: Distribution of platelets before and after log transformation
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Figure A.5: Distribution of prothrombin before and after log transformation

Figure A.6: Boxplots of longitudinal bilirubin and albumin by outcomes
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Figure A.7: Boxplots of longitudinal alkaline and platelets by outcomes

Figure A.8: Boxplots of longitudinal SGOT and prothrombin by outcomes
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Figure A.9: Spaghetti plot of bilirubin by treatment groupss

Figure A.10: Spaghetti plot of bilirubin by sex groups
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Figure A.11: Survival probability in different ascites groups

Figure A.12: Survival probability in different spiders groups
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Figure A.13: Survival probability in different hepatomegaly groups

Figure A.14: Survival probability in different histologic groups
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Figure A.15: Survival probability in different edema groups

Figure A.16: Survival probability in different age groups. Age is catego-
rized into three groups: young, middle-aged, and high based on the histogram
distribution
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Figure A.17: Distributions of residuals from Linear Mixed-Effects
Longitudinal Submodel of the Joint Model

Figure A.18: Scatterplots of residuals from Linear Mixed-Effects
Longitudinal Submodel of the Joint Model



Appendix B

Supplementary Analysis

This section includes the supplementary summary tables for the analy-

sis of the PBC clinical data. In particular, they include the univariate and

multivariate analyses of the Linear Mixed-Effects model as the longitudinal

submodel of the Joint Model. In addition to that, there are summary tables

of the multivariate analyses of the three statistical models: Cox PH, Time-

Dependent Cox, and Joint Model using the different union sets of covariates

that are statistically significant from the backward variable selection for each of

these models. Last, it includes Bilirubin Analysis for each of the three models

in which bilirubin is the only covariate.
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Univariate Linear Mixed-Effects Model

Characteristics β̂ 95% CI p-value
Drug: placebo ref

0.4
D-penicillin -0.08 (-0.26, -0.10)

Age 0.00 (-0.01, 0.01) 0.9
Sex: male ref

0.017
female -0.35 (-0.64, -0.06)

Albumin -0.77 (-1.0, -0.57) <0.001
Alkaline 0.37 (0.25, 0.49) <0.001
Ascites: No ref

<0.001
Yes 0.87 (0.53, 1.2)

Edema: No edema ref
<0.001Edema no diuretics 0.13 (-0.12 , 0.39)

Edema diuretics 1.0 (0.63, 1.4)
Hepatomegaly: No ref

<0.001
Yes 0.64 (0.47, 0.81)

Histologic: 1 ref

<0.001
2 0.38 (-0.04, 0.79)
3 0.60 (0.20, 1.0)
4 1.1 (0.71, 1.5)

Platelets -0.45 (-0.67, -0.22) <0.001
Prothrombin 3.5 (2.4, 4.5) <0.001
SGOT 1.1 (0.9, 1.2) <0.001
Spiders: No ref

<0.001
Yes 0.63 (0.43, 0.82)

Year 0.11 (0.09 , 0.12) <0.001

Table B.1: Univariate Analysis for Linear Mixed-Effects Model
Longitudinal Submodel of Joint Model
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Multivariate Linear Mixed-Effects Model

Characteristics β̂ 95% CI p-value
Albumin -0.25 (-0.42, -0.07) 0.006
Alkaline 0.11 (0.02, 0.20) 0.018
Ascites: No ref

0.027
Yes 0.31 (0.04, 0.59)

Hepatomegaly: No ref
<0.001

Yes 0.27 (0.13, 0.41)
Prothrombin 1.3 (0.45, 2.2) 0.003
SGOT 0.82 (0.66, 1.0) <0.001
Spiders: No ref

<0.001
Yes 0.29 (0.13, 0.44)

Sex: male ref
0.003

female -0.31 (-0.52, -0.11)
Year 0.11 (0.09 , 0.12) <0.001

Table B.2: Multivariate Analysis for Linear Mixed-Effects Model
Longitudinal Submodel of Joint Model
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Significant Covariates for Cox PH Model

Multivariate Cox PH Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.11 (1.06 - 1.15) <0.001
Albumin 0.52 (0.32 - 0.85) 0.008
Age 1.04 (1.03 - 1.06) 0.094
Edema: No edema ref

0.019Edema no diuretics 1.04 (0.65 - 1.67)
Edema diuretics 2.37 (1.33 - 4.22)

Histologic: 1 ref

0.014
2 4.49 (0.60 - 33.8)
3 5.79 (0.79 - 42.5)
4 8.04 (1.09 - 59.5)

SGOT 1.00 (1.00 - 1.01) 0.012
Prothrombin 1.46 (1.20 - 1.78) <0.001

Table B.3: Multivariate Cox PH Analysis with Significant Covariates
from Variable Selection for Cox PH Model

Multivariate Time-Dependent Cox Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.20 (1.17 - 1.23) <0.001
Albumin 0.59 (0.36 - 0.97) 0.036
Age 1.06 (1.05 - 1.08) <0.001
Edema: No edema ref

0.003Edema no diuretics 1.18 (0.72 - 1.93)
Edema diuretics 3.09 (1.66 - 5.72)

Histologic: 1 ref

<0.001
2 1.97 (0.26 - 14.9)
3 4.48 (0.61 - 33.0)
4 6.69 (0.90 - 49.4)

SGOT 1.00 (0.99 - 1.00) 0.4
Prothrombin 1.11 (0.91 - 126) 0.3

Table B.4: Multivariate Time-Dependent Cox with Significant Covariates
from Variable Selection for Cox PH Model
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Survival Submodel of Joint Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.81 (1.60 - 2.04) <0.0001
Albumin 0.67 (0.41 - 1.08) 0.1011
Age 1.05 (1.03 - 1.07) <0.0001
Edema: No edema ref

0.003Edema no diuretics 1.97 (1.18 - 3.30)
Edema diuretics 3.11 (1.64 - 5.89)

Histologic: 1 ref

0.3422
2 1.72 (0.26 - 11.26)
3 2.02 (0.31 - 13.00)
4 2.58 (0.40 - 16.70)

SGOT 1.00 (0.99 - 1.00) 0.9569
Prothrombin 1.22 (0.91 - 1.51) 0.623

Table B.5: Survival Submodel of Joint Model with Significant Covariates
from Variable Selection for Cox PH Model
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Significant Covariates for Time-Dependent Cox

Multivariate Cox PH Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.15 (1.11 - 1.18) <0.001
Albumin 0.50 (0.31 - 0.81) 0.005
Age 1.04 (1.02 - 1.06) <0.001
Edema: No edema ref

0.002Edema no diuretics 0.97 (0.60 - 1.55)
Edema diuretics 2.92 (1.62 - 5.27)

Histologic: 1 ref

<0.001
2 4.63 (0.62 - 34.5)
3 6.39 (0.88 - 46.7)
4 10.9 (1.49 - 80.1)

Table B.6: Multivariate Cox PH Analysis with Significant Covariates
from Variable Selection for Time-Dependent Cox Model

Multivariate Time-Dependent Cox Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.20 (1.17 - 1.22) <0.001
Albumin 0.62 (0.38 - 1.01) 0.005
Age 1.07 (1.05 - 1.09) <0.001
Edema: No edema ref

0.001Edema no diuretics 1.26 (0.78 - 2.04)
Edema diuretics 3.31 (1.80 - 6.09)

Histologic: 1 ref

<0.001
2 1.85 (0.24 - 14.0)
3 4.35 (0.59 - 32.0)
4 7.09 (0.96 - 52.3)

Table B.7: Multivariate Time-Dependent Cox with Significant Covariates
from Variable Selection for Time-Dependent Cox Model
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Survival Submodel of Joint Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.84 (1.65 - 2.06) <0.0001
Albumin 0.60 (0.37 - 0.97) 0.0364
Age 1.05 (1.03 - 1.07) <0.0001
Edema: No edema ref

<0.001Edema no diuretics 2.16 (1.30 - 3.59)
Edema diuretics 3.63 (1.96 - 6.70)

Histologic: 1 ref

0.0878
2 0.92 (0.21 - 4.12)
3 1.23 (0.28 - 5.29)
4 1.70 (0.39 - 7.38)

Table B.8: Survival Submodel of Joint Model with Significant Covariates
from Variable Selection for Time-Dependent Cox Model
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Significant Covariates for Joint Model

Multivariate Cox PH Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.14 (1.11 - 1.17) <0.001
Albumin 0.37 (0.23 - 0.58) <0.001
Age 1.04 (1.03 - 1.06) <0.001
Edema: No edema ref

<0.001Edema no diuretics 1.01 (0.63 - 1.62)
Edema diuretics 3.32 (1.83 - 6.01)

Table B.9: Multivariate Cox PH Analysis with Significant Covariates
from Variable Selection for Joint Model

Multivariate Time-Dependent Cox Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.19 (1.16 - 1.21) <0.001
Albumin 0.57 (0.29 - 0.75) 0.002
Age 1.07 (1.05 - 1.09) <0.001
Edema: No edema ref

0.001Edema no diuretics 1.32 (0.83 - 2.10)
Edema diuretics 4.16 (2.25 - 7.70)

Table B.10: Multivariate Time-Dependent Cox with Significant Covariates
from Variable Selection for Joint Model

Survival Submodel of Joint Model
Characteristics Hazard Ratio 95% CI p-value
Bilirubin 1.84 (1.64 - 2.03) <0.0001
Albumin 0.52 (0.33 - 0.82) 0.054
Age 1.05 (1.04 - 1.07) <0.0001
Edema: No edema ref

<0.0001Edema no diuretics 2.05 (1.25 - 3.36)
Edema diuretics 3.84 (2.09 - 7.06)

Table B.11: Survival Submodel of Joint Model with Significant Covariates
from Variable Selection for Joint Model
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Univariate Bilirubin Analysis

Model Hazard Ratio 95% CI p-value
Model 1: Cox PH 1.11 (1.06 - 1.15) <0.001
Model 2: Time-Dependent Cox 1.20 (1.17 - 1.23) <0.001
Model 3: Joint Model 1.81 (1.60 - 2.04) <0.0001

Table B.12: Bilirubin Analysis with Significant Covariates for Cox PH Model

Model Hazard Ratio 95% CI p-value
Model 1: Cox PH 1.15 (1.11 - 1.18) <0.001
Model 2: Time-Dependent Cox 1.20 (1.17 - 1.22) <0.001
Model 3: Joint Model 1.84 (1.65 - 2.06) <0.0001

Table B.13: Bilirubin Analysis with Significant Covariates for Extended Cox

Model Hazard Ratio 95% CI p-value
Model 1: Cox PH 1.14 (1.11 - 1.17) <0.001
Model 2: Time-Dependent Cox 1.19 (1.16 - 1.21) <0.0001
Model 3: Joint Model 1.82 (1.64 - 2.03) <0.0001

Table B.14: Bilirubin Analysis with Significant Covariates for Joint Model



Appendix C

Mathematical Formulae

C.1 Kaplan-Meier Curve

In survival analysis, censoring is taken into account by an event indicator

δi = I(T ∗i ≤ Ci) such that Ti denotes the observed event time for Subject i

and Ci denotes the censoring time. Event indicator δi takes value 1 if the true

event time is observed and 0 otherwise. This censorship status can be used

to construct a non-parametric estimator which makes no assumptions on the

underlying distribution of the failure times (Rizopoulos, 2012). The Kaplan-

Meier (KM) survival probability at failure time t is estimated using the Law

of Total Probability:

Ŝ(t) = Ŝ(t− 1)× Pr(T ∗ > t | T ∗ > t− 1)

=
t∏
i=0

Pr(T ∗ > t | T ∗ > t− 1)
(C.1)

where Pr(T ∗ > t | T ∗ > t − 1) = ri−di
ri

such that ri denotes the number of

subjects at risk at unique time event ti and di denotes number of event ti.
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C.2 Log-Rank Test

In survival analysis, the log-rank test is used to test the difference in

survival between two or more independent groups. The formula is given by

Log-rank statistic =
G∑
i=1

(Ei −Oi)
2

V ar(Ei)
(C.2)

where i denotes the group, and Ei and Oi denote the expected and observed

number of events of interest respectively. The null hypothesis is that there is

no difference among the survival of the groups while the alternative hypothesis

states that there is a difference at any time t. In large samples, the log–rank

statistic is approximately χ2
G−1 with G − 1 degrees of freedom where G is the

number of groups being compared (Kleinbaum and Klein, 2010).



C.3 Box-Cox Transformation

Box-Cox transformation is a useful family of transformation to approxi-

mately normalize the data. It involves logarithmic and power transformations,

depending on the value of transformation parameter:

y∗ =


yγ − 1

y
, γ 6= 0

log(y), γ = 0

(C.3)

where y is the response variable. For γ = 0, the natural logarithm is used and

Box-Cox transformation is continuous in γ. Computationally, various choices

of γ are considered and the optimal value is selected to provide the best ap-

proximation of a normal distribution of the response y.
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