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Abstract

We explore error-correcting codes based on algebraic number fields using a

particular code construction given by Guruswami in “Constructions of Codes

from Number Fields” ([Guru]). After reviewing the necessary mathematical

background, we analyze the rate and relative distance of the given code, and

give an example of an asymptotically good code over an alphabet of size 31.
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1 Introduction to Codes

In this chapter we shall provide a brief introduction to the theory of error-

correcting codes. We refer the reader to [Rom] and [TV] for a more thorough

treatment.

1.1 Basic Terminology

The purpose of codes is to provide an efficient method of transferring informa-

tion over noisy channels. An important consideration in the communication of

information is the possibility of error. Hence, it is useful if the code construc-

tion allows for error detection and error correction. In communicating via a

telephone, for example, the significance of error detection and error correction

is clear; without it, the conversation could become garbled and difficult to

understand.

In general, an error-correcting code is an algorithm by which a sequence

of numbers (letters, etc.) may be expressed in a format which allows for (some)

errors in transmission to be detected and corrected. Ultimately, the goal is

efficiency, and thus brevity as well as accuracy is key.

The basic idea is that we have a particular message we want to send, and

to ensure the message is decipherable, we send an encoded message instead.

Formally, to create a code we use an alphabet Q, a set of q distinct symbols.
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We will call a string of some fixed length k of elements of Q a word, and we

say a message is a string of words. Thus, we may think of our possible word

set as Qk, where Qk is the set of strings of length k over Q.

We encode a word, which is a a string of length k over Q, by expressing

it as a string of length n over Q. That is, we create our code by taking any

nonempty subset C of Qn, where Qn is the set of all strings of length n over

Q. We call such a subset C a q-ary block code, and we say a codeword,

or encoded word, c, is a string in C, i.e. c = (c1, . . . , cn) ∈ C. We define an

encoded message to be a string of codewords. As each codeword is a string

of length n over Q, we say C has block length n.

We note that we shall always have n ≥ k. In fact, in order to have an

efficient error-correcting code, we take n > k, i.e. we build in some redundancy

(a concept to be discussed later).

We can view the encoding process as a one-to-one function E : Qk → Qn.

In this sense, we say that a q-ary block code C is the image E(Qk) ⊂ Qn.

We call the number of codewords in C, |C|, the size of C. Similarly, we view

the decoding process as a function: D : Qn → Qk, such that D ◦ E is the

identity map. For error-correcting codes, we use what is called minimum

distance decoding. That is, for a received message a′, we decode by taking

the codeword which is closest to the received message a′.
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For example, suppose Q = {0, 1}, k = 1, and n = 3. We can choose

C = {000, 111}, with our encoding function

E(x) =


000 if x = 0

111 if x = 1.

(Note that k = logq |C| = log2 2.) Then the message m = 1010110 would be

encoded as E(m) = 111000111000111111000. If an error occurs in transmis-

sion, i.e. suppose E(m)′ = 101000111000111111000 is received instead, we

would know at least one error occurred, as 101 is not a codeword. We would

decode by taking the “nearest” codeword, which is of course E(m). We would

be correct so long as only one error occurred in transmission, as the only way

to turn 101 into a codeword by changing one digit is to take 111. We call such

a code a repetition code, and we note that this particular example is capable

of detecting two errors in a single codeword, and correcting one.

Given two codewords x, y ∈ C we define the Hamming distance between

x and y, denoted d(x, y), to be the number of positions in which x and y

differ. We note that Hamming distance satisfies the triangle inequality, and

is a metric on C. We define the minimum distance of a code C, δ(C), as

follows:

δ(C) = minx 6=y∈C d(x, y).

In other words, the minimum distance implies that any two distinct codewords
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of C must differ in a at least δ(C) of the n positions.

We define the error size to be the number of errors which occur, i.e.

d(E(a), a′), where a is the original message and a′ is the received word. Now,

we call a code C t-error-detecting if whenever 1 ≤ error size ≤ t, the received

word is not a codeword. If C is t-error-detecting but not (t+1)-error-detecting,

we say C is exactly t-error-detecting. Similarly, if minimum distance de-

coding is able to correctly decode a message with error size t, we say C is

t-error-correcting. If C is t-error-correcting, but not (t+1)-error-correcting,

we say that C is exactly t-error-correcting.

In fact, we can relate the minimum distance and error-correcting abilities

of a code as follows.

Theorem 1 ([Rom]) Let C be a code. Then δ(C) = d ⇐⇒ C is exactly

bd−1
2
c-error-correcting.

Proof We note that our proof uses methods similar to that in [Rom].

Suppose δ(C) = d. Let a be the original codeword, and a′ the received word

satisfying d(a′, a) ≤ bd−1
2
c. Then a is the unique closest codeword to a′, for if

a∗ 6= a is at least as close to a′ as a is, then d(a∗, a′) ≤ bd−1
2
c. But

d(a, a∗) ≤ d(a, a′) + d(a′, a∗) ≤ 2 · bd− 1

2
c ≤ d− 1 < d = δ(C),

and thus we have a contradiction. Hence C is bd−1
2
c error-correcting.
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We will now show that C is exactly bd−1
2
c error-correcting. First, suppose

d is even. That is, suppose d = 2s for some s ∈ Z≥1. Let a and a∗ be two

codewords such that d(a, a∗) = 2s. Suppose that the codeword a is received

as some word a′ with error size s = d
2

= bd−1
2
c + 1. Suppose further that all

errors in a′ occur in exactly those positions in which a and a∗ differ, and that

a′ agrees with a∗ in all of those s positions. Then d(a′, a) = s, but

d(a′, a∗) = 2s− s = s.

Thus there would not be a unique closest codeword to a′.

Second, suppose d is odd. That is, suppose d = 2s + 1 for some s ∈ Z≥0.

Let a and a∗ be two codewords such that d(a, a∗) = 2s + 1. Suppose that the

codeword a is received as some word a′ with error size s+1 = b (2s+1)−1
2

c+1 =

bd−1
2
c+1. Suppose further that all errors in a′ occur in exactly those positions

in which a and a∗ differ, and that a′ agrees with a∗ in all of those s+1 positions.

Then d(a′, a) = s + 1, but

d(a′, a∗) = 2s + 1− (s + 1) = s.

Thus a′ would be incorrectly decoded as a∗.

Hence C is not bd−1
2
c+ 1-error-correcting.

Conversely, suppose C is exactly bd−1
2
c-error-correcting. If we had two

codewords a and a∗ such that d(a, a∗) ≤ d− 1, then it is possible the received
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word a′ would have exactly bd−1
2
c errors such that a′ is at least as close to a∗

as to a. If we had two codewords a and a∗ such that d(a, a∗) ≥ d+1, then the

code C would be bd
2
c-error-correcting. Hence δ(C) = d.

We shall also use the following concepts:

Definition 1 Let C be a q-ary code of block length n. Then

1. R(C) =
logq |C|

n
is called the rate of C.

2. D(C) = δ(C)
n

is called the relative distance of C.

The rate of a code is one way of expressing the code’s redundancy. For

the q-ary code C of block length n, the redundancy is n − logq |C|, as there

are qn possible possible strings of length n, but qn − |C| of them are invalid

codewords. We can calculate the redundancy from the rate easily, as the

redundancy equals n(1−R(C)). We think of the rate as a way to express the

amount of information being transmitted per block. The relative distance is

simply the minimum percentage of positions by which any two codewords of

C must differ.

1.2 Codes over Finite Fields

Now we will impose more structure on our codes. We let Fq be the field of q

elements, where q is a prime power. (For those in need of a brief review of field
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terminology, see Chapter 2). We shall define a code C of block length n ≥ 1

over alphabet Fq to be a subset of Fn
q . If C is an error-correcting code, then we

need the minimum distance, d(C), to be ‘large’. A formal definition follows.

Definition 2 We define an [n, k, d]q-code C to be a subset of Fn
q of size qk

such that two distinct codewords c1 and c2 of C differ in at least d of the n

positions.

Thus, we say that an [n, k, d]q-code C has block length n, dimension k, and

minimum distance d. Using this notation, we note that R(C) =
logq |C|

n
= k

n

and D(C) = d
n
. If C is a subspace of dimension k of the vector space Fn

q , then

we say C is a linear code. For non-linear codes, we note that the dimension,

k, need not be an integer.

1.3 Hamming [7, 4, 3]2 Code

Let us consider an example of a linear error-correcting code that can correct

single errors. One such code is the Hamming [7, 4, 3]2 code, in which the

encoding function E : F4
2 → F7

2 is a linear transformation and C = E(F4
2) is

the image of E. Thus, the Hamming code is linear, and we can find G, the

standard matrix representation of the linear transformation E. Formally, we

call such a matrix G a generator matrix.
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For the Hamming [7, 4, 3]2-code,

G =



1000111

0100011

0010101

0001110


.

We encode a word x ∈ F4
2 by multiplying G on the right of x.

Now, we may use the following parity check matrix H, which has the

property GH = 0, to determine if errors have occurred, and correct single

errors.

We let

H =



111

110

101

011

001

010

100



.

Suppose we encode [1010]. Multiplying by G, we get [1010010]. Note that

[1010010]H = 0.

Since d = 3 in this case, by Theorem 1, we can correct single errors. Now,

suppose we had a single error in transmission, and instead received [1011010].
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Then multiplying by H, we get [011], which corresponds to the fourth row of

H, and points to an error in the fourth digit, so the fourth digit must be 0

instead of 1.

1.4 Comparing the Rate and Relative Distance

Let C be an [n, k, d]q-code. Let us note some elementary relationships between

these parameters. Clearly, 0 ≤ k ≤ n and 0 ≤ d ≤ n. We note that 0 ≤

R(C) ≤ 1 and 0 ≤ D(C) ≤ 1.

We may also relate R(C) and D(C) using the Singleton Bound.

Theorem 2 (Singleton Bound) Given an [n, k, d]q-code C, we have k+d ≤

n + 1.

Hence we may conclude R(C) +D(C) ≤ 1 + 1
n
. Now, let us consider some

trivial examples of codes.

1. Consider an [n, 1, n]q-code. That is, k = 1 and d = n. This corresponds

to a code in which there are q possible (1-dimensional) messages and each

message x ∈ Fq 7→ (x, x, . . . , x) ∈ Fn
q . Such a code is called a repetition

code.

2. Consider an [n, n, 1]q-code. That is, k = n and d = 1. This corresponds

to a code in which the encoding function is essentially a permutation
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mapping from Fn
q → Fn

q .

3. Consider an [n, n− 1, 2]2-code. That is, q = 2, k = n− 1 and

d = 2. An example of such a code is the parity code defined by C =

{(v1, . . . , vn)|
∑n

i=1 vi = 0}. That is, each codeword x = (v1, . . . , vn−1) ∈

Fn−1
2 maps to (v1, . . . , vn−1, vn), where vn = 0 if x has an even number

of 1s, and vn = 1 if x has an odd number of 1s. In this case we call vn a

check digit. Codes with check digits are used, for example, in creating

ISBN numbers.

Now, in order to be good, a code C should have a relatively large minimum

distance (for the purposes of error-correction), and as little redundancy as

possible (to obtain a high information rate). For any fixed n, the task of

determining the “best” code is difficult. We let n → ∞ to get a sense of

the possible restrictions on R(C) and D(C). This leads us to the concept of

asymptotically good codes.

Definition 3 A family of codes {Ci}, where each Ci is an [ni, ki, di]-code,

is asymptotically good if, as ni →∞, the following hold:

1. R({Ci}) := lim inf ki

ni
> 0,

2. D({Ci}) := lim inf di

ni
> 0.

Later, we will explore a code construction which gives a family of asymp-
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totically good codes based on number fields, a result shown in [Guru]. Next,

however, we shall discuss another threshold by which codes may be considered

“good”: the Gilbert Varshamov threshold. The Gilbert Varshamov threshold

is an indicator of the “greatness” of a code.

1.5 Gilbert Varshamov threshold

We shall give only a brief discussion of the Gilbert Varshamov threshold; we

refer the reader to [TV].

Let us first introduce the entropy function, and then give the Gilbert Var-

shamov threshold.

Definition 4 We define the q-ary entropy function, denoted Hq(x), as

follows.

Hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Definition 5 We call RGV (δ) = 1−Hq(δ) the Gilbert Varshamov curve.

Theorem 3 (Gilbert Varshamov threshold) For a given q and δ in the

range 0 < δ < q−1
q

, if 0 < R ≤ 1 −Hq(δ), then there exists an asymptotically

good family of q-ary codes {Ci} such that R({Ci}) = R and D({Ci}) = δ.

That is, we know an asymptotically good family of codes {Ci} exists so long

as its parameters fall below the Gilbert Varshamov curve. Thus, an asymp-
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totically good family of codes {Ci} whose rate exceeds the Gilbert Varshamov

curve is said to “beat the Gilbert Varshamov threshold,” and is considered

superior. The existence of such codes, established by Tsfasman, Vladut, and

Zink, using algebraic geometry, was a major development of coding theory in

the 1980s.
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2 Introduction to Number Fields

In this chapter we review the algebraic number theory necessary for our code

construction. A more thorough treatment may be found in [Mar] or [Sam],

whose notation and treatment we follow closely.

2.1 Fields

Recall that a field is a commutative ring with unity in which every nonzero

element is a unit. A unit refers to an invertible element in a ring.

For every field K we may define a (unique) ring homomorphism

φ : Z 7→ K, where

φ(n) =


n︷ ︸︸ ︷

1 + . . . + 1 if n ≥ 0

−φ(|n|) otherwise.

If φ is injective, Z may be identified with the subring φ(Z) of K, in which

case we say that K is of characteristic 0. Otherwise, the ker(φ) is an ideal

pZ where p > 0. Hence Z/pZ may be identified with the subring φ(Z/pZ) of

K, from which it follows that Z/pZ is an integral domain. Hence p is in fact

prime, and K is isomorphic to Z/pZ ([Sam]). We say K is of characteristic

p. By convention, this finite field K is denoted Fp.

Now, we say a field K is an extension of a field L, written K/L, if L is a
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subfield of K. We define the degree of an extension K/L to be the dimension

of K as a vector space over L. That is, [K : L] = dimL K.

2.2 Ideals and Integral Domains

We call an additive subgroup A of a ring R an ideal of R if for every a ∈ A

and every r ∈ R, we have ra ∈ R and ar ∈ R. We note that the set of cosets

{r + A|r ∈ R} of A is a ring with the operations (s + A) + (t + A) = s + t + A

and (s+A)(t+A) = st+A so long as A is an ideal. We call this the quotient

or factor ring.

Moreover, a maximal ideal A of R is a proper ideal of R such that, if B is

an ideal of R and A ⊂ B ⊂ R, we have B = A or B = R. An ideal A of R is

called a prime ideal if A is a proper ideal such that if α, β ∈ R and αβ ∈ A,

then α ∈ A or β ∈ A.

Recall that an integral domain is a commutative ring with unity which

has no zero divisors. A zero divisor is a nonzero element α ∈ R, where R is

a commutative ring, such that nonzero β ∈ R exists satisfying αβ = 0.

We call an ideal A of an integral domain R a principal ideal if it is gen-

erated by a single element r ∈ R. That is, A is principle if A = rR for some

r ∈ R. If every ideal of R is principal, we say R is a principal ideal domain.

We say that an integral domain R is a unique factorization domain if
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every nonzero unit r ∈ R may be written as a product of irreducibles. Recall

that an irreducible is a nonunit element α ∈ R such that if α = βγ, where

β, γ ∈ R, then either β or γ is a unit. We note that while every principal ideal

domain is a unique factorization domain, the converse is not true.

We now remind the reader of two useful facts:

Given a ring R and an ideal A of R,

1. R/A is an integral domain ⇐⇒ A is prime,

2. R/A is a field ⇐⇒ A is maximal.

2.3 Modules

Recall that a module M over a ring R is a generalization of a vector space.

That is, M is an additive abelian group with a mapping R × M → M such

that the following hold for r1, r2 ∈ R and m1, m2 ∈ M :

1. r1(m1 + m2) = r1m1 + r1m2,

2. (r1 + r2)m1 = r1m1 + r2m2,

3. r1(r2m1) = (r1r2)m1,

4. 1m1 = m1.
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We say that M has a base if there exists a set {x1, . . . , xn} of elements of

M such that each m ∈ M may be written as a unique R-linear combination of

the xi (for 1 ≤ i ≤ n). In this case we say that M is free, and the cardinality

of the base is called the rank of M . Moreover, we say that a module M is of

finite type if there exists a finite set which generates M .

2.4 Algebraic and Integral Numbers

Given a ring R and a subring K of R, we call an element α ∈ R algebraic over

K if α is a root of a polynomial (not necessarily monic) with coefficients in

K. We define the minimal polynomial of α over K to be the polynomial of

lowest degree in K[x] having α as a root, and denote it by Irrα, to signify that

it is an irreducible polynomial, as can easily be seen. If no such polynomial

exists, we say α is transcendental over K. In addition, if every element of

the ring R is algebraic over K, we say that R is algebraic over K.

Now, if α satisfies a monic polynomial with coefficients in K, we say α is

integral over K. Thus, if K is a subfield of R, a number α algebraic over K

is necessarily integral over K. (This follows from the fact that, in a field, all

nonzero elements are units). Moreover, if R is a field containing a subfield K,

such that R is algebraic over K, we call R an algebraic extension of K.

A basic result of algebraic number theory is that, given a field R and a
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subfield K, if the degree of R over K is finite, then R is an algebraic extension

of K.

2.5 Conjugates

Given a ring R and a subring K of R, we say two algebraic elements α, α′ ∈ R

are conjugate over K if their minimal polynomials coincide.

Now, suppose α ∈ Qalg, where Qalg is the set of algebraic numbers in C.

Let

Conjα = {α′ ∈ C | α′ is a conjugate of α}.

We may interpret Conjα as the set of all the roots of the minimal polynomial

of α over Q. That is,

Irrα(x) =
∏

Conjα

(x− α′).

2.6 Integral Closure

Given a ring R and a subring A of R, we define the integral closure of A in

R to be the set A′ of elements of R which are integral over A. It can be shown

that A′ is in fact a subring of R which contains A. Also, if every element of R

is integral over A, we say R is integral over A.

Moreover, if A is an integral domain, and K its field of fractions, the

integral closure of A in K is called the integral closure of A. If A is its own
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integral closure, we say that it is integrally closed. That is, if every element

x ∈ K which is integral over A is also in A, we say A is integrally closed.

2.7 Number Fields

Now, a number field K is simply an extension of finite degree over Q. Note

that, as its degree is finite, a number field is necessarily an algebraic extension

of Q. In fact, if we take any algebraic number α, we may generate a number

field, denoted Q(α), by taking the set of all expressions resulting from repeated

multiplication, division, addition, and subtraction of α to itself.

Let us note that we may also construct a degree n number field by choosing

an irreducible polynomial f(x) ∈ Q[x] of degree n, and ‘finding’ an α whose

minimal polynomial is f . We do so in the following way: Take the ideal

I = (f) = fQ[x] generated by f . One may show that I is a maximal ideal

of Q[x]. (This follows from the fact that Q[x] is a principal ideal domain).

Now, since (f) is maximal, the quotient ring Q[x]/(f) is a field. Consider the

natural maps Q ↪→ Q[x] � Q/(f) such that a 7→ a + I. We can consider Q as

a subfield of Q/(f) (with some abuse of language), and we note that in Q/(f)

we have a root of f : x + I. (We have f(x + I) = f(x) + I = I). Letting

α = x + I, we have constructed the number field Q[x]/(f) = Q(α).

A perhaps more concrete definition of a number field is as a subfield of C of
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finite degree over Q. We note that, by the Fundamental Theorem of Algebra,

every finite extension of Q is in fact isomorphic to a subfield of C having finite

degree over Q.

2.8 Ring of Algebraic Integers

Just as arithmetic operations with elements of Q may be viewed as ratios of

elements of the discrete ring Z, we would like to identify a discrete subring of

K such that every element of K may be viewed as a ratio of elements of this

subring.

To do so, we introduce the concept an algebraic integer. We define an

algebraic integer of K to be an element x ∈ K such that x is the root of a

monic polynomial with coefficients in Z, i.e. x is integral over Z.

For the remainder of this paper, we use the notation

OK = {α ∈ K| α is an algebraic integer}.

The set OK forms a (discrete) subring so long as K is an algebraic number

field, and we call this set the ring of algebraic integers of K. We note that

OK is the integral closure of Z in K.

We have the following standard properties of OK .

1. Just as for Z, every nonzero prime ideal of OK is maximal.
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2. Every ideal I of OK has a unique expression as a product of prime ideals.

3. We have that OK is a free Z-module of rank n = [K : Q].

Now we shall define a norm function on the nonzero ideals and elements of

OK , which is possible since for any nonzero ideal I of OK , OK/I is finite.

Definition 6 Let I be a nonzero ideal of OK . Then we define the norm

of the ideal I, ‖I‖, as follows.

‖I‖ = |OK/I|.

Definition 7 Let x ∈ OK nonzero. Then we define the norm of the

element x, ‖x‖, to be the norm of the ideal generated by x. That is,

‖x‖ = ‖(x)‖.

Further, if x = 0, we say ‖0‖ = 0.

Suppose K is a number field, with I an ideal of OK . A standard fact is

that, if x ∈ I, then ‖I‖ divides ‖x‖.

2.9 Representing Algebraic Numbers as Matrices

Consider a number field Q(α) with degree n. We may think of Q(α) as a

vector space over Q, and hence fix a basis B = [1, α, α2, . . . , αn−1]. Now, for

any γ ∈ Q(α), we may define the linear map Lα : Q(α) → Q(α), where
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γ 7→ αγ. Further, as this transformation is linear, we may represent this

“left-multiplication by α” as some matrix Mα,B (dependent on our choice of a

basis).

In this way, we have created a tangible model for α in a commutative subset

of Mn(Q(α)) (the set of n × n matrices over Q(α)). We will see that we can

use Mα,B, among other things, to calculate the minimal polynomial of α, as

well as the norm and trace of α.

First, we note that we may find the minimal polynomial of α by calcu-

lating the characteristic polynomial of Mα,B. If the resulting polynomial is

irreducible, we have found the minimal polynomial. Otherwise we may write

the characteristic polynomial as a product of irreducibles, and check which

factor has α as a root.

We are now ready for the following definitions:

Definition 8 Given Q(α) with fixed basis B as above, the norm of α from

Q(α) to Q with respect to B is

NQ(α)/Q = det(Mα).

Definition 9 Given Q(α) with fixed basis B as above, the trace of α from

Q(α) to Q with respect to B is

trQ(α)/Q = trace(Mα).
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From basic linear algebra, we know that N(Q(α)/Q and tr(Q(α)/Q do not

depend on the choice of basis B. If B′ is a different basis for K/Q, then

Mα,B′ = AMα,BA−1 for some invertible A.

2.10 Embedding Number Fields into C

Let Q(α) be a number field of degree n. In contrast to the previous approach

of embedding Q(α) in a noncommutative ring, we can embed Q(α) in C in

numerous ways. For a number field of degree n, we have n distinct embeddings

into C. We shall now describe these embeddings.

Let f(x) = Irrα(x) ∈ Q[x], and recall that

f(x) =
n∏

i=1

(x− α(i)),

where α(i) ∈ Conjα.

Define

σi : Q(α) ↪→ C,

where

g(α) 7→ g(α(i)) for g ∈ Q[x].

Further suppose that r1 of the n embeddings are from K ↪→ R, leaving

n− r1 nonreal embeddings from K ↪→ C. Note that the complex embeddings
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come in complex conjugate pairs, and suppose we have r2 = n−r1

2
such pairs.

We call (r1, r2) the signature of K.

With this approach, we have the following alternative definitions for norm

and trace:

Definition 10 Let K be a number field of degree n, and let σ1, . . . , σn

denote the n distinct embeddings of K into C. Suppose α ∈ K and suppose

[Q(α) : Q] = d.

We define the trace of α from K to Q as

trK/Q(α) =
n∑

i=1

σi(α) =
n

d
trQ(α)/Q(α).

We define the norm of α from K to Q as

NK/Q(α) =
n∏

i=1

σi(α) = NQ(α)/Q(α)
n
d .

Moreover, trK/Q(α) = −an−1 and NK/Q(α) = (−1)na0, where the charac-

teristic polynomial of α is xn + an−1x
n−1 + . . . + a1x

1 + a0.

2.11 Absolute Values on Fields

Let us the introduce the concept of an absolute value.

Definition 11 Let K be a field. We say that a function

| | : K → R≥0

is an absolute value if the following hold ∀x, y ∈ K:
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1. |x| = 0 ⇐⇒ x = 0,

2. |xy| = |x||y|,

3. |x + y| ≤ |x|+ |y|.

Definition 12 An absolute value | | which satisfies |x+y| ≤ max{|x|, |y|},

∀x, y ∈ K is called ultrametric or non-archimedean. Otherwise, we say | |

is archimedean.

Definition 13 Two absolute values on K, | |1 and | |2, are equivalent if

there exists c ∈ R>0 such that |x|1 = |x|c2 ∀x ∈ K.

Moreover, if v1 and v2 are equivalent absolute values on K, either v1 and v2

are both archimedean, or both non-archimedean. We call an equivalence class

of absolute values of K a place of K. For a number field K, we define the finite

places of K to be the non-archimedean places of K. In fact, these correspond

to the nonzero prime ideals of OK . The correspondence is as follows. Suppose

℘ ⊂ OK is a prime ideal, and x ∈ K is nonzero. Then there is a well defined

integer n ≥ 0 such that ℘n|(x) but ℘n+1 - (x). We define

|x|℘ = NK/Q(℘)−n.

Alternatively, we may define |λ|℘i
= NK/Q(℘i)

−mi for λ ∈ OK , where λ =∏r
i=1 ℘mi

i , where r ∈ Z>0 and mi ∈ Z ∀1 ≤ i ≤ r. Writing x = α
β
, where
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α, β ∈ OK , we have

|x|℘ =
|α|℘
|β|℘

.

We define the infinite places of K to be the archimedean places of K. If

K has signature (r1, r2), then K has exactly (r1 + r2) infinite places. Suppose

σ1, . . . , σr1 are the real embeddings of K into C, and let q1, . . . , qr1 denote the

r1 infinite places of K. Then these r1 infinite places are given by the following

valuations:

|x|qi
= |σi(x)|, where 1 ≤ i ≤ r1.

Similarly, let σr1+1, . . . , σr1+r2 be nonreal embeddings of K into C, such that

the σr1+j are pairwise non-conjugate, and let qr1+1, . . . , qr1+r2 denote the r2

infinite places of K. Then these r2 infinite places are given by the following

valuations:

|x|qr1+j
= |σr1+j(x)|2, where 1 ≤ j ≤ r2.

2.12 The Discriminant and Root Discriminant

We now turn to the discriminant of a polynomial and number field.

Definition 14 Let f(x) = xn + an−1x
n−1 + . . . + a1x

1 + a0 ∈ Q[x], and let

(x− α1) · · · (x− αn) be its linear factorization over C. The discriminant of
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f is as follows:

disc(f) =
∏

1≤i≤j≤n

(αi − αj)
2.

In analyzing the discriminant of a polynomial f , we first note that disc(f) ∈

Z. We also note that disc(f) = 0 whenever f has a root of multiplicity greater

than one. This motivates the idea of a prime divisor of disc(f), a prime p

for which two distinct roots of f , once reduced modulo p, are congruent. This

will become useful in discussing ramification, but for now, let us introduce the

discriminant of a number field.

Definition 15 Let K = Q(α) be a number field of degree n, and OK its

ring of integers. The discriminant of K is as follows:

discK = dK = disc(OK) = det(tr(ωiωj)),

where OK = [ω1, ω2, . . . , ωn]Z.

Let us clarify the above definition. Let K and OK be as above. Let

ω ∈ OK , and let fω be the characteristic polynomial of ω. We have fω =

xn − tr(ω)xn−1 + . . . + (−1)nN(ω). In addition, we may calculate the trace of

ω as tr(ω) = ω(1) + ω(2) + . . . + ω(n), where ω(1), ω(2), . . . , ω(n) ∈ Conjω.

We are now ready for the following theorem.

Theorem 4 Let K = Q(α), where α is an algebraic integer, and f = Irrα.

Then dK = disc(f)
g2 , for some g ∈ Z≥1 and [1, α, α2, . . . , αn]Z is a subring of OK
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of index g.

We shall also find the concept of a root discriminant useful.

Definition 16 Let K = Q(α) be a number field of degree n. The root

discriminant of K, denoted rdK , is | dK |1/n.

A standard fact is that if L/K is an extension of number fields, then

rdL ≥ rdK . We shall see the case in which we have equality shortly.

The discriminant of a quadratic field is particularly easy to calculate. A

quadratic field is a field extension of degree 2 over Q. That is, a quadratic

field is of the form Q(
√

d) for some nonzero square-free d ∈ Q. If d < 0, the

we say that Q(
√

d) is an imaginary quadratic field. If d > 0, we say that

Q(
√

d) is a real quadratic field. In this case, we have:

disc(Q(
√

d)) =


d if d ≡ 1 (mod 4)

4d otherwise.

2.13 Galois Groups

Definition 17 Suppose K is a finite extension of a field L. Consider the set

AutL(K), the group of field automorphisms α of K such that α(x) = x ∀x ∈ L.

If |AutL(K)| = [K : L], we say that K/L is a Galois extension with Galois

group Gal(K/L) := AutL(K).

Moreover, for any finite extension K/L, the intersection of all fields M/K
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with the property that M/L is Galois is a field J , itself Galois over L, called

the Galois closure of K/L.

To clarify this definition, let us consider some examples. If we take K = L.

Then the Gal(K/L) is the trivial group, containing only the identity automor-

phism. If we take the extension Q(
√

5)/Q, then the Galois group contains the

identity automorphism, and the automorphism which exchanges
√

5 and −
√

5.

Now, suppose L = Q and K = Q( 3
√

2). Then AutL(K) = {1}, be-

cause the conjugates of 3
√

2, namely e
2πi
3

3
√

2 and e
4πi
3

3
√

2, are not real num-

bers. Thus, K/L is not a Galois extension. The Galois closure in this case is

J = Q( 3
√

2, e
2πi
3 ).

2.14 Behavior of Primes

While number rings are not necessarily unique factorization domains, we do

have that nonzero ideals in a number ring factor uniquely into a product of

prime ideals.

Now, let K/k be a finite extension of a number field k of degree n, with

OK its ring of integers. Let ℘ be a prime ideal of Ok, and suppose

℘OK = pe1
1 pe2

2 · · · p
el
l , where pi for 1 ≤ i ≤ l are distinct prime ideals of OK .

We say that pi, for 1 ≤ i ≤ l, are the prime ideals that lie above ℘ in OK .

Moreover, we call ei = e(pi|℘) the ramification index of pi. If there exists
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ei > 1, we say that the prime ideal ℘ is ramified in K/k; otherwise we say ℘

is unramified in K/k.

Moreover, if l = 1 and e1 = 1, we say the prime ideal ℘ is inert in K/k.

That is, a prime ideal ℘ is inert in K/k if it remains prime. If l > 1, we say ℘

is split in K/k.

The following are standard results of algebraic number theory.

Theorem 5 Let K/k be as above. A prime ideal ℘ ∈ Ok ramifies in K/k ⇐⇒

℘| dK/k.

Theorem 6 Let L/K be an extension of number fields. Then rdL = rdK ⇐⇒

L/K is unramified for every prime in K.

Now, remembering that every nonzero prime ideal in OK is maximal, note

that each OK/pi is a finite field of characteristic p, where ℘ lies over p ∈ Q.

(Note that ℘ ∩ Z = pZ). Thus, it is a finite extension of Z/(℘). We say the

residual degree, fi = f(pi|℘), of pi lying over ℘ is the degree of the field

extension [OK/pi : Ok/(℘)]. Equivalently we note that OK/pi is a finite field

of size Nk/Q℘f(pi|℘).

Recall that the degree of K/k is n. We may relate the ramification indices

and residual degrees in the following way:

l∑
i=1

eifi = n.
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Furthermore, we say that the prime ℘ splits completely if ei = fi = 1∀i.

Now, suppose K/k is Galois. Then e1 = e2 = · · · = el, and we shall call

this quantity e. Similary, f1 = f2 = · · · = fl, and we call this quantity f . We

then have efl = n. We say ℘ is totally ramified if e = n and f = l = 1,

inert if e = l = 1 and f = n, split completely if e = f = 1 and l = n.

For a quadratic extension K = Q(
√

d), we may use the concept of quadratic

residues to determine whether a prime p splits in K. In fact, if d is a quadratic

residue modulo p, then p splits completely in K. Recall that d ∈ Z is a

quadratic residue modulo p if d ≡ x2 (mod p) for some 0 < x < p. More-

over, d is a quadratic residue if and only if the Legendre symbol,
(

d
p

)
, is 1.

In general, we have
(

d
p

)
≡ d

p−1
2 (mod p).



36

3 Infinite Class Field Towers

In this chapter we review the basic elements of class field theory, which shall

be necessary for our code construction.

3.1 Class Groups and Class Number

Let K be a number field, andOK be its ring of integers. We shall now introduce

the notion of a class group. Essentially, a class group is a finite Abelian group

which measures how far OK is from being a principal ideal domain.

First, we need to define a fractional ideal. A fractional ideal is a subset

of K of the form a−1i, where a 6= 0 ∈ OK and i is an ideal of OK . It is clear

how to multiply two fractional ideals: a−1i · b−1j = (ab)−1ij.

Let us now give a formal definition.

Definition 18 Let IK be the group of fractional ideals of OK , and let

PK be the subgroup of principal ideals of OK . Then the class group of K,

denoted Cl(K), is as follows:

Cl(K) = IK/PK .

We shall also need to understand the S class group, where S is a finite set

of primes of OK .

Definition 19 Let K be a number field, and S be a finite set of primes of
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OK . Let us denote the subgroup of OK generated by S by 〈S〉. We define the

S class group of K, ClK,S, in the following manner.

ClK,S = ClK /〈S〉,

i.e. ClK,S is the group of ideal classes generated by all the prime ideals of OK

different from those in S.

Note that for a number field K, Cl(K) = {1} if and only if K is a principal

ideal domain, and ClK,S = {1} if and only if every ideal of OK is a principal

ideal times a product of elements of S.

Moreover, a fundamental result says that Cl(K) is finite ([Sam], [Mar]).

We call the |Cl(K)|, the order of the Cl(K), the class number of K.

In addition we shall need to speak of the p-rank of the class group of

K, and the S class group of K. Recall that by the Fundamental Theorem

of Abelian Groups, if G is an abelian group, G ' Zr × Z/m1Z × · · ·Z/mkZ,

where mi ∈ Z∀1 ≤ i ≤ k. We define the p -rk G = r + |{1 ≤ i ≤ k : p|mi}|.

Genus theory gives us the following threshold on the 2-rank of the class

group of a number field K, and may be found in any reference on class groups

or class field theory, such as [S].

Theorem 7 (Genus Theory) Let K be a quadratic number field, i.e. [K :

Q] = 2. Let Q be the set of primes such that q ∈ Q ⇐⇒ q| dK, and suppose
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|Q| = r. Then the 2 -rkClK ≥ r − 2. If K is imaginary, i.e. K = Q(
√

d) with

d < 0, then 2 -rkClK = r − 1.

3.2 Hilbert Class Fields

In this section we shall introduce the notion of Hilbert Class Fields, but before

we do so, let us define the following.

Definition 20 Let K/k be an extension of number fields. We say K/k is

1. unramified if every prime ideal of k is unramified in K/k,

2. abelian if K/k is Galois with abelian Galois group,

3. a p-extension if K/k is Galois with [K : k] = pn for some integer n and

prime p.

Definition 21 Let K be a number field. The Hilbert Class Field of K,

denoted HCF (K), is an extension of K which satisfies the following properties:

1. HCF(K) is Galois over K

2. Gal(HCF (K)/K) is abelian

3. HCF(K)/K is unramified

4. HCF(K) is maximal with respect to the above properties
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Let H be the Hilbert Class Field of a number field K. By a famous theo-

rem called the Artin Reciprocity Law, there is a canonical isomorphism from

Gal(H/K) to Cl(K). Thus, the degree of H over K is equal to the class

number of K. That is, [H : K] = |Cl(K)|. Moreover, H = K exactly when

Cl(K) = {1}. In addition, a prime ideal ℘ of K splits completely in H if and

only if ℘ is principal in K.

Also, H contains all other unramified abelian extensions of K, Gal(H/K) ∼=

Cl(K) and each subgroup G of Gal(H/K) is isomorphic to Gal(H/H ′), where

H ′ is a unique unramified abelian extension of K.

We shall also need the notion of a Hilbert p-class field.

Definition 22 Let K be a number field. The Hilbert p-class field is the

maximal p-extension of K contained in HCF(K).

3.3 Class Field Towers

We may use Hilbert Class Fields in the construction of class field towers,

which will become useful later. The formal definition follows.
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Definition 23 Let K0 be a field. The class field tower of K0 is the

sequence of field extensions K1, K2, . . . , Ki, . . . of K0 where

K1 = HCF (K)

K2 = HCF (K)

...

Ki = HCF (Ki−1)

...

Hence we see that the sequence K1, K2, . . . , Ki, . . . stabilizes when some Ki

has trivial class group. That is, Ki = Ki−1 ∀i ≥ n if there exists Kn such that

Cl(Kn) = {1}.

Class field towers also have a useful property relating to root discriminants.

Namely, if rd(K0) = r, then rd(Ki) = r ∀i. That is, the root discriminant

remains constant all the way up the tower.

The p-class field tower is defined similarly, where each term Ki of the

sequence K1, K2, . . . , Ki, . . . is the p-Hilbert class field of Ki−1.

In fact, there exist infinite class field towers, a result shown by Golod and

Shafarevich. In the next few sections, we will see how such infinite towers may

be constructed.
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3.4 Class Field Towers with Primes Splitting

For our purposes, we shall need to understand a modified version of p-class

field towers, in which a set of primes split completely up the tower.

Definition 24 Let K be a number field, and T ⊂ OK be a set of prime

ideals. The p-class field of K in which every prime in T splits completely is

called the T -decomposing p- class field of K, denoted KT
p .

Definition 25 Let K0 be a number field and T ⊂ OK0 a set of prime

ideals. The T -decomposing p-class field tower of K0 is the sequence of

field extensions K1, K2, . . . , Ki, . . . of K0 where

K1 = (K0)p
T

K2 = (K1)
T
p

...

Ki = (Ki−1)
T
p

...

3.5 Golod-Shafarevich Theory

Golod and Shafarevich showed that there exist number fields K with infinite

class field towers. The criteria for the existence of such towers is based on
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lower thresholds on the p-rank of Cl(K).

Theorem 8 ([FM]) Let K be a number field with signature (r1, r2), and p ∈ Z

be prime. Suppose

p -rkCl(K) ≥ 2 + 2
√

r1 + r2 + 1.

Then the p-class field tower of K is infinite.

The following modified version of the Golod-Shafarevich Criterion, involv-

ing T - decomposing 2-class fields in which a given set of primes split completely,

may be found in [Mai]

Theorem 9 Let K be a number field with signature (r1, r2) and T be a finite

set of primes of OK. Suppose

2-rk ClK,T ≥ 2 + 2
√

r1 + r2 + |T |+ 1.

Then the T -decomposing class field tower of K is infinite.

For our purposes, the following constrained version of Golod-Shafarevich,

which is applicable for imaginary quadratic extensions, will suffice.

Theorem 10 ([Guru]) Let P and Q be nonempty disjoint sets of primes.

Suppose K/Q is an imaginary quadratic extension such that K is ramified at
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a prime q ⇐⇒ q ∈ Q. Now, let T be the set of all prime ideals of OK that

lie above the primes in P . If

|Q| ≥ 3 + |T | − |P |+ 2
√

2 + |T |,

then K has an infinite T -decomposing 2-class field tower.

Proof

Suppose P = {p1, . . . , ps}. Since Q contains all primes at which K is

ramified, and P ∩Q = ∅, we know P contains only primes which are inert or

split.

Let Psplit = {p ∈ P | p splits in K/Q}, and Pinert = {p ∈ P | p is inert in K/Q}.

Further suppose that |Psplit| = a, from which it follows that |Pinert| =

s− a.

Thus T will have the form

T = {℘1, ℘1, . . . , ℘a, ℘a︸ ︷︷ ︸
2a

, ℘a+1, . . . , ℘s︸ ︷︷ ︸
s−a

},

where ℘i and ℘i, for 1 ≤ i ≤ a are the 2a prime ideals in T lying above the a

primes in Psplit and ℘i, for a + 1 ≤ i ≤ s are the s− a primes ideals which lie

above the s− a primes in Pinert.

Now, inert primes are clearly principal, and for a split prime ℘ we have

(℘) = ℘℘ ⇒ ℘ = ℘−1(℘) ⇒ [℘] = [℘]−1, so ℘ and ℘ generate the same cyclic

subgroup. That is, 〈T 〉 = 〈{℘1, . . . , ℘a}〉.
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Thus, if the |T | = t, we have s − a + 2a = t ⇒ a = t − s, and an upper

threshold on the 2 -rk of the subgroup generated by T is a.

We have 2 -rkClK,T ≥ 2 -rkClK −a. From genus theory (Theorem 7), we

know 2 -rkClK ≥ |Q| − 1. Thus, we have

2 -rkClK,T ≥ 2 -rkClK −a

≥ |Q| − 1− a.

Further, note the signature of an imaginary quadratic field is (r1, r2) =

(0, 1).

Now, we have

|Q| ≥ 3 + |T | − |P |+ 2
√
|T |+ 2

⇐⇒ |Q| ≥ 3 + t− s + 2
√

t + 2

⇐⇒ |Q| ≥ 1 + t− s + 2 + 2
√

0 + 1 + t + 1

⇐⇒ |Q| ≥ 1 + a + 2 + 2
√

r1 + r2 + t + 1

⇐⇒ |Q| − 1− a ≥ 2 + 2
√

r1 + r2 + t + 1

As 2 -rkClK,T ≥ |Q| − 1 − a, we have satisfied the constrained Golod-

Shafarevich criterion of Theorem 9. Thus, K has an infinite T -decomposing

2-class field tower.
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4 Code Construction

We are now ready to summarize Guruswami’s Code Construction ([Guru]).

We shall first establish the general form of the code, and then provide the

constraints on the given parameters.

The basic idea of the code construction is as follows. Suppose K is a number

field of degree m and signature (r1, r2). Let p1, . . . pn be nonzero prime ideals

of OK , such that ‖p1‖ ≤ ‖p2‖ · · · ≤ ‖pn‖. We will take our message set to be

those elements of OK which are bounded in “size” by a positive constant B,

which will be dependent on rdK .

There exists a good notion of size of the elements of OK using a “shift pa-

rameter” z, a slight technical modification of adding the absolute values of the

embeddings of K into C. We take our message set to be all the elements of OK

with size bounded by a particular constant B, which is chosen to guarantee a

one-to-one encoding function with particular minimum distance. More techni-

cally, we will take our message set of the code to be {x ∈ OK | sizez(x) ≤ B}.

Taking the block length of the code to be n, we encode a message x ∈ OK

by the encoding function

E : OK → OK/p1 × · · · × OK/pn,

where x 7→ (x/p1, . . . , x/pn).
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Here, x/pi is shorthand for x + pi ∈ OK/pi, for 1 ≤ i ≤ n.

We shall call such a code a number field code, and denote it by CK . We

say that CK has parameters (n, p1, . . . , pn; B; z). We consider the number of

elements in our alphabet to be ‖pn‖, as pn is the ideal of largest norm.

4.1 Notion of Size

We shall now make the notion of size more precise.

Let K be a number field of degree m with signature (r1, r2). Let q1, . . . , qr1+r2

denote the (r1 + r2) infinite places of K. Further, let | |q1 , | |q2 , . . . , | |qr1
be the

archimedean absolute values corresponding to the r1 real embeddings of K into

C, and | |qr1+1 , . . . , | |qr1+r2
be the archimedean absolute values corresponding

to the r2 complex embeddings of K into C. We define the size of x to be

size(x) =

r1∑
i=1

|x|qi
+

r2∑
j=1

2
√
|x|qr1+j

.

This definition of size has the following properties, which are shown in

[Guru].

1. If x1, x2 ∈ OK , then size(x1 − x2) ≤ size(x1) + size(x2),

2. If x ∈ OK , then ‖x‖ ≤
(

size(x)
m

)m

.

From the above properties we obtain:
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3. If x1, x2 ∈ OK , where size(x1) ≤ B and size(x2) ≤ B, then ‖x1 − x2‖ ≤(
2B
m

)m
.

Now, when we talk about a “shift” parameter of size, we simply mean

that we are adjusting the absolute value by some constant. For example, if

we have the absolute value |
√

3 +
√
−5|, and we wish to shift by 1, we take

|
√

3 +
√
−5 − 1|. Now, take x ∈ OK as above, and take the shift parameter

z ∈ Rr1 × Cr2 . Then the ith component of z is simply the constant by which

we are shifting |x|qi
. That is, we are shifting the archimedean absolute values

by z. A formal definition of this size modification follows.

Definition 26 Let K be as above, where σ1, . . . σr1 denote the real embed-

dings of K into C, and σr1+1, . . . , σr1+r2 denote the nonreal embeddings of K

into C. Let z ∈ Rr1 × Cr2 .

1. We define the real shifted absolute value, a
(x)
i , to be

a
(x)
i = |σi(x)− zi| where 1 ≤ i ≤ r1.

2. We define the nonreal shifted absolute value, b
(x)
j , to be

b
(x)
j = |σr1+j(x)− zr1+j|2 where 1 ≤ j ≤ r2.

3. We define the size shifted by z, sizez(x), to be

sizez(x) =

r1∑
i=1

a
(x)
i +

r2∑
j=1

2

√
b
(x)
j .
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Recall that we wish to take our message set to the set of elements of OK

with size bounded by B. In fact, there exists a size shift z which allows us to

calculate a lower bound for the number of elements in the message set of CK ,

i.e. |{x ∈ OK | sizez(x) ≤ B}|. From now on, we adopt the convention that

whenever the value of B is chosen, a choice of z satisfying the following theorem

is also chosen and fixed. Using such a z will become useful in analyzing the

rate of the code.

Theorem 11 ([Guru]) Let K be a number field of degree m and signature

(r1, r2), with discriminant dK. For any B ∈ R>0, there exists z ∈ Rr1 × Cr2

such that

|{x ∈ OK | sizez(x) ≤ B}| ≥ 2r1πr2Bm

m!
√
| dk |

.

4.2 Lower Bounds on D(CK) and R(CK)

Guruswami ([Guru]) shows the following lower bound for the minimum dis-

tance of our code CK .

Theorem 12 Let CK be the number field code with parameters (n, p1, . . . , pn; B; z),

where [K : Q] = m. Suppose

‖p1‖ × ‖p2‖ × · · · × ‖pl‖ >

(
2B

m

)m

for some integer l ∈ [1, n].

Then δ(CK) ≥ (n− l + 1).
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Proof Suppose there exist two codewords, E(x1) and E(x2), whose Ham-

ming distance is n − l. That is, suppose E(x1) and E(x2) agree in l places.

Let us denote these l places by 1 ≤ i1 < i2 < · · · < il ≤ n.

Then

(x1 − x2) ∈ pi1 · · · pil

=⇒ ‖pi1‖ × · · · × ‖pil‖ | ‖x1 − x2‖

=⇒ ‖x1 − x2‖ ≥ ‖pi1‖ × · · · × ‖pil‖

=⇒ ‖x1 − x2‖ ≥ ‖p1‖ × · · · × ‖pl‖,

since ‖p1‖ ≤ · · · ≤ ‖pl‖.

Also, as sizez(x1) ≤ B and sizez(x2) ≤ B, we have
(

2B
m

)m ≥ ‖x1 − x2‖.

Thus, we have

(
2B

m

)m

≥ ‖x1 − x2‖ ≥
l∏

i=1

‖pi‖.

Hence, if ‖p1‖ × ‖p2‖ × · · · × ‖pl‖ >
(

2B
m

)m
, then two codewords agree to

at most l − 1 places. That is, δ(CK) ≥ n− l + 1.

Definition 27 For the code CK with parameters (n, p1, . . . , pn; B; z), where

[K : Q] = m, we define

∆ := 1−
m log2

2B
m

n log2 ‖p1‖
,

and call this the designed relative distance of the code.
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Corollary 1 Let CK be as in Theorem 12.

If

∆ := 1−
m log2

2B
m

n log2 ‖p1‖
> 0,

then D(CK) > ∆ > 0.

Proof

Let l =
⌈(

m log2( 2B
m

)

log2 ‖p1‖

)⌉
.

Clearly l >
m log2( 2B

m
)

log2 ‖p1‖ ⇒ ‖p1‖l >
(

2B
m

)m
, and we have

‖p1‖ × ‖p2‖ × · · · × ‖pl‖ ≥ ‖p1‖l >

(
2B

m

)m

.

Thus, by Theorem 12, we have δ(CK) ≥ n− l + 1.

Then

δ(CK) ≥ n−

⌈(
m log2(

2B
m

)

log2 ‖p1‖

)⌉
+ 1

> n−

(
m log2(

2B
m

)

log2 ‖p1‖

)
, as

(
m log2(

2B
m

)

log2 ‖p1‖

)
+ 1 >

⌈(
m log2(

2B
m

)

log2 ‖p1‖

)⌉

⇐⇒ −

⌈(
m log2(

2B
m

)

log2 ‖p1‖

)⌉
+ 1 > −

(
m log2(

2B
m

)

log2 ‖p1‖

)
.

Thus we have

D(CK) > 1−
m log2

(
2B
m

)
n log2 ‖p1‖

.
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That is,

D(CK) > ∆ > 0.

We shall let d0 = n∆ = n − m log2( 2B
m )

log2 ‖p1‖ , the resulting lower bound on the

minimum distance.

Remark We note that the condition in Corollary 1, that ∆ > 0, leads us

to the following constraint on our choice of the constant B.

We have

∆ > 0

⇐⇒ 1−
m log2

2B
m

n log2 ‖p1‖
> 0

⇐⇒
m log2

(
2B
m

)
log2 ‖p1‖

< n

⇐⇒ m log2

(
2B

m

)
< n log2 ‖p1‖

⇐⇒ log2

(
2B

m

)
<

n

m
log2 ‖p1‖

⇐⇒
(

2B

m

)
< ‖p1‖

n
m

⇐⇒ B <
m

2
‖p1‖

n
m .
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We remark that our constraint on B from Corollary 4.2 also guarantees

that our encoding function

E : OK → OK/p1 × · · · × OK/pn,

where x 7→ (x/p1, . . . , x/pn),

is one-to-one.

Let us now turn to the rate of the code CK . We have the following:

Theorem 13 Let CK be the number field code with parameters (n, p1, . . . , pn; B; z),

where [K : Q] = m, and the signature of K is (r1, r2). Then

R(CK) ≥
log2(2

r1πr2Bm)− log2 m!− log2

√
| dK |

n log2 ‖pn‖
.

Proof Recall that R(CK) = k
n
, where k is the dimension and n is the

block length.

Moreover, from Theorem 11, we have chosen z such that the size of our

message set is bounded:

|{x ∈ OK | sizez(x) ≤ B}| ≥ 2r1πr2Bm

m!
√
|dk|

.

As our encoding function E is one-to-one, we have |CK | = |{x ∈ OK | sizez(x) ≤

B}|. So in our case k = log‖pn‖ |CK | = log2 |CK |
log2 ‖pn‖ = log2 |{x∈OK | sizez(x)≤B}|

log2 ‖pn‖ .
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Thus we have

R(CK) ≥ log2 |{x ∈ OK | sizez(x) ≤ B}|
n log2 ‖pn‖

≥
log2

(
2r1πr2Bm

m!
√

| dk |

)
n log2 ‖pn‖

=
log2(2

r1πr2Bm)− log2 m!− log2

√
| dK |

n log2 ‖pn‖
.

Corollary 2 Let CK be as in Theorem 13, and suppose B < m
2
‖p1‖

n
m . Then

n log2 ‖pn‖R(CK) >

(n− δ(CK)) log2 ‖p1‖+ r2 log2

π

4
+ m log2 e−m log2

√
rdK − log2 3m.

Proof To obtain this more explicit lower bound, let us recall the Stirling

approximation for factorials [Rob]:

m! ≈ m̂! :=
√

2πm
(m

e

)m

∀m ≥ 1.

The error in this approximation is estimated by

e(
1

12m+1) <
m!

m̂!
< e(

1
12m).

In fact, it’s enough to use

√
2πm

(m

e

)m

≤ 3m
(m

e

)m

,
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from which we obtain

n log2 ‖pn‖R(CK) >

(n− d0) log2 ‖p1‖+ r2 log2

π

4
+ m log2 e−m log2

√
rdK − log2 3m,

where d0 = n∆ = n− m log2( 2B
m )

log2 ‖p1‖ , as before.

Then, by Corollary 1, we have δ(CK) > d0, which implies

n log2 ‖pn‖R(CK) >

(n− δ(CK)) log2 ‖p1‖+ r2 log2

π

4
+ m log2 e−m log2

√
rdK − log2 3m.



55

5 Constructing a Family of Codes {Ci} from

Totally Complex Fields

We shall now explore the code construction from the previous section for a

family of totally complex number fields. This will allow us to construct an

asymptotically good family of codes.

Now, we would like our infinite sequence of number fields K0, K1, . . . , Ki, . . .,

from which we will construct our family of codes {Ci}, to have several prop-

erties. First, we would like rdKi
to be bounded, as this will become useful

in ensuring R({Ci}) > 0 and D({Ci}) > 0. In addition, as we would like to

keep the alphabet size of our code as small as possible, we need our sequence

of number fields to have several prime ideals of small norm. We can ensure

the first criterion by taking the Ki to be non-trivial unramified extensions, in

which case rdK0 = rdK1 = · · · = rdKi
= · · · . The second may be satisfied if we

have a set of primes P ⊂ Q which splits completely in each Ki. Given these

properties, a natural choice is to take K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ · · · to be an

infinite T -decomposing p-class field tower, where T is the set of prime ideals

in K0 lying above P .

In terms of actual construction, we will use the constrained version of

Golod-Shafarevich, found in Theorem 10, which gives a criterion for the exis-
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tence of infinite T -decomposing 2-class field towers, where K0 is an imaginary

quadratic field.

5.1 R({Ci}) and D({Ci})

We shall now assume our code is constructed from a totally complex number

field K0, such that we have an infinite sequence K0, K1, . . . , Ki, . . ., where each

Ki is a non-trivial unramified extension of Ki−1, for i ≥ 1, and there exists a

set P = {p1, . . . , ps} of primes which split completely in Ki/Q, ∀i.

Let us fix an arbitrary K = Ki for some i ≥ 1. Suppose [K : Q] = m,

[K0 : Q] = m0, and |P | = s. Thus the signature of K is (0, m
2
), and there are

m0s prime ideals of K0 which split completely up the tower. We shall consider

the code CK with parameters (n, p
(1)
1 , . . . , p

(m)
1 , . . . , p

(1)
s , . . . , p

(m)
s ; B; z), where

p
(1)
j , . . . , p

(m)
j are the prime ideals of K lying above pj for 1 ≤ j ≤ s, where

n = sm, B = cm for some fixed c ∈ R>0, and z ∈ Cm
2 , the shift parameter

noted earlier.

We note that for each 1 ≤ j ≤ s, ‖p(1)
j ‖ = ‖p(2)

j ‖ = · · · = ‖p(m)
j ‖ = pj. We

also note rdK0 = rdK , as before.

We have thus constructed a family of codes {Ci}, where the code Ci is based

on Ki as above, for i ≥ 1. We have fixed K = Ki for some i ≥ 1 , and we let

C denote Ci.
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Let us now consider the rate and relative distance of our family of codes

{Ci}. More specifically, we are interested in which parameters yield asymptot-

ically good codes.

Theorem 14 Let the family of codes {Ci} be as above. If c < 1
2
ps

1, then in the

limit of large m →∞, we have

R({Ci}) >
log2 p1

log2 ps

1−D({Ci})−
log2

(
2
e

√
rdK

π

)
s log2 p1

 .

Proof Analyzing c, we have

c <
1

2
ps

1

⇐⇒ cm <
m

2
(p1)

sm
m

⇐⇒ B <
m

2
(p1)

n
m ,

and thus we may apply Corollary 2.

Substituting r2 = m
2

and n = sm into the formula from Corollary 2,
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we have

n log2 psR(C) >

(n− δ(C)) log2 p1 +
m

log2 ps

(
log2

(π

4

) 1
2

+ log2 e− log2

√
rdK

)
− log2 3m

log2 ps

⇐⇒ R(C) >
1

n log2 ps

(
(n− δ(C)) log2 p1 +

m

log2 ps

log2

2

e

√
rdK

π
− log2 3m

log2 ps

)

=

(
1− δ(C)

n

)
log2 p1

log2 ps

− 1

s log2 ps

log2

2

e

√
rdK

π
− log2 3m

log2 ps

.
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Then, in the limit of large m →∞, we have

R({Ci}) > (1−D({Ci}))
log2 p1

log2 ps

− 1

s log2 ps

log2

(
2

e

√
rdK

π

)
log2 p1

log2 ps

=
log2 p1

log2 ps

1−D({Ci})−
log2

(
2
e

√
rdK

π

)
s log2 p1

 .

Theorem 15 If rdK < πe2

4
p2s

1 , the above construction gives an asymptotically

good family of codes {Ci} for any value of c in the range 1
e

√
rdK

π
< c < 1

2
ps

1.

In particular, such a family exists with D({Ci}) in the range

0 < D({Ci}) < 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

,

and

R({Ci}) >
log2 p1

log2 ps

1−D({Ci})−
log2

(
2
e

√
rdK

π

)
s log2 p1

 .

Proof We see that c < 1
2
ps

1 ensures that we may apply Theorem 14. That

is, the construction has the following property:

R({Ci}) >
log2 p1

log2 ps

1−D({Ci})−
log2

(
2
e

√
rdK

π

)
s log2 p1

 .

Analyzing the above, we see that R({Ci}) > 0 if and only if rdK < πe2

4
p2s

1 ,

with c > 1
e

√
rdK

π
.
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As we want D({Ci}) > 0, it is clear we must have

1−
log2

(
2
e

√
rdK

π

)
s log2 p1

> D({Ci}) > 0.

We see that

1−
log2

(
2
e

√
rdK

π

)
s log2 p1

> 0 ⇐⇒ rdK <
πe2

4
p2s

1 :

We have

rdK <
πe2

4
p2s

1

⇐⇒ rdK

π
<
(e

2
ps

1

)2

⇐⇒ 2

e

√
rdK

π
< ps

1

⇐⇒ log2

(
2

e

√
rdK

π

)
< s log2 p1

⇐⇒
log2

(
2
e

√
rdK

π

)
s log2 p1

< 1

⇐⇒ 0 < 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

.

We see that rdK < πe2

4
p2s

1 implies 1
e

√
rdK

π
< 1

2
ps

1, and thus we may choose

c in that range. In fact, D({Ci}) < 1 −
log2

„
2
e

q
rdK

π

«
s log2 p1

so long as we choose

c > 1
e

√
rdK

π
:
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We have

D({Ci}) < 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

⇐⇒ 1

n

(
n−

m log2(
2B
m

)

log2 p1

)
< 1−

log2

(
2
e

√
rdK

π

)
s log2 p1

⇐⇒ 1−
m log2(

2B
m

)

n log2 p1

< 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

⇐⇒ 1−
m log2(

2B
m

)

sm log2 p1

< 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

⇐⇒
log2(

2B
m

)

s log2 p1

>

log2

(
2
e

√
rdK

π

)
s log2 p1

⇐⇒ log2

(
2B

m

)
> log2

(
2

e

√
rdK

π

)

⇐⇒ 2B

m
>

2

e

√
rdK

π

⇐⇒ B >
m

e

√
rdK

π

⇐⇒ cm >
m

e

√
rdK

π

⇐⇒ c >
1

e

√
rdK

π
.

Thus, we have R({Ci}) > 0 and D({Ci}) > 0, which implies {Ci} is asymp-

totically good. By varying c in the given range, we achieve asymptotically

good codes {Ci} with D({Ci}) in the range 0 < D({Ci}) < 1−
log2

„
2
e

q
rdK

π

«
s log2 p1

and

R({Ci}) > log2 p1

log2 ps

(
1−D({Ci})−

log2

„
2
e

q
rdK

π

«
s log2 p1

)
.
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Remark Although Theorem 15 is implicit in Guruswami ([Guru]), we

feel it is helpful to state it explicitly. We note that as c approaches 1
e

√
rdK

π
,

D({Ci}) approaches 1−
log2

„
2
e

q
rdK

π

«
s log2 p1

and R({Ci}) approaches 0. Also, c < 1
2
ps

1

ensures D({Ci}) > 0. The most important point, however, is the bound on

the root discriminant; this bound allows us to choose a c giving both positive

relative distance and rate.

5.2 Example

We shall now give an example of a family of codes {Ci} based on the previous

construction. We shall use the Golod-Shafarevich criterion to construct an

infinite T -decomposing 2-class field tower K0, K1, . . . , Ki, . . ., which will have

the desired property that ∀i, Ki is unramified, and T splits completely all the

way up the tower. We note that our example, although similar, is different

from that of Guruswami ([Guru]). Guruswami gives an example of a code

with alphabet size 29, which, as in our example, uses prime ideals of the same

norm. He also discusses an example using prime ideals of different norms,

which yields a code with alphabet size 19.

Let α = 3 · 5 · 7 · 11 · 13 · 17 · 23, and take K0 = Q(
√
−α). This imaginary

quadratic number field has the following properties.

Theorem 16 Let K0 be as above. Then



63

1. rdK0 =
√

4α ≈ 4845.9736,

2. The prime 31 splits into a set T of two primes ideals of norm 31 in OK0,

3. K0 has an infinite T -decomposing 2-class field tower.

Proof

1. As −α = −3 · 5 · 7 · 11 · 13 · 17 · 23 ≡ 3 (mod 4), dK0 = −4α.

2. We check that the Legendre symbol
(−α

31

)
= 1 ⇒ −α is a quadratic

residue modulo 31 ⇒ the prime 31 splits into a set T of two prime ideals

in the quadratic extension K0/Q.

3. Consider Q = {2, 3, 5, 7, 11, 13, 17, 23}. From Theorem 5, we know these

are the 8 primes which ramify in K0/Q (i.e. the primes which divide the

discriminant of K0). Let P = {31}. Thus, from Genus Theory (Theorem

7), we know 2 -rk ClK0 = |Q|−1 = 8−1 = 7, and 2 -rk ClK0,P = 7−1 = 6.

Now, T is the set of prime ideals lying above P . Applying the modified

Golod-Shafarevich criterion of Theorem 10 with |Q| = 8, |T | = 2, and

|P | = 1, we see that K0 has an infinite T -decomposing 2-class field tower.

Now, let K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ · · · be the infinite T -decomposing 2-class

field tower of K0. We construct our family of codes {Ci}, where each code C
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is based on the number field K, where C = Ci and K = Ki for some i.

Fix an n, and suppose [K : Q] = m. Note that K is totally com-

plex, and thus its signature is (0, m
2
). Our code C will have parameters

(m, p
(1)
1 , . . . , p

(m)
1 ; B; z), where p

(1)
1 , . . . , p

(m)
1 are prime ideals of norm 31, B =

cm for some c ∈ R>0, and z ∈ Cm
2 is the appropriate shift parameter.

We shall now use Theorem 15 to show that the above code family is asymp-

totically good for certain values of c.

As

rdK0 = rdK ≈ 4845.9736 <
πe2

4
p2s

1 =
πe2

4
312·1 ≈ 5577.0204,

we see that the primary criterion is satisfied.

Moreover, it suffices to choose c in the following range. We take c >

1
e

√
rdK0

π
≈ 14.4482, and c < 1

2
ps

1 = 1
2
p1

1 = 1
2
· 37 = 15.5.

Hence, if 14.4482 < c < 15.5, we have asymptotically good codes over an

alphabet of size 31 for relative distance D({Ci}) in the range

0 < D({Ci}) < 1−
log2

(
2
e

√
rdK

π

)
s log2 p1

≈ 1−
log2

(
2
e

√
4845.9736

π

)
1 · log2 31

≈ 1−.9795 = .0205,

where as D({Ci}) approaches .0205, R({Ci}) approaches 0, and as D({Ci})

approaches 0, R({Ci}) approaches .0205.

Of course, this example falls well below the Gilbert Varshamov threshold.

The question of whether such a code construction might yield an asymptoti-
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cally good family of codes which beats the Gilbert Varshamov threshold is an

interesting question, which bears further scrutiny.
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