
Abstract

For general aperiodic fluid flows, coherent structures help organize the dy-

namics. The prevalence of such flows in nature and industry has motivated

many successful techniques for defining and detecting coherent structures.

However, these approaches often require very fine trajectory data to re-

construct velocity fields. Instead, we use topological techniques to detect

coherent trajectory sets in relatively sparse two-dimensional fluid advec-

tion problems. More specifically, we use a homotopy-based algorithm, the

ensemble-based topological entropy calculation (E-tec), which evolves fluid

material curves forward in time as minimal length bands stretched about

the moving data points. These bands are represented as the weighted edges

of a triangulation, which allows us to analyze flows using graph theory. In

this way, highly connected components of appropriately constructed graphs

can be used to partition the fluid particles into coherent trajectory sets.
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1 Introduction

Coherent structures are certain features of a fluid flow, and by studying

them, we can better understand the mixing of elements of the flow, as

well as mechanisms for scalar transport within the fluid. We begin by

giving a qualitative description of these structures and examples of their

significance in real-world flows, then situate our research in terms of the

Eulerian and the Lagrangian viewpoints. We give a general context for a

few prevalent coherent structure detection methods in the literature, such

as the Finite-Time Lyapunov Exponent (FTLE) field and braid groups.

Then we introduce a method for using the Ensemble-Based Topological

Entropy Calculation (E-tec) algorithm to detect coherent structures via

graph theoretic methods, with precise definitions for ideas that figured

crucially in the work. Finally, we take the reader through examples using

E-tec with randomly generated sets of particles within the time-dependent

double gyre system, and reflect on the strengths and shortcomings of this

method of detection.

1.1 Why Coherent Structures?

Fluid flows are ubiquitous and mysterious. In studying their behavior, the

field of fluid dynamics has widespread applications as well as a long legacy

of theoretical knowledge. A fair amount of the research in the field seeks

to identify dynamic structures in a fluid in order to better understand the

fluid’s observed behavior over a set amount of time, whether by investigat-
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ing at the scale of the overall bulk flow or at the scale of molecular diffusion.

Detecting coherent structures is one such method for understanding fluid

flows.

Informally, coherent structures are regions of a fluid that do not mix

considerably with the rest of the fluid over a fixed time. It follows that the

boundaries of these structures prevent particles from other regions from

passing into a coherent structure, such that the structures also act as bar-

riers to transport. These regions of fluid are deemed coherent due to their

relative stability when compared to other regions of fluid over the same time

frame [17]. That is, the structures last over significantly longer time-scales

than it takes for nearby fluid elements to diverge.

Coherent structure detection in fluid flows has widespread applications

to real-world problems, as they evolve in time. One example prevalent in

the literature is the Deepwater Horizon oil spill. A BP oil rig of that name

was drilling in the Gulf of Mexico when it exploded on April 20th, 2010,

releasing four million barrels of oil into the gulf and leading to an estimated

8.8 billion dollars in damages to the natural resources of the surrounding

ecosystem [4].

In seeking to mitigate damage from the 87-day spill, it was difficult to

predict the behavior of the oil on the surface. By May 17th [12], a long

tendril of oil, dubbed the ‘tiger tail’, was observed trailing southeastward

from the southern portion of the spill (see Figure 1). This tiger tail had

markedly different qualitative behavior than the rest of the oil spreading

in the gulf. By analyzing the ways Lagrangian coherent structures act

as barriers to transport, Haller and Peacock attributed this behavior to

underlying currents in the gulf [12].

Another example of perplexing structures detectable on the oceans’ sur-

faces are the Agulhas Rings. Produced by the Agulhas current off the
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Figure 1: A photograph of the Deepwater Horizon oil spill, taken May
24th, 2010. The ‘tiger tail’ can be seen as a grey sheen trailing towards the
lower right-hand corner of the image. [3]

Figure 2: The Agulhas Current and subsequent vortices are tracked as
they form of the southern coast of Africa. [9]
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southernmost tip of Africa, the Agulhas Rings refer to the retroflection ed-

dies that are shed as the current flows westward [13]. These eddies form

rings that are larger than rings typical of such a flow, and contribute to

global thermohaline circulation: the movement of seawater based on its

temperature and salt content. Analyzing these rings through the lens of

coherent structures as barriers to transport could explain why such large

rings often remain intact for such a long time (often over two years) com-

pared with nearby regions of fluid [21].

1.1.1 Eulerian and Lagrangian Viewpoints

There are two basic overarching frameworks for analyzing fluid flows. The

Eulerian framework considers a domain (which for our purposes, we can de-

fine as fixed and two-dimensional). At every fixed point in this domain, we

assign a velocity vector (which could be time-dependent) to form a velocity

field over the domain. The knowledge of this velocity field constitutes the

Eulerian viewpoint. Being able to successfully capture the velocity field

of a flow over a time interval amounts to having perfect knowledge of the

system, in that the trajectories of individual particles can be extrapolated

from this velocity field (as follows in the Lagrangian viewpoint).

The Eulerian framework follows naturally from first principles of physics.

Namely, the Navier-Stokes equation that governs fluid flows has solutions

in the form of velocity vector fields:

∂u

∂t
+ (u · ∇)u = ν∇2u−∇P + f

This gives the Navier-Stokes equation (for incompressible flow). This is

a partial differential equation, the solution to which is the Eulerian velocity

field. We can think of this equation as a continuous version of Newton’s
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Second Law, F = ma. The terms on the left hand side of this equation are

acceleration terms, whereas the right hand side includes the force terms.

One major drawback of the Eulerian framework is that it lacks frame-

invariance. This means that a change in reference frame could lead to a

fundamentally different interpretation of a fluid’s structure over time. If we

develop methods for analyzing fluid flows within the Eulerian framework,

such methods necessarily involve interpreting the behavior of an underlying

velocity field, but such velocity fields are not generally frame-invariant.

A change in reference frame has consequences for coherent structure

detection. We could have a velocity field with closed streamlines in one

reference frame, but those streamlines might not be closed in another ref-

erence frame. This means that a barrier to transport in one reference frame

might not appear as such in another reference frame, so that the detection

of coherent structures would depend on the reference frame we used to

observe the flow.

To avoid the potential pitfalls of different reference frames, a Lagrangian

viewpoint considers the motion of fluid particles relative to each other.

Rather than considering a velocity field fixed over some domain, the La-

grangian viewpoint traces the trajectories of points within the domain as

they unfold in time. This is a natural framework to use for coherent struc-

ture detection because most experimental data is collected using tracer

particles. Experimentalists then analyze the trajectories of these tracers as

indicators of the fluid’s behavior. The Lagrangian framework is also frame-

invariant, such that the observed structures do not depend on the reference

frame of data collection, for example. We use the Lagrangian framework

to analyze the flows of passively-advected particles, or particles that, as a

property of their densities, move with the local velocity field of the fluid.

The idea of coherent structures as barriers to transport is rigorously de-
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fined within the Lagrangian framework, as exemplified by the Finite-Time

Lyapunov Exponent (FTLE) field in the next section.

1.1.2 The Finite-Time Lyapunov Exponent Field

The Finite-Time Lyapunov Exponent (FTLE) field is a geometric approach

and one of the primary methods for coherent structure detection. The

FTLE field is a scalar field generated by considering a sufficiently small

radius around a particle, p, and tracking the trajectory of p, as well as the

trajectories of all other particles within that radius, over a set time interval

[16].

The FTLE value at p’s initial location is given by the maximum expo-

nential stretching rate between p and the other points in the radius. Note

that the FTLE value depends on the length of the time interval that we

choose. If two fluid particles start very close together and become sepa-

rated after a set time interval, the FTLE values will be high near the initial

location of these particles. If the FTLE values are high along a material

line of fluid, very few other fluid particles can cross this line, making it a

barrier to transport [12].

As follows from the definitions below, the FTLE field relies on Eulerian

computational techniques to measure a Lagrangian conception of stretching

in the fluid. We begin by bridging the gap between the Eulerian and

Lagrangian frameworks by defining a dynamical system where the velocities

of particle trajectories can be generated by finding the value of the velocity

field at a specific time and position [16]:

~̇x(t; t0, x0) = ~v(~x(t; t0, ~x0), t),

~x(t0; t0, ~x0) = ~x0
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The vector map ~v need not be continuous, but if ~v is continuous it produces

smooth solutions. By specifying a final time, t, we can define a flow map

for a finite-time dynamical system over this time interval,

φt
t0

: D −→ D where ~x0 7→ φt
t0

( ~x0) = ~x(t; t0, ~x0)

This map takes a point (expressed as a vector quantity) in the domain and

maps it to the location of that particle at time t. Such a flow map satisfies

the properties:

φt0
t0(~x) = ~x

φt+s
t0

(~x) = φt+s
s (φs

t0
(~x)) = φt+s

t (φt
t0

(~x))

The first property entails that a point is mapped to itself at the initial

time, while the second property entails that such a map is well-defined with

respect to different time intervals. This map ensures that given an initial

point, we can map it forward in time.

Using this map, we can take a point and map it forward by a time T:

~x 7→ φt0+T
t0 (~x)

Now consider a point ~y arbitrarily close to ~x, such that ~y = ~x+ δ~x(t0) for

some arbitrarily small, positive value δ.

Then we can apply the flow map to ~y:

δ~x(t0 + T ) = φt0+T
t0 (~y)− φt0+T

t0 (~x) =
dφt0+T

t0 (~x)

d~x
δ~x(t0) +O(||δ~x(t0)||2)

This equation describes the vector difference between the final position
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of ~x and ~y as a function of the rate of change of the final position of ~x

with respect to displacement of ~x initially (which gives us a 2× 2 matrix),

multiplied by a vector representing a small displacement of ~x, denoted

δ~x(t0). The final term in this sum refers to higher order terms in δ that

can be ignored by picking δ sufficiently small. By picking δ sufficiently

small, then, we can condense the information about the flow in a small

radius down to a linear approximation: the product of a matrix and the

vector displacement we began with.

Within this set up, we can manipulate this matrix to produce the

Cauchy-Green deformation tensor, and then take the square root of the

maximum eigenvalues of this tensor. The log of this value divided by the

time interval is the FTLE value.

Figure 3: A cartoon of the way an initial disk of radius δ stretches out
describes the FTLE value of a particle for a given initial time and position,
as well as a given integration time.

The FTLE field that results is a scalar field. Lagrangian coherent struc-

tures are defined as ridges of this scalar field, along which the FTLE has

high values [18]. Since stretching occurs along these lines, there can be lit-

tle to no stretching across a ridge-line, making them barriers to transport

and hence Lagrangian coherent structures. In this way, the FTLE field

picks out the “regions of greatest relative stretching of material elements”

[1].

One drawback of this method is that its computations require extensive

data in order to interpolate the velocity field and create a smooth flow
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Figure 4: The FTLE field for the time-dependent double gyre (described
in Section 1.2.2) with parameters A=.1, ε= 0.1, and ω = π/5 [1].

map. Due to this dependence on dense data, “the fine-scale structure of

a system may not appear without a high point density” while using the

FTLE method [15]. Other approaches, such as probabilistic methods, also

rely on large amounts of data [5].

1.1.3 A case for sparse data

A phenomenon like an oil spill occurs unexpectedly, usually in the open

ocean, where scientists might have to rely on sparsely distributed indicators

of fluid flows, such as floating buoys. Even fluid dynamics research in a

lab setting often relies on tracer particles to analyze local behavior of a

fluid in order to understand its larger structure. Since most experimental

data collected is sparse data, a sparse data approach to coherent structure

detection could greatly enhance our predictive capabilities.

However, many current approaches to coherent structure detection, like

the FTLE field, require large amounts of data, or essentially ‘perfect knowl-

edge’ of the systems being analyzed, by attempting to ‘back out’ the un-

derlying vector field from collected trajectory data. The collection of such

data is often impractical and could hinder the predictive capabilities of

coherent structure detection methods. Some experimental methods to de-
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tect structures rely on infusing the collected data with ‘ghost’ particles,

whose trajectories are integrated from the inferred underlying vector field,

in order to have a dense enough set of data to create an FTLE field. Not

surprisingly, this method only produces an accurate FTLE field for partic-

ularly dense sets of passively advected points. The notion of the density

of a data set depends on the flow under consideration. For instance, in a

laminar flow, the density of particles needed to capture the structure of the

underlying flow is lower than it would be for turbulent flow.

Figure 5: A comparison of laminar (top) and turbulent (bottom) flow.
If we seeded tracer particles in each flow, we could capture the behavior
of laminar flow more accurately with fewer tracers than we would need to
capture the behavior of the turbulent flow [7].

A sparse data approach to coherent structure detection allows us to

harness the benefits of the Lagrangian approach by sidestepping concerns

of local “smooth structure of the flow,” and instead focusing “directly on

the global information” [20]. This way, we can build on methods like the

FTLE field without needing to rely on extensive data collection, focusing

on searching for global topological properties of the flow instead of the local

behavior of the velocity field at a given point in the domain.

Methods for coherent structure detection in a sparse data framework

can be split into two camps: clustering analysis and topological meth-

ods. Clustering analysis is a sparse data approach that relies on defining
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a distance metric on trajectories over a set time interval and finding for

each particle a membership value “describing the likelihood that a trajec-

tory belongs to a cluster”[6]. This type of analysis is often referred to as

‘fuzzy’ because the membership values depend on a parameter governing

the amount of overlap that is acceptable between individual clusters [8].

Within a sparse data framework, our research is situated in topological

methods. Existing topological methods in coherent structure literature

explore braid theory and finite-time braiding exponents (FTBE) [2]. In

such research, particle trajectories are conceptualized as strands of a braid

in space time. More formally, two-dimensional trajectories in space are

mapped to three dimensions by considering time as the third axis, often

depicted as increasing vertically upwards.

These physical braids mapped out in time are representations of the

ways particles intertwine on the surface of a fluid, but are also isomorphic

to algebraic braids. An algebraic braid group on a set of n strands, Bn, is

defined on a set of generators σ1, .., σn−1, and the relations between them,

where each generator σi represents “the clockwise interchange of the ith

and (i+ 1)th strands” (see Figure 6) [20].

Once a braid is defined, and the specific procedures for mapping exper-

imental trajectory data to algebraic braids are established, the fluid flow

is analyzed using topological entropy, where a positive value of entropy

corresponds to chaotic mixing. In this way, the topological entropy of a

system gives a global, quantifiable measure of the amount of chaos in a

system. A formal definition of topological entropy is given in Section 2.1.

Since this algebraic braid encodes the relative motion of the particles,

and braid theory is a well-studied area of mathematics, coherent struc-

ture detection using braid theory is a popular sparse data technique. This

method wraps taut loops around a braid and measures the stretching of



19

Figure 6: (a) shows the crossing of strands i and i+1 due to the generators
σi and σ−1

i , while (b) shows that a braid can be untangled by applying the
inverse generator of the preceding generator that acted on the braid [20].

this loop over time. If particles are in a coherent structure, and therefore

not mixing with other regions, then such loops do not stretch exponen-

tially. Measuring the stretching of these loops is known as the Finite-

Time-Braiding-Exponent (FTBE) method [2].

One drawback of the braid theory approach to coherent structure de-

tection is that it scales quadratically: if we have N particles in our system,

we would need on the order of N2 algebraic generators. We seek to find a

sparse data, topological method to detect these structures that builds on

the FTBE method, but is less computationally expensive [15].

In this paper, we focus on detecting coherent structures in generic two-

dimensional time-dependent advection problems. We define a coherent

structure as a region of fluid that does not significantly mix with the rest

of the fluid as it is advected. We seek a partition of the trajectories into

subsets that consist of coherent structures and subsets that represent the

chaotic mixing region. In order to find these sets, we build on topics from
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topology, such as topological entropy and persistent homology, in conjunc-

tion with graph theory. We use an algorithm called Ensemble-based topo-

logical entropy calculation (E-tec) to analyze sparsely distributed trajecto-

ries of the time-dependent double gyre system [15].

Though we have thus far considered examples of coherent structures as

entities present on the two-dimensional surface of a fluid (or flows at the

interface of two fluids), coherent structure detection methods should not

be limited to two dimensions. A three-dimensional approach to coherent

structure detection could yield valuable information on the behavior of fluid

flows. By finding a sparse data approach to coherent structure detection

in two-dimensional flows, a rigorous framework for three-dimensional anal-

ysis can be developed which could be significantly less computationally

expensive than methods relying on dense data sets of three dimensional

flows. Such an expansion into three dimensions is not possible using a

braid-theory approach.

1.2 The Double Gyre

1.2.1 The Time-Independent Double Gyre

The double gyre is a popular example in fluid dynamics literature, partic-

ularly in coherent structure detection, and so it serves as a useful model

for developing a new technique. The double gyre is a periodic system that

consists of two counter-rotating vortices.

We first consider the time-independent double gyre. Within this system,

the underlying velocity field remains constant for all time [16]. The flow is

described by the stream function,

Ψ(x, y) = sin(πx)sin(πy), where



21

ẋ = −∂Ψ

∂y

ẏ =
∂Ψ

∂x

give the x and y components of the velocity field used to advect particles.

Figure 7: Velocity field for the time-independent double gyre [16]

(a) (b)

Figure 8: (a) gives the FTLE field for the time-independent double gyre
(with an integration time of T=17). The color key at the top of the image
indicates that the FTLE values are lowest in the two blue, round regions,
indicating these regions could be coherent structure candidates [16]. In
(b), we have the FTLE field for the time-dependent double gyre with the
parameters given in Figure 4 [1].

Shadden uses the FTLE method to analyze this time-independent dou-

ble gyre (see Figure 8a). It is important to note that since the velocity

field is time-independent, the FTLE scalar field does not vary with a given

initial time, but does vary with integration time [16]. This means that if

we calculate the FTLE field for trajectories that are only “running” for k

seconds, we may get a different FTLE field than if we let the trajectories
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run for k+t seconds. The fact that the velocity field is time-independent

means that regardless of the initial time we choose to start the integration,

if we integrate over the same length of time, we produce the same FTLE

field.

This is example shows that even in time-independent systems, the de-

tection of coherent structures is still inherently time-dependent as a mea-

sure of the relative stability of different fluidic regions. If we choose a time

frame that is too short for the system at hand, two particles could appear

to stay close together, even though their trajectories may diverge over a

longer time interval. Choosing a time interval too long could lead to the

collapse of the coherent structures altogether, in that the FTLE field would

be measuring global (instead of local) behavior [17].

1.2.2 Introducing Chaos: the Time-Dependent Double Gyre

Building on this time-independent system of two rotating vortices, we add a

parameter to introduce time-dependence into the system. This parameter,

ε, is approximately the amplitude of motion for a vertical line oscillating

from left to right, where 2π/ω gives the period of this oscillation. This

oscillation causes the vortices to expand and contract. The equations gov-

erning the flow of the particles are given below. We consider the stream

function:

Ψ(x, y, t) = Asin(πf(x, t))sin(πy), where

f(x, t) = a(t)x2 + b(t)x,

a(t) = εsin(ωt),

b(t) = 1− 2εsin(ωt)
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This yields the velocity field equations:

u = −∂Ψ

∂y
= −πAsin(πf(x))cos(πy)

v =
∂Ψ

∂x
= πAcos(πf(x))sin(πy) ∗ (df/dx)

where A determines the magnitude of these velocity vectors, and ε is ap-

proximately the amplitude of motion for the vertical line oscillating from

left to right, where 2π/ω gives the period of this oscillation (as described

above).

Figure 9: Velocity field for the time-dependent double gyre, for values
A=1, ω= π/5, and ε= .25 at time t=0. This field is initially practically
identical to the time-independent vector fields in Figure 7 [16].

Figure 10: The time-dependent double gyre advects particles in a [0, 2]×
[0, 1] domain. This is a still from a movie in which a dense grid of particles
were advected; areas where lines of particles are visible (appearing almost
like contour lines in this image) indicate regions of fluid that mix less than
areas with particles that appear fuzzier in this image.
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The ε parameter is significant because it introduces chaos into the sys-

tem. We can conceptualize chaos as an acute sensitivity to initial condi-

tions of a system. Suppose we have two identical, periodic velocity fields,

~F1 and ~F2. We drop particle A at some point on ~F1, and then carefully

place particle B on ~F2 an infinitesimal distance from A’s initial coordinates

on ~F1. If the system is chaotic, after some time interval, the trajectories

of particles A and B will diverge exponentially, even though they began on

identical velocity fields infinitesimally close. Therefore, a consequence of

chaos is that given the initial position of a particle, chaos acts as a barrier

to predicting its future position.

We can experience this chaos in a fluid flow by noting that if two parti-

cles (with initial positions arbitrarily close together) are in a chaotic regime,

the distance between their trajectories stretches exponentially as the parti-

cles are advected. Note that even though the double gyre system with the

ε parameter is periodic, meaning that its underlying velocity field changes

periodically over time, this velocity field still gives rise to chaotic mixing.

The double gyre appears in the literature as a standard system for

testing the viability of different coherent structure detection methods [1].

We analyze a sparse set of points seeded randomly in a two-dimensional

[0, 2]× [0, 1] domain, and find the trajectories of these points for the double

gyre system. We use the same parameters listed in the paper to enable easy

comparison of our results with those given. These parameters are A = 0.1,

ω = 2π/10, ε = 0.1 and t0 = 2.5 and tf = 42.5 [1]. Initially, we seed 450

points in the domain and take 1000 time steps to calculate trajectory data

at each step.

To calculate the trajectories for the double gyre system, we use the scipy

Python module ‘odeint,’ a differential equations solver. The entirety of this

research was conducted in Python, building off of pre-existing Ensemble-
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based topological entropy calculation (E-tec) algorithm modules, as well

as creating new code specific to studying the graph theoretic techniques

outlined in this paper.

1.2.3 Building Intuition for Coherent Structure Detection

In order to find coherent structures using a sparse-data approach, we seek

to partition a set of fluid particles into sets that mix considerably with

the rest of the fluid, and sets that do not mix significantly. One way to

conceptualize these sets is to imagine wrapping a taut rubber band around a

set of fluid particles, and then advecting the points contained in the interior

of the band according to the trajectories of the double gyre system. If this

band stretches out exponentially, this indicates that the points contained

inside the band are mixing considerably, forming a sort of ‘chaotic sea.’

This high rate of stretching of the band indicates that these points do not

constitute a coherent structure.

Figure 11: Two braids lead to different stretching: If we put a loop around
any two of the strands in the braids above, we can measure the stretching
of this loop as the strands are braided. On the left is the golden braid,
which gives rise to exponential stretching of the loop, whereas on the right
we have rotating strands that amount to no stretching of the loop and a
trivial braid

On the other hand, if we wrap a rubber band to include a set of points

in its interior region and the band stretches on an algebraic order of magni-
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tude, we would consider this stretching to be insignificant (when compared

with exponential stretching). Algebraic stretching of the band indicates

that the points enclosed by and contained within the band do not mix

considerably with the points outside of the band, and so the set of points

is a good coherent structure candidate. In order to apply this concep-

tual framework, we need a more rigorous definition of these rubber bands,

as well as what constitutes a “high level” of stretching. We explore such

classifications using the E-tec algorithm in the next section.
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2 A Sparse Data Approach to Coherent Struc-

ture Detection

2.1 Ensemble-based Topological Entropy Calculation

(E-tec)

A sparse data approach to fluid flows could enable faster, more efficient pre-

diction of the behavior of real-world, time-dependent flows. The Ensemble-

based Topological Entropy Calculation (E-tec) is a sparse data method that

analyzes fluid flows by giving a lower bound on the topological entropy of a

system. We use E-tec to search for coherent structures using a topological

and graph-theoretic approach.

Topological entropy is a global measure of the rate of mixing in

a dynamical system that quantifies the amount of chaos in the system.

Technically, topological entropy is restricted to fluid flows with periodic

flow maps. To find the topological entropy of a fluid flow over a fixed time

interval, T, we start with some positive, arbitrarily small ε. We consider

particles in this flow to be in separate equivalence classes if at any time in

the interval, T, the distance between these particles’ trajectories is greater

than ε. As T tends toward infinity and as ε tends towards 0, the number

of equivalence classes increases exponentially. Topological entropy is the

growth rate of distinct equivalence classes. We can also conceptualize the

topological entropy as the exponential stretching rate of any material line

of fluid in the domain, maximized over all possible material lines. This
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conception of topological entropy is more feasible to tackle computationally.

Figure 12: Deforming a band in E-tec. As the band folds over onto itself,
the weight of the edge between two vertices represents this folding [15].

E-tec provides a lower bound for the topological entropy of a fluid flow.

We begin with a randomly selected set of particles that are sparsely dis-

tributed in the domain. The trajectories for these double gyre particles are

generated using a differential equations solver, but in the future would ide-

ally be experimental data trajectories. E-tec triangulates these points using

a Delauney triangulation, and evolves the triangulation forward according

to the particles’ trajectories over a user-specified time interval.

For a planar point set, a Delauney triangulation is a triangulation of

points such that the circumcircle of every triangle contains no points of

the set in its interior. Some of the benefits of the Delauney triangulation

are that it maximizes the minimum angle of its triangles, and it is unique

up to the position of points in the domain (with a few minor exceptions)

[14]. This uniqueness means that if points are in the same configuration

at different times and we initialize a triangulation on them at these two

distinct times, we will still get the same triangulation in both cases.

Within this set-up, E-tec allows the user to place a rubber band around

a collection of points (technically, a “closed, piecewise linear, non-self-
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intersecting,” two-dimensional band [15]). When fluid particles strike the

band, it stretches to accommodate these particles. E-tec records the weights

of each edge of the band by monitoring the number of times a section of

the band stretches across an edge of the triangulation (see Figure 13).

Figure 13: A band stretching in E-tec. In (a), we see that a particle from
outside the band strikes and deforms the band. In (b), we see that the
band updates to remain taut around the particles contained within it. In
(c), we see that edge weights of the band represent the folding of sections
of the band back onto itself [15].

The band also remains taut around the outer boundary of the particles

it encloses, so that, as the fluid is advected, the band stretches out expo-

nentially. The stretching of this band is precisely what E-tec measures: the

user inputs discretized trajectories and specifies the band, and the output

is “the number of edge segments in the band as a function of time,” which is

calculated by tracking the triangulation of particles during advection and

updating this triangulation as particles deform the band. The rate of ex-

ponential increase of total edge weights in time provides a lower-bound to

the topological entropy of the system [15].

By finding the rate of stretching of these bands, E-tec is a valuable

tool for evaluating whether a set of points constitutes a coherent structure.

More explicitly, if we find a set of points that we believe constitutes a

coherent structure, we can put a band around them and run this band

through E-tec. If the band stretches exponentially, this rules out this set

of points as a coherent structure. If the band stretches only algebraically,

then this set of points is a good candidate for a coherent structure (up to
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Figure 14: On the left, we have an initial triangulation of points, and on
the right, we have the final triangulation that results after the trajectories
are run through E-tec. We note that though the initial triangulation is
Delauney, the final triangulation (which has been updated to account for
the advection of the particles) is not Delauney.

the addition of more points in the interior region of the band).

However, E-tec does not specify which sets of points we should check

as possible coherent structures. Even in a sparse data scenario, checking

every possible partition of points using E-tec would be a combinatorial

nightmare. For instance, (by the Stirling Number of the second kind) even

if we were only trying to partition twenty particles into 2 sets, we would

have S(20, 2) = 524,287 different possible partitions [11].

Instead, we need to develop a method for partitioning the points into

coherent sets, and then use E-tec to evaluate these partitions. Fortunately,

we can use E-tec in a different way to search for such partitions.

2.2 Building on E-tec: Defining the Overlap Matrix

Checking candidates for coherent structures is a very useful application of

E-tec, but only if we have generated a set of points to check. In order

to find such a partition of the particles of a fluid flow, we need to use a

different functionality of E-tec by harnessing the power of graph theory.

Within the E-tec algorithm, we are essentially analyzing a changing

graph over a set time period. We refer to the graph produced by the

triangulation (described in the previous section) as the Triangulation
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Graph. A graph is a collection of nodes and the edges which connect

them. An undirected graph is a graph in which the edge between nodes

A and B can be traversed in either direction. A weighted graph is a

graph in which each of the edges is assigned a weight (for our purposes,

these weights are integers). E-tec produces an undirected, weighted graph,

wherein the fluid particles are the nodes of the graph, and the initial edges

between them are given by the triangulation. We call a graph complete if

there exists an edge between every pair of vertices in the graph (see Figure

15).

Figure 15: The complete graph on five vertices, K5

Rather than using E-tec to advect a single ‘rubber band’ around a set

of points, we can apply this idea to each edge in our triangulation. We can

think about these edges of the triangulation as forming a mesh of bands,

where each edge can be thought of as a rubber band anchored between its

two adjacent points. Initially, all of the edges begin with an edge weight of

one (except for superfluous boundary edges which have weights of zero). We

refer to the edges from this initial triangulation as the initial edges. As E-

tec advects the fluid particles according to their trajectories, the algorithm

updates the triangulation on the particles. In any given time step, the

triangulation consists of the same number of edges. The advection of the

particles produces a final triangulation that contains a set of edges, known

as the final edges. As the algorithm runs, edges fold into each other and

other nearby edges, which causes the edge weights to increase exponentially.
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Given an initial edge, we want to know the number of final edges it stretches

out to.

We can map every initial edge forward to find what final edges they map

onto. This information is contained in the Weight-Transfer Matrix, W ,

where Wi,j is equal to the number of times initial edge j is stretched across

some final edge i. Summing along each row i in the matrix gives the number

of initial edges that have folded onto the ith final edge (where an initial

edge that folds k times into final edge i will contribute k to this sum).

Summing along a column j gives the total weight that the jth initial edge

stretches out to.

Column Sum =
n∑

i=1

Wi,j

Row Sum =
n∑

j=1

Wi,j

Figure 16: An example of what information the Weight transfer matrix
contains, where the jth initial edge stretches across the ith final edge, such
that Wi,j has a positive value.

We can use the Weight-Transfer Matrix to produce a graph similar to

the FTLE. We seed a high density of initial points, take the column sum

for each initial edge, and then take the logarithm of each of these sums.

Once we have these values, we use a colormap on the domain where light

yellow indicates low stretching, and red indicates highly stretching edges.
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Since coherent structures are made up of particles that stay close together

over time, regions of initial edges in the graph with relatively low final edge

weights are good indicators of where coherent structures could be located,

in both the FTLE plots and the colormap plots produced by E-tec (see

Figure 17). Note that in this figure, we use a high point density, but one

of the advantages of E-tec is that it retains very similar information to the

FTLE at lower point densities as well.

Figure 17: E-tec at a high point density (left) compared with the FTLE
for a flow with the same parameters (right) [1].

Now suppose we want to consider two initial edges and analyze their

overlap as the fluid is advected. We do this via the Overlap Matrix, S,

where S = W TW .

Suppose we have n initial edges. Given two initial edges i and j, we

map them forward in E-tec to see what final edges they map onto. We can

think about the image of these initial edges, if and jf , as n-dimensional

vectors: if corresponds to the ith column of W and jf corresponds to the

jth column of W . Then if initial edge i contributes to some final edge k,

the kth entry of if is equal to the number of times initial edge i folds into

final edge k, such that the kth entry of if is equal to Wk,i. If initial edge

i does not fold into a final edge k, then we assign the kth entry of if a

value of zero. We follow the same procedure with respect to initial edge j

to generate jf , such that the kth entry of jf is equal to Wk,j. In this way,

the entry of Si,j is equal to the dot product of if and jf . This gives us a
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measure of the overlap that initial edges i and j map forward to.

Figure 18: An example of what information the Overlap Matrix contains,
where we consider the overlap of two initial edges i and j by finding the
final edges that both if and jf map onto.

We can now construct a graph from the Overlap Matrix, known as the

Overlap Graph. In this graph, initial edges i, j of the Triangulation

Graph form the nodes of the Overlap Graph, and the edge between these i

and j nodes is weighted by Si,j. Hence, the more i and j overlapped during

advection, the higher the edge is weighted between them (see Figure 19). If

Si,j = 0, then there exists no edge between the i and j nodes of the Overlap

Graph.

Figure 19: A visual for Overlap Graph

This Overlap Graph is a densely connected, nonplanar graph. We note

that, by properties of a triangulation, if we begin with n fluid particles
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as nodes of the Triangulation Graph, there are roughly 3n edges in that

graph, which corresponds to 3n vertices of the Overlap Graph. If the

Overlap Graph were complete, then we would expect 3n(3n−1)
2

edges in that

graph, from the entries of the (roughly) 3n ∗ 3n Overlap Matrix. This is to

say that the Overlap Graph is a very large graph with a more complicated

structure than the Triangulation Graph.

In order to make sense of the Overlap Graph in terms of coherent struc-

tures, we use the following principle:

Principle: the set of initial edges exterior to coherent sets are highly

interconnected through large overlap values. This follows from the idea that

the fluid particles outside of coherent structures are often highly mixing.

Using this principle, we analyze the Overlap Graph with the goal of

finding densely connected components. A graph is connected if every ver-

tex can be reached from a path along edges from every other vertex. A

connected component of a graph, G, is a subgraph of G that is connected

(see Figure 20).

Figure 20: An example of a disconnected graph with its connected com-
ponents in blue and red.

The densely connected components of the Overlap Graph correspond

to initial edges in the Triangulation Graph that have a significant amount

of mutual overlap, leading us to believe that these edges are part of the

same mixing region in the fluid. Since we have defined coherent structures

as regions of fluid that do not significantly mix with the rest of the fluid,
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by taking the complement of large connected components in the Overlap

Graph, this allows us to find nodes in the Overlap Graph that correspond to

edges of the Triangulation Graph that are contained in coherent structures.
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3 Implementing Graph Theoretic Measures of

Connectivity

3.1 The Edgecut Parameter

In the Overlap Graph, we expect that areas of densely connected nodes

correspond to areas of highly mixing fluid. That is, dense connectivity

in the Overlap Graph indicates areas devoid of coherent structures. By

finding these densely connected areas, we can consider the complement as

regions containing potential coherent structures.

One way to search for connected components with high edge weights

in the Overlap Graph is by instituting an edge cut parameter, in order to

prune the Overlap Graph. At each edge cut, we remove the edges weighted

below that edge cut value. This produces a subgraph of the Overlap Graph

for each edge cut, weeding out the edges in the Overlap graph with low edge

weights. As we let the edge cut value increase, the subgraph it produces will

contain fewer edges, and these edges will have increasingly higher weights,

indicating that they correspond to the chaotic mixing region of the fluid

(see Figure 21). For each subgraph, we use an iterative method to find its

largest connected component (as detailed in Section 3.4).
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Figure 21: An example of how increasing the cut value prunes a graph

Allowing the edge cut parameter to vary is a similar process to persistent

homology, a method of topological data analysis. Given a set of data points

(with a distance metric defined on it), we pick an arbitrarily small, positive

value, ε, and sweep out a circle with radius of ε around each node. If two

nodes have circles that intersect, we assign an edge between them. If three

nodes have circles that intersect, a triangle is formed, which is filled in

if all three circles are mutually intersecting. Similar strategies follow for

larger subsets of points. In this way, a simplicial complex is built up for

each given value of ε, consisting of edges, triangles, and potentially higher

dimensional geometric objects, like tetrahedra.

For each value of ε, we find the Betti numbers of the simplicial com-

plexes. The Betti numbers describe the topological qualities of these com-

plexes in terms of the number of holes these complexes have in different

dimensions (formally, the nth Betti number gives the rank of the nth ho-

mology group of a topological space [10]). We use these Betti numbers as

signatures for a given ε, and let the ε value vary to see which Betti signa-

tures persist over a range of (increasing) ε values. This allows us to analyze

the topological properties of the data.

Within our system, we use the edge cut as a parameter similar to that of

ε. Rather than finding the topological signature of each subgraph, instead

we search for graph theoretical signatures of the largest connected com-
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ponent for a subgraph produced by a given edge cut value. These graph

theoretic measures can, in turn, give us information about the topology of

each subgraph.

By reasoning that chaotic mixing regions will give rise to densely con-

nected components in the Overlap Graph, we need some graph theoretic

means of finding these components. We use algebraic connectivity and the

number of spanning trees as such measures of connectivity. Before imple-

menting these measures, we must prepare the data accordingly.

For each subgraph, Sc (for some edge cut value c), we find the Laplacian,

Lc. This matrix is defined as follows:

Definition 3.1. Laplacian L=D-A

Li,j = 
deg(vi) if i=j

−1 if vi is adjacent to vj

0 otherwise

where deg(vi) is the degree of the vertex i. D refers to the degree

matrix of Sc, which has entries equal to the degree of each vertex along

the diagonal and zeroes elsewhere. A is the adjacency matrix of Sc, which

has zeros along the diagonal and the number of edges connecting vi and vj

(where i 6= j) in its remaining entries.

The Laplacian matrix and its eigenvalues are fundamental to spectral

graph theory. One such application is spectral clustering, where the ele-

ments of a data set are treated as points of a graph, and the eigenvalues of

the Laplacian are used to partition the graph into sets. We use the Lapla-

cian in a similar way, although we have the advantage of starting out with

data (the Overlap Graph) that is already in the form of a graph.

One potential drawback of using the Laplacian is that it flattens the
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data from the S matrix. From one perspective, considering the Laplacian

as a snapshot for a given edge cut value, we could argue we are losing

information about the Overlap Graph. The numerical indicator of overlap

is not reflected at a given edge cut value, in that the Laplacian reflects

whether or not two edges had an overlap that was above the given cut-

value, but not the magnitude of such overlap. However, the fact that we

take a range of edge cut values and find the Laplacian at each value means

that we are not losing the information about the edge weights when we

consider the whole range. If we have the Laplacian for every edge cut

value (up to the maximum edge weight in the Overlap Graph), we could

reconstruct the original edge weights of the entire Overlap Graph.

After finding the Laplacian, we calculate its eigenvalues, and find the

algebraic connectivity and number of spanning trees for the largest con-

nected component of the subgraph produced by each edge cut value, as

detailed in the next sections.

3.2 Algebraic Connectivity

Algebraic connectivity is a concept from spectral graph theory, and is cal-

culated using the Laplacian and its eigenvalues.

In order to understand the algebraic connectivity, we explore some prop-

erties of a graph and its Laplacian. In the Laplacian of a graph, the number

of zero-valued eigenvalues indicate the number of connected components in

the graph. Recall that a complete graph on n vertices is a simple graph

where every pair of vertices are connected by an edge. If a graph is com-

plete, then each of its eigenvalues is equal to n, the number of vertices in

the graph, (aside from the first eigenvalue, which is equal to zero, indicating

that the complete graph contains one connected component).
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The second smallest eigenvalue is known as the algebraic connectiv-

ity. This number is only greater than zero if the graph is connected. The

magnitude of the algebraic connectivity is a measure of the connectivity

of a graph. As we increase the number of edges in a graph, the algebraic

connectivity increases. Furthermore, the algebraic connectivity can be con-

ceptualized as a measure of how “difficult” it is to split a graph apart into

a partition.

The eigenvector associated with the algebraic connectivity is known

as the Fiedler vector, and can be used to find a spectral partition of a

graph. The vector partitions the sets of nodes based on the sign of their

corresponding entry in the Fiedler vector. This partition produces two

connected subgraphs, on the conditions that the number of edges between

the two graphs is minimized and the subgraphs have roughly the same

number of vertices [19].

Recall that we are trying to analyze the connectivity of the largest

connected component of Sc, a subgraph of the Overlap Graph (for some

edge cut value c). We believe this connected component corresponds to the

chaotic mixing region of the fluid flow, and so we seek a densely connected

component. Partitioning this connected component into subgraphs of the

same size would not aid us in finding coherent structures because such

a partition would be meaningless in the context of the problem. If we

mapped such a partition on Overlap Graph edges back to the vertices

of the Triangulation Graph, neither of the two subgraphs produced are

necessarily connected in the Triangulation Graph. For this reason, we do

not use the Fiedler vector to partition the Overlap Graph. Instead, we focus

on the algebraic connectivity value alone as a measure of connectivity of

the largest connected component of Sc.

Algebraic connectivity is sensitive to the number of vertices and the
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number of edges in the graph. Since the largest connected component of

Sc varies in size with different edge cut values (c), we need a way to nor-

malize the algebraic connectivity values we get for each edge cut value.

To normalize the algebraic connectivity, we divide by n (since this is the

algebraic connectivity of a complete graph on n vertices). Then for a con-

nected graph, the normalized algebraic connectivity (NAC) is a positive

value bounded below by 0 and above by 1.

Figure 22: The algebraic connectivity for the graph on the left is .519,
whereas the algebraic connectivity for the graph on the right is 1. This
increase corresponds to the fact that the graph on the right contains more
edges than the graph on the left.

3.3 Spanning Trees

Aside from spectral methods, we use a different graph theoretic measure

of connectivity. Consider the number of possible routes we can traverse

on the edges of a graph, if we start on one vertex, want to reach every

other vertex, and are not allowed to travel in circles. The total number of

possible routes we could take gives us an idea of how densely connected the

graph is.

We can pose this idea more formally in terms of graph theory. A circuit

is a subset of the edges of a graph such that a closed path exists that begins

and ends at the same vertex (see Figure 23).
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Figure 23: A circuit in blue

A tree is defined as a connected graph that contains no circuits. A

spanning tree is a tree that has an edge incident to every vertex (see

Figure 24). Note that there can be more than one spanning tree on a

graph, as shown in Figure 25. In this way, the more densely connected a

graph is on n vertices, the greater the number of trees that span the graph.

Kirchoff’s theorem gives the number of spanning trees as follows, based on

the nonzero eigenvalues of the Laplacian, λi, for i ≥ 2:

Kirchoff’s Theorem:

t(G) = (1/n)(λ2 . . . ..λn)

Figure 24: A spanning tree on five vertices

Figure 25: A graph on four vertices in black, with two distinct spanning
trees of this graph given in red and blue.
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For a complete graph on n vertices, every eigenvalue (aside from the

first eigenvalue, λ1 0) has a value of n. We plug these values into Kirchoff’s

Theorem to see that a complete graph has nn−2 spanning trees (also known

as Cayley’s Formula). Then for a connected (but not necessarily complete)

graph on n vertices, we can normalize the number of spanning trees by

dividing by this value. This normalized spanning trees value is positive

for a connected graph and bounded above by one (for a complete graph).

However, the number of spanning trees is too large for the algorithm to

compute, even on our sparse data set. Instead, we consider the logarithm

of the spanning trees, and normalize that, called the LNST, which takes

values between 0 and 1:

LNST =
log t(Sc)

(n− 2)log(n)

where t(Sc) is the number of spanning trees of the largest connected com-

ponent of Sc, and n is the number of vertices contained in that connected

component. The denominator here represents the logarithm of nn−2, the

number of spanning trees in Kn.

3.4 Analyzing these Values

We have discussed graph theoretic measures of connectivity for the largest

connected component of Sc, but have not yet detailed how to find this

connected component. In this section, we describe the iterative method we

use to find the connected components for each Sc, followed by organizing

these connected components by size from biggest to smallest.

This method consists of starting with an n-dimensional vector, ~v, with

a value of zero in each entry except the kth entry, where k is randomly

chosen. This kth entry is assigned a value of one. We multiply ~v by
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the matrix produced at a given edge cut, Sc. By multiplying Sc~v, this

method picks out the vertices in Sc that are adjacent to k, since if k and

s are adjacent nodes, the product of Sc and ~v will be an n-dimensional

vector with a non-zero entry in the kth and sth position. This new vector

(with positive entries in the kth and sth entries) is then normalized and

multiplied by Sc again. This is repeated iteratively until the number of

non-zero components in the vector stops increasing, which implies we have

captured all the vertices of a single connected component of Sc. The vertices

in this connected component correspond to the positions of the non-zero

entries of the vector produced after the final iteration.

We repeat this method to find every connected component of Sc, and

then we order the connected components by the number of vertices they

contain. Typically, the largest connected component for a cut-value con-

tains considerably more vertices than the other connected components of

Sc, since the largest connected component corresponds to the main, highly

mixing region of the double gyre system. At this step, we are looking for

an edge cut that produces a subgraph Sc that has high values for both the

NAC and LNST, but also an edge cut value for which these values corre-

spond to a relatively large connected component. We select an edge cut

value based on the NAC and LNST values of Sc for all possible edge cut

values, c.

After selecting an edge cut value c, we consider the largest connected

component, call it Cc, of the subgraph Sc. We can now reconsider Cc in the

context of our Triangulation Graph. Since every vertex in Cc corresponds

to an initial edge of the Triangulation Graph, then Cc can be mapped back

onto the Triangulation Graph. The result of this map is a subgraph of

the Triangulation Graph, Tc, where every edge i in this set corresponds

to a vertex v in the Overlap Graph (and we include the vertices in the
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Triangulation Graph if such an edge i is incident to them). Note that even

though Cc was connected in the Overlap Graph, Tc need not be connected.

Since we operate on the assumption that Cc corresponds to the mixing

regions of the flow, when we map Cc to Tc, we assume that Tc also captures

the mixing regions of the flow by virtue of the way we constructed Tc. Since

we are searching for coherent structures that do not mix considerably with

the rest of the fluid, we take the complement of Tc in the Triangulation

Graph.

We find the connected components of this complement, and consider

the largest four (which we assume correspond to our coherent structure

candidates). Recall that when we seek to find coherent structures, we

want a partition of the vertices of the Triangulation Graph, not a partition

of its edges. Then we have found coherent structure candidates, which

consist of connected subgraphs of the Triangulation Graph, via a partition

of the edges of the Triangulation Graph. However, recall that the vertices

(not the edges) of these connected components constitute our coherent

structure candidates, since these vertices correspond to the fluid particles

in our double gyre system.

Once we have found a partition of points on the Triangulation Graph,

we can check if these points constitute a coherent structure by using E-tec

to measure the stretching of a band around each set. Note that constructing

these bands is not trivial. For each coherent structure candidate, we have

a set of vertices, V , and seek to wrap a band around them such that every

vertex v in V is either in the region enclosed by the band or is part of the

band (such that the edges incident to v are selected as part of the band’s

edges). This band should only enclose and contain vertices that are part

of our coherent structure candidates. In practice, this band can be difficult

to construct, as explained in the next section.
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4 Results

Now that we have outlined the methods, we take the reader through a few

examples using this process.

First we initialize a triangulation on randomly seeded points in our

domain. We evolve this triangulation forward using E-tec and extract the

Weight-transfer matrix, W, and then find the Overlap Matrix, S, where

S = W TW . Using S, we find Sc for each edge cut, c. Then for each Sc, we

find its Laplacian, Lc. Using the Laplacian, we calculate the the normalized

algebraic connectivity (NAC), as well as the normalized logarithm for the

number of spanning trees (LNST), for the largest connected component of

Sc.

This produces data in Figure 26. From this data, we see that near the

edge cut value of 11, the NAC levels off after this value, and the LNST value

is near a maximum. Now we choose edge cut 11 and get the following result,

Figure 27a where we map the edges of the largest connected component of

Sc back to the Triangulation Graph.

Then we take the complement of this connected component in the Tri-

angulation Graph (Figure 27b). We find the connected components of the

complement using the same iterative method detailed in the previous sec-

tion, and put bands around them (Figure 27c).

Finally, once we have found these bands, we can use E-tec to check

if they stretch out. Figure 27d gives the initial bands on this triangula-

tion. Then we find the final stretching. We refer to structures outlined in
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Figure 26: We choose 11 (marked with the dashed vertical line) as the
edge cut value from this data.

(a) (b)

(c) (d)

Figure 27: We take the edge cut of 11 in the Overlap Graph, producing S11.
In (a), we have the largest connected component of S11 mapped back to the
Triangulation Graph to form T11, a subgraph of the Triangulation Graph
(as pictured). In (b), we have the complement of T11 in the Triangulation
Graph. In (c), we wrap bands around the connected components of the
complement and prepare these bands for E-tec in (d).
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(a) Initial (b) Final

Figure 28: The stretching of the band for the round structures at an edge
cut of 11

(a) Initial (b) Final

Figure 29: The stretching of the band for the right oblong structure at an
edge cut of 11

green and cyan in Figure 27c as the round structures, and the remaining

structures (on the left and between the round structures) as the oblong

structures. Figure 28 shows that the round structures do not stretch

significantly, while Figure 29 shows the way the band around the oblong

structure in the middle of the domain stretches considerably for edge cut

value 11 (outlined in red in Figure 27c). Similarly, the band for the oblong

structure on the left also stretches considerably.

Now note that using a different triangulation, the results change for

the edge cut graph behavior. For instance, we can initialize a different

triangulation that produces the new NAC-LNST-edge cut graph shown in

Figure 30.

If we take an edge cut of 11 for this new triangulation, we get a con-

nected component of size 740 edges. For comparison, the second smallest
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Figure 30: A graph for a new triangulation, showing the LNST in red (with
its values on the left axis) and the NAC in blue (with its values on the right
axis). Note that the NAC does not level off in this graph, unlike the graph
for the first triangulation in Figure 26.

(a) Initial (b) Final

Figure 31: For an edge cut of 11 in our second triangulation, we see that
the left round structure band stretches considerably.
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(a) (b)

(c) (d)

Figure 32: For an edge cut of 6 in our second triangulation, (a) shows the
initial bands of the four structures, (b) shows the final stretching of the
round structures, (c) shows the final stretching for the leftmost structure
in (a), and (d) shows the stretching for the oblong structure between the
round structures in (a).

component has a size of 1. However, if we choose edge cut 11 for this new

triangulation, the two round structures have initial bands in Figure 31a

stretching to the bands in Figure 31b. We note that the left band stretches

significantly for this edge cut value. Therefore, an edge cut value that pro-

duces coherent structures in one triangulation may not be successful for a

different triangulation.

We need to reduce the edge cut value to 6 to ensure that these round

structures do not stretch out (see Figures 32a and 32b. Figure 32c shows

the stretching of the left band in Figure 32a, where Figure 32d shows the

trapezoidal band stretching from Figure 32a). Even for the edge cut value

of 6, the oblong structures still stretch considerably.



52

Figure 33: A graph for a third triangulation, showing the LNST in red
(with its values on the left axis) and the NAC in blue (with its values on
the right axis). Note that the NAC features two prominent spikes, similar
to the graph for the second triangulation in Figure 30.

We consider one more triangulation with the edge cut graph in Figure

33, which we refer to as the third triangulation. Rather than picking an

edge cut from the graph, we explore what happens when we vary the edge

cut from 0 to 1 to 2 (see Figure 34). Note that even with a low edge cut

value of 2, we still see stretching in the band for the right oblong structure

(see Figure 34f). This highlights that the complement of the Overlap Graph

for an edge cut of 2 is too large, causing us to include edges in the coherent

structure band that should not be included in the structures.

Finally, there appears to be an issue in the way we wrap bands around

the connected components that constitute our coherent structure candi-

dates. For an edge cut of 11 in this third triangulation, we produce Figure

35a, showing the bands we put around these connected components. How-

ever, in Figure 35b, we can see that these bands in E-tec are excluding

some of the edges that are part of the connected component we picked out.

This is particularly noticeable for the oblong structures, where edges that

are connected to the rest of the graph at only one vertex are not enclosed

by the band. The fact that these portions of connected components are
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being excluded makes it difficult to fully vet the edge cut method.

(a) Initial at edge cut value 0 (b) Final at edge cut value 0

(c) Initial at edge cut value 1 (d) Final at edge cut value 1

(e) Initial at edge cut value 2 (f) Final at edge cut value 2

Figure 34: As we increase the edge cut value, we see that the round struc-
tures appear more robust to this increase (they do not stretch considerably
at any stage), whereas both of the oblong structures are very sensitive to
the increase from an edge cut value of 1 to 2.
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(a)

(b)

Figure 35: Comparing the connected components we picked out with the
bands that are wrapped around them, we find edges that are that are part
of the connected component we’ve isolated, but not wrapped in the band
in E-tec (particularly on the upper corners of the oblong structures).
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5 Conclusion

Overall, this method for detecting coherent structures has promise, but

needs refinement. While the edge cut parameter could yield valuable infor-

mation, it is important to note that it may be dependent on the random

triangulation of points we begin with. That is, the fact that the trajecto-

ries generated at the beginning of each run are always randomly generated

means the edge cut values differ significantly from run to run. This means

that going from one triangulation to another, the user can’t simply guess

an edge cut that is in the ballpark from a previous triangulation, but must

have some criteria based on the LNST and NAC values. Such a criteria has

yet to be developed. Perhaps by collecting statistical data from different

triangulations and their edge cuts, a more rigorous selection process for an

edge cut value can be formalized.

Recall that when we introduced the time-independent gyre, we saw that

the FTLE field isolated two coherent structures (see Figure 8a). We note

that these two time-independent coherent structures are also present in

the case where the double gyre is time-dependent (known as the round

structures), and that these are the structures our method picks out with

reasonable accuracy. These round structures seem fairly time-invariant.

We note that the remaining two oblong coherent structures are heavily

time-dependent. If we integrated the trajectories (or specify that E-tec in-

tegrate) over a longer time interval, we would see these structures collapse.

Recall that our method of picking an edge cut falls apart with respect
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to the oblong structures: in some cases, there is no need for an edge cut

with regards to these structures: the Overlap Graph’s dense connectivity

(with no edge cut) has a complement that usually constitutes coherent

structures, such that the bands around the connected components of the

complement stretch algebraically. In this case, taking an edge cut means

including points in the bands of the oblong structures that cause the bands

to stretch out. Essentially, the problem is that the edge cut appears to

find oblong structures that are too large, enclosing points within the band

around these oblong structures that cause the band to stretch considerably.

The problems with the oblong structures indicate that their mixing

behavior is not captured as easily with the Overlap Matrix as for the round

structures. That is, there is not necessarily a high enough level of mixing

around the boundaries of the oblong structures that can be easily picked

out by the Overlap Graph.

It is helpful to conceptualize this partitioning problem of fluid parti-

cles in the following way. We are concerned with classifying the stretching

behavior of three different categories of edges in the Triangulation Graph.

The first category is those edges within the chaotic mixing region. These

correspond to high edge weight values in the Overlap Matrix. The second

category are those edges within the coherent structures, which correspond

to low mixing regions and the complement of the largest connected compo-

nent in the Overlap Graph at a given edge cut value. So far, our methods

have worked fairly well in tackling these two categories of edges. However,

the third category appears to be the trickiest: classifying the properties of

edges in the Triangulation Graph that span the boundaries of a coherent

structure, such that they connect a point within a structure to a point

within the chaotic mixing region (see Figure 36). The stretching of these

edges is difficult to classify with the Overlap Matrix method. I believe
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it is these boundary edges that lead to trouble for the oblong structure

detection.

Figure 36: Mixing edges are in blue, coherent structure edges are in purple,
and boundary edges are in green.

There are different routes to proceed. One possibility is to institute a

different way of using an edge cut parameter and attempt to isolate edges

in the Triangulation Graph with low stretching. This method seeks to build

up coherent structures from their constituent parts, rather than isolating

areas of high stretching and analyzing what’s left over. If we wanted to

take an edge cut from below, we choose a cut value of k and eliminate all

edges whose weights are above k.

We run into a couple of issues with this process. If we have two chaotic

edges in different initial regions, there is no guarantee that these two edges

will have any overlap, and we would not want these low overlap values to

be indicative of coherent structure behavior. We would need to institute

a measure of local connectivity on the Triangulation Graph before finding

the Overlap Matrix. One such method could be multiplying the Weight-

Transfer Matrix component wise with the adjacency matrix of the Triangu-

lation Graph. This would produce a graph that excludes non-adjacent ini-

tial edges with no overlap, and therefore such edges would not be present in

the subgraphs produced by an edge cut from below. This guarantees that

the low overlap edges that are found by taking an edge cut from below
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would actually be reasonable coherent structure candidates.

However, implementing notions of local connectivity renders the utility

of connected components obsolete. Coherent structures can no longer be

picked out by eliminating one massive connected component, but instead

must be assembled via a collection of many small connected components

with low stretching. This begs the question of what size a connected com-

ponent would need to be in order to be significant enough to be included

in a coherent structure candidate.

Lastly, one of the roadblocks in our method for detection is inherent to

the way we have conceptualized the problem. We are seeking to partition

a set of nodes in the Triangulation Graph, but instead our methods rely

on partitioning the edges of that graph instead (via an admittedly convo-

luted method of partitioning edges in a higher-dimensional graph). This

presents a problem for several reasons. Firstly, there is not a unique way

to map from a partition on the set of edges in the Triangulation Graph to

a partition on the nodes of that graph. For instance, how do we partition

vertices adjacent to the boundary edges? Do we require that vertices in a

coherent structure are those that have no mixing edges incident to them,

or are vertices that have both mixing and non-mixing edges incident to

them acceptable? Secondly, it is difficult to define which of our edges are

boundary edges because we are seeking to define the boundary itself. If

these boundary edges leave some signature that could help us define the

boundary, we have yet to rigorously define it. If instead we had a method

for partitioning the vertices of the Triangulation Graph, a partition of edges

into our three categories (coherent structures, chaotic mixing, boundary)

would follow naturally (although in that case, such classifications would

probably be obsolete).

The methods detailed in this paper have attempted to categorize the
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behavior of coherent structures, but require more rigorous trial and error to

measure their worth over triangulations of randomly distributed particles.

Additionally, these methods have not been analyzed rigorously for different

point densities or over different time intervals. These problems are not

insurmountable, but would require time and care in order to properly vet

this work, and decide whether it is a fruitful path of inquiry.
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