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Abstract

The availability of digital image databases creates a demand for tools which

automatically retrieve relevant images in response to user queries. A com-

mon approach to image retrieval is to use annotations as image proxies and

to compare the query words and the description words of candidate images.

This technique requires that annotations are produced in advance. How-

ever, for collections of realistic size, it is inconceivable to rely exclusively on

manual annotation. A practical alternative is automatic annotation, where

a computer system analyzes the visual features of an image to determine

the appropriate description.

A system for automatic image annotation learns from manually anno-

tated images what correlations exist between words and visual components,

and then uses the discovered relationships to automatically assign seman-

tically descriptive words to new, unannotated images. Our work builds on

a cross-media relevance modeling approach which learns such correspon-

dences by comparing the visual components of the image to be annotated

with those of already annotated images. We extend the relevance model

with clustering, a technique for partitioning a space into groups of similar

objects. The motivation is that clustering utilizes collection-wide features,

which are ignored by an individual-document analysis, and that the simi-

larity structure of the collection as a whole is a potentially useful source of

information.
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ABSTRACT ii

We propose and evaluate two cluster-based relevance models. We com-

pare their performance with that of the baseline unclustered model and

show that by using cluster statistics in addition to individual image statis-

tics we can better estimate the correlations between words and visual com-

ponents.
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Chapter 1

Introduction

Nowadays information is abundant and ubiquitous. The foremost example

of an information repository is the World Wide Web, which provides ev-

eryone connected to the Internet with access to billions of pages. But even

though information is available, it is not easy to find. For a person looking

for the answer to a specific question, it is very frustrating to know that

almost certainly someone has posted it online but to have no idea where

to look for it. How to store and retrieve information effectively is an old

problem that has been the subject of library science for centuries. However,

its scope and focus have changed - today information is largely digitized

and often in vast amounts. As a result, there is a compelling demand for

computer systems that assist users by discovering, extracting, analyzing

and presenting information - systems that act as modern-day librarians in

a digital library which spans millions of computers.

Information comes in different forms - text, tables, pictures, diagrams,

and sound to name a few, and each format and medium poses different the-

oretical and practical questions. Images, in particular, are an expressive,

universally recognizable source of information which can provide greater

detail than written text - as Confucius has said, a picture is worth a thou-

1



CHAPTER 1. INTRODUCTION 2

sand words. And in contrast to text, pictures are meaningful to everyone

no matter what language a person speaks.

Whether working with images or text, deriving information from a doc-

ument is not straightforward because we have to decide what to represent

and how to represent it. The ambiguity of natural languages makes text

documents hard to analyze but the task is even more challenging for images

because visual information is inherently more complex. A supplementary

feature, which makes analyzing an image easier, is a short piece of descrip-

tive, explanatory text, which we call an annotation.

Annotations are textual representations of images and the focus of this

thesis is the process of generating them automatically. More specifically,

we develop a method for modeling the relationships between visual fea-

tures and words that allows a computer system to automatically assign

suitable words to previously unannotated images. In the particular con-

text described here, our technique pairs pictures and words. But from a

more general perspective it takes one representation of a document and

produces another. Therefore, its applicability is not confined to images

only. Our method can be adapted to annotating video clips and audio, and

in general ‘translating’ any kind of information from one form to another.

The rest of this thesis is organized as follows: We start by introducing

the basic concepts and the main issues involved in the classical problem of

searching for relevant information. The second chapter discusses in greater

detail fundamental retrieval techniques either directly applied in our work

or necessary for analyzing our findings. The third chapter discusses specific

techniques for automatically generating image annotations. The rest of the

thesis describes our models, experiments and results.
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1.1 Information Retrieval

Information Retrieval (IR) is the scientific discipline of automatically in-

dexing, searching and extracting stored information.

As one of the first researchers in the field explains, “[IR] does not inform

(i.e. change the knowledge of) the user on the subject of his inquiry, [but]

merely informs on the existence (or non-existence) and whereabouts of

documents relating to his request”.1 In essence, IR studies and develops

techniques that enable computer systems to efficiently store and recover

relevant information.

Searching large collections of records in order to find information is a

well-studied problem. Library science has developed efficient practices of

storing and categorizing written documents to simplify the task of browsing

library collections. Building catalogs requires the expertise of librarians to

create an index entry for each work in the collection (including factual in-

formation such as title, author and publisher, and descriptive information

such as summary of contents and major topics) and to structure and orga-

nize the index. Reference librarians also serve as intermediaries for library

patrons who seek information by providing them with guidance on how to

search for resources and how to use the available tools.

Though techniques employed by librarians are very efficient, there is

a physical limitation on how much information a person can process and

catalog. Nowadays there exist huge electronic collections of digitized ma-

terials. For example, the World Wide Web provides access to billions of

documents in various formats and languages. The amount of information

available on the Internet makes manual management impractical and brings

up a need for automatic systems, which locate relevant images in a con-

1F. Wilfrid Lancaster. Information Retrieval Systems: Characteristics, Test-
ing and Evaluation, John Wiley & Sons, New York, 1968.
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Step 1: The user
specifies her information
need by typing a se-
quence of query words.

Step 2: The system
searches its database of rep-
resentations to find docu-
ments matching the query.

Step 3: The sys-
tem returns a list of
relevant documents.
The user inspects them
and provides relevance
feedback.

Figure 1.1: The process of retrieving information using an automatic sys-
tem.

venient and efficient way. Consequently, the continuous expansion of the

Web has prompted the emergence of numerous Web-based retrieval sys-

tems, popularly known as search engines, such as AltaVista, Google and

Dogpile.

One defining characteristic of retrieval systems is that they manipulate

unstructured collections of heterogeneous documents, e.g. text excerpts

with various lengths or written in different languages or files of different

media altogether. Another important aspect of retrieval systems is that

they do not answer questions but give pointers to documents which might

contain the answer. Queries can be expressed in terms of any combination

of words or even formulated as a question, but an IR system only locates

documents containing a combination of the query words or their morpho-

logical roots. Just like in a library, it is then the responsibility of the user

to read through the documents to find the actual answer to her information

need.

Retrieval systems differ in design and implementation but the process

of finding relevant information always involves three fundamental steps,

which are summarized in Figure 1.1. First, the user asks a question: she

formulates a query and poses it to the system. This raises many issues
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in itself because verbalizing an information need in concrete words is usu-

ally not straightforward. During the second step the system searches its

database of document representations and recognizes documents containing

relevant information. This task implicitly requires interpreting the query as

a representation of the user’s information need. Thus the information need

is first expressed in words and then these words are interpreted to infer

the underlying meaning. Neither process is a one-to-one translation as the

same question can be expressed in different words, and the actual phrasing

can be interpreted in different ways. Finally, the user assesses the quality

of the returned subset of documents. Although human-computer interac-

tion, referring to the first and third steps, is an important component of a

retrieval system, the focus of this thesis is on the components involved in

successfully retrieving information. In short, these are: first representing,

organizing and storing large amounts of data; second, determining what

an individual document is about; and third, measuring its relevance to a

given query.

Although the most extensive research in information retrieval has fo-

cused on searching in text corpora, the broad definition of a “document

relevant to an information need” encompasses not only text but other me-

dia as well, such as pictures, movies and sounds. On the Internet, for

example, text in the form of HTML pages, PDF files and links is the pre-

dominant source of information, but there are numerous images (JPEG

and GIF), video segments (MPEG and AVI) and audio files (MP3) as well.

Those documents are inherently more complex in structure than plain text

documents, which are organized as a linear combination of strings from a

finite vocabulary. As a consequence image, video and audio retrieval dif-

fers from text IR and the methodology developed for text IR needs to be

either extended or modified in order to manage and access integrated data
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collections, which comprise multiple medium types. For this project, we

specifically concentrated on image retrieval, a discipline with a broad and

diverse set of potential applications.

1.2 Image Retrieval and Its Applications

One promising use of image retrieval is for automatic face detection as part

of surveillance systems, where in order to identify a particular person in the

crowd, the faces of all those present have to be examined in turn. Clearly,

finding shots of the same person implies finding similar images.

Medical imaging is another area where image retrieval could be applied

to a great advantage, especially in assisting physicians to make diagnoses by

comparing X-ray photos of the patient with that of previous cases. Similar

technology could also be helpful in preventing Internet crimes by detecting

pornographic images of children, and in protecting intellectual property by

identifying illegal versions of copyrighted images.

Image retrieval can also be extremely useful for browsing and auto-

illustration. Teachers, for example, could benefit from tools that identify

visual materials for exemplifying presentations. Thus, they would spend

more time improving their lectures rather than drawing figures. Similarly,

journalists could find online images to illustrate their articles and reports,

even if they do not have the opportunity to be present at the event them-

selves.

Another application is organizing retrieval results or image collections,

possibly according to user feedback such as the preferences of an individual

user. For example, many museums and art galleries are currently working

on digitizing parts of their collections and advertising their exhibitions by

publishing in the Internet photographs of their most valuable works of art.
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Such interfaces will be much more attractive to potential visitors if online

exhibits are well-organized and convenient to browse.

The above list of possible applications is by no means complete. The

importance and potential benefits of image retrieval are widely recognized

and there is a lot of active research in the field, both by academia and

industry. Popular search engines like Google and AltaVista provide image-

search services and although their capabilities are comprehensive in terms

of number of images indexed (Google image search indexes 425 million im-

ages), the results are often not satisfactory, sometimes forcing the user to

search through many consecutive pages to find the desired image. The al-

gorithm applied by Google relies heavily on metadata such as filenames and

captions.2 Such classification information is implicitly external and while

useful in practice it is not sufficient to describe an image in its complexity.

The different aspects of representing images in the form of annotations are

briefly discussed in the next section.

1.3 Automatic Image Annotation

Text-based image retrieval methods search for images based on associated

text, referred to as annotations. These can be created manually but the

process is time-demanding and expensive, especially for large collections.

An alternative approach is automatic image annotation, where a com-

puter system relies on a set of manually annotated examples to learn cor-

respondences between words and visual components, and then uses the

discovered correlations to annotate new images automatically.

There are two general approaches to automatic image annotation. The

2Google’s algorithms are propriety and they typically do not reveal much
detail about implementation. For a brief explanation how Google Image Search
works, visit http://www.google.com/help/faq images.html.
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Figure 1.2: General architecture of a text-based image retrieval system
including an automatic annotation component.

one used by search engines such as Google is based on information ex-

traction and consists of selecting keywords from surrounding or anchor

text. For example, images found on the Web are often used to illustrate

a page, so they appear in between some text. Google would analyze the

two paragraphs immediately preceding and following an image to create its

annotation.3 The assumption is that text in proximity to the image is its

context and therefore contains relevant and descriptive words. In practice,

this often does not hold as Web designers might fail to properly describe

visual content and advertisers might try to fool search engines and use

knowledge of the indexing algorithms to increase their traffic. As a result,

annotations are noisy or the search engine misses images altogether.

The other method is assigning words automatically, which can be con-

sidered a classification problem. For each word in a controlled vocabulary,

an annotation system decides which images to assign to the class corre-

3Although this is the general framework of Google’s image annotation
method, we do not claim to know precisely what portion of the surrounding
text they take into account.
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sponding to a given word. For example, in our experiments we use anno-

tations that are made up from 1 to 5 nouns and we build a vocabulary

of all the words from example annotations. If the images are associated

with complete sentences instead, then the annotations can be parsed and

tagged for parts of speech, so that only nouns are extracted. The text can

be further purged by removing words that occur only a few times, since in

such cases there are probably not enough available examples to learn the

underlying relationships dependably.

On the visual side of image analysis, low-level visual features such as

shape, color and texture are fundamental, but not sufficient, for object

recognition. A lesser challenge is for the retrieval system to “understand”

the semantics of an image without explicitly recognizing the comprising

objects. To achieve this, the system can learn from manually annotated im-

ages what correlations exist between words and visual features (visterms),

and then use the discovered relationships to automatically assign semanti-

cally descriptive words to new, unannotated images. This thesis builds on

the Cross-media Relevance model, which learns such correspondences by

comparing the visual components of the image to be annotated with those

of already annotated images to find word-visterm co-occurrences.

However, it is difficult to measure similarity by considering two images

at a time because two images might be easily distinguishable and yet sim-

ilar with respect to the collection as a whole. For example, if we look at

two pictures of a tiger, one showing it lying in the grass and the other -

chasing after pray, we would consider them to be different. But if we have

a whole collection of wildlife photographs to look at, we would consider

the two tiger images to be more similar to one another than to pictures

of other animals. This simple example shows how global patterns could

bring new information which is not present when analyzing the collection
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image by image. Therefore, annotation performance might improve if we

take advantage of the hypothesis that similar images are annotated with

the same words. Our work extends the Cross-media Relevance model to

organize images into groups and thus incorporate the common information

shared by similar images.

In Chapters 4 and 6 we describe how to use a clustering algorithm

to capture similarities and differences among images across the collection,

and then how to use statistics extracted from clusters of similar images in

addition to statistics extracted from individual images to better estimate

the correlations between words and visual components. But before going

into further details, we give a short overview of several fundamental IR

terms and techniques.



Chapter 2

Background

Before focusing exclusively on the definition and implementation of meth-

ods for automatic image annotation, we first present an overview of the

preliminary preparation process involved in retrieving information - doc-

ument representation. Regardless of what kind of documents a system is

designed to retrieve - text, images or another medium, the collection of doc-

uments has to be analyzed and represented in a consistent and structured

way before the system is actually put in use. This is a kind of summa-

rization, of extracting certain statistical information, which is later used

to answer queries quickly and efficiently. For text-based image retrieval,

which is based on the annotations of images rather than on the images

themselves, generating annotations is part of the representation process.

In this chapter we also discuss clustering - an unsupervised method for

partitioning a set into subsets of similar elements. Clustering is particularly

relevant to our work since, as already mentioned, we are going to use groups

of similar images to improve annotation and hence retrieval.

11
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2.1 Document Representation

The first task of a retrieval system is to index the document collection so

that searching is fast and efficient. Internal representations of documents

are much simplified. The system cannot store the full text because of

storage concerns, but this is not necessary either, since not all the words

in a document are good descriptors of its content. Therefore, we have to

decide what information is important and should be preserved, and what

information could be discarded.

Depending on how much information about documents is preserved,

representations have different granularity. Here is a list of different levels

of granularity, ordered from the coarsest to the finest:

• We only keep track of whether a word appears in a document or not.

• We keep track of how many times a word appears in a document.

• We keep track of all the positions at which a word appears in a

document.

Obviously, what granularity we choose makes a difference both in terms

of storage space and in terms of average search time and search options that

can be supported, because it takes longer to go through a list of occurrences

than to check a single number. On the other hand, the more information

we choose to index, the more elaborate our analysis of relevance is. For

example, if we keep track of positions of occurrence, we can define phrases

as two words which appear together within a window of a certain length,

and query on phrases as well as individual words.

The number of times a word appears in a document is referred to as

its Term Frequency (TF). TF attempts to measure what the document is

about. As the author of an article would naturally use specific concepts and
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terms to develop her ideas, words that are pertinent to the main themes

under discussion would turn up more often than general, loosely related

words. Therefore, words occurring frequently in a document will convey

more about its topic than rarely occurring words.

On the other hand, some words are more frequent than others in the

collection as a whole. If a word appears in a great number of documents,

it is likely to appear in both relevant and nonrelevant documents. Recall

that the retrieval system does not attempt to understand the content of

a document but only to judge documents as relevant or not relevant to

a specific information need. Because common words fail to contribute to

the analysis of relevance (they have less information content), the system

should give less importance to the occurrences of such words. In fact, some

words appear so often (e.g. ‘the’, ‘a’, ‘of’, ‘to’, ‘and’, ‘in’) that they are

often discarded altogether - these are called stop words. Since the few hun-

dred most frequent words account for about 50% of natural language text,

there is a doublefold advantage in removing stop words - we significantly

reduce the necessary storage space and we dispose of words that have little

semantic importance.

The overall number of documents in which a word occurs is referred to

as its Document Frequency (DF) and the value log(N/DF ), where N is

the size of the document collection, is referred to as its Inverse Document

Frequency (IDF). IDF attempts to measure a word’s power to discriminate

between relevant and nonrelevant documents. Words such as prepositions,

pronouns and the verbs ‘say’ and ‘become’, are so common that they are

hardly useful for retrieval, since queries tend to be specific. On the other

hand, if a query word is relatively rare, then we could be fairly sure that

documents containing it are relevant. IDF factors in this reasoning by

deemphasizing words that appear often across the collection.
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To combine these two measures, most retrieval systems weight terms

by their TF×IDF values.

When counting occurrences, we should also consider document length.

Clearly, there is a higher probability for a word to appear in a long doc-

ument just because it consists of many words. Therefore, it is reasonable

to assume that a certain number of occurrences in a short document are

a more significant indicator of relevance than the same number of occur-

rences in a longer document. (We can think about this as the word being

more central to the major topics discussed in the first document.) Without

document length normalization, words in long documents can be perceived

as more important due to more occurrences and higher TF weights.

One issue that cannot be solved simply by counting occurrences is syn-

onymy, the fact that several words might mean the same thing, yet the

user types only one of those. A traditional IR approach for addressing the

notion of synonymy is query expansion. It is implemented by performing

an initial query and then augmenting it with salient words from the top

documents. Query expansion improves performance because it captures

the context in which a word appears and this includes not only synonyms

specifically, but concepts associated with the same topic in general.

Since our particular task is image annotation, it might seem at first that

the issue of synonymy has no relevance in a non-linguistic setting. However,

as we will describe in Chapter 4, our approach considers annotation to be a

retrieval problem where we rank candidate words in terms of their likelihood

to be related to the image. The same word can be used to describe very

different image samples, e.g. ‘water’ can be associated with all shades of

green and blue - from an IR point of view we have different visual features

that mean the same thing. Therefore, how to deal with synonymy is still

an important question in the context of image annotation.
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2.1.1 Inverted Index

Counting occurrences and computing TF×IDF weights for documents can

be done offline, so that at search time results the necessary processing

is completed quickly. The data structure used for this purpose is called

an inverted index. It is a representation that consists of a lexicon and a

collection of postings. The lexicon is a list of distinct terms occurring in

the collection, except for removed stop words. The entries are ordered

alphabetically for faster searching and each entry keeps some statistics

about the corresponding term, such as IDF, which will be used in ranking

computations. A posting is a list of the documents which contain a given

term, the number of occurrences in each document and possibly the exact

text positions where the term occurs. Lexicon entries hold a pointer to

the posting of their corresponding term, which is also referenced when

computing the degree of similarity between a document and a query.

The inverted index is constructed to speed up retrieval - in order to

find where a particular word occurs and with what frequency, it is first

looked up in the lexicon which points directly to the posting containing

this information. But while the lexicon does not take up much storage

space, the postings require large amount of space, particularly if recording

more detailed information such as text position - in this case, each word in

the text would be referenced once in the structure (again, excluding stop

words).

2.2 Similarity Measures

A similarity measure is a function which takes two objects of the same

kind and returns a measure of how similar they are or, alternatively, of

the distance between them. The concept of distance is meaningful only
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for objects which are represented in a metric space, while similarity is a

more general concept. Intuitively, distance and similarity are inversely

proportional: the greater the similarity between two objects, the smaller

the distance which separates them, and vice versa. A similarity function

is almost always symmetric, i.e. distance(a, b) = distance(b, a). Example

of a non-symmetric distance measure is the Kullback-Leibler divergence,

which measures the difference between two probability distributions and is

often used in information theory.

The vector space representation assumes that terms are independent

and disregards positional information specifying how words are arranged in

meaningful sentences (hence, phrases which are combinations of consecutive

words, cannot be straightforwardly represented). The advantage is that the

similarity between a document and a query can be easily formulated and

computed once both the documents and the query have been represented

as a vector in V -dimensional space, where V is the size of the vocabulary.

By measuring the of degree similarity we quantify the relationship between

a document D = (t1,D, t2,D, ..., tV,D) and a query Q = (t1,Q, t2,Q, ..., tV,Q),

which then allows us to estimate how relevant the document is to the query.

One similarity measure widely used in text retrieval is the cosine of the

angle formed by the two vectors:

sim(D, Q) =
D ◦ Q

| D | × | Q |

=

∑V

i=1 ti,D × ti,Q
√

∑V

i=1 t2i,D ×
√

∑V

j=1 t2j,Q

The factor | Q | does not affect ranking as it the same for all documents.

The other multiple in the denominator | D | plays the role of document

length normalization.
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An alternative measure is Euclidean distance which measures dissim-

ilarity instead of similarity, although similarity and dissimilarity can be

normalized to add up to 1.

dist(D, Q) =

√

√

√

√

V
∑

i=1

(ti,D − ti,Q)

2.3 Evaluation Measures

The evaluation of a computer system designed to interact directly with

users is never straightforward or easy due to human factors. This is par-

ticularly true for information retrieval systems because the notion of rel-

evance is subjective, as people might interpret differently the meaning of

a document depending on presumed information need or state of current

knowledge.

Therefore, it is important to acknowledge that human participation is

an essential part of an IR system. Although features such as information

visualization and user interfaces should not be ignored by developers of

search engines, there are inherent complexities involved in working with

humans because people with different backgrounds, experiences and mo-

tivations would perceive relevance and therefore search results in different

ways. To stay away from these complexities, researchers have devised pre-

cise evaluation methods based on having a reference test collection. Such a

collection consists of a set of documents, a set of example queries and rel-

evance judgments which specify the subset of relevant documents for each

query. The relevance judgments are provided by humans and in this aspect

it can be argued how objective they are, but this method allows at least

straightforward comparison between different retrieval systems.
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The two most widely used evaluation measures are recall and precision.

They are used to estimate the performance of a retrieval system on a sin-

gle query in terms of the number of retrieved documents Retr, which are

returned by the system, and the number of relevant documents Rel, which

are known to contain pertinent information.

2.3.1 Recall

Recall measures the ability of the system to find relevant information. It

is defined as the fraction of relevant documents which have been effectively

retrieved:

Recall =
| Retr ∩ Rel |

| Rel |

High recall means that there might be many nonrelevant documents in

the retrieved set, but most of the relevant ones are also included.

2.3.2 Precision

Precision measures the ability of the system to ignore nonrelevant infor-

mation. It is defined as the fraction of retrieved documents which are

considered to be relevant:

Precision =
| Retr ∩ Rel |

| Retr |

High precision means that many relevant documents might not be re-

trieved at all, but the set of retrieved documents mostly consists of relevant

ones.

There is an implicit tradeoff between recall and precision. Even without

improving the ranking, we can increase recall simply by retrieving more

documents. At the same time, however, this will significantly hurt precision
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Figure 2.1: Comparing the set of relevant and the set of retrieved docu-
ments.

as we may retrieve more nonrelevant documents as well. Similarly, we can

increase precision by retrieving only a small subset of documents with high

confidence of being relevant but this will significantly hurt recall as we

leave out many other good documents. Figure 2.1 graphically shows this

relationship. In practice, there are situations in which the user would prefer

one of those scenarios to the other. For example, a person using an online

search engine will probably look only at the first 10 to 20 documents. On

the other hand, a lawyer trying to find precedents will probably want to

go through every document even slightly connected with her case. In the

former scenario the user wants high precision, in the latter - high recall.

Such considerations underscore how important the human factor is for the

effectiveness of a retrieval system and they should be taken into account

during the design process.

2.3.3 Mean Average Precision

Recall and precision evaluate performance as the intersection of two sets

assuming that a document is either relevant or nonrelevant. Intuitively,

this assumption is false. Since an information need is inherently imprecise,

the query generated to express it is inherently ambiguous. Consequently,
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relevance is inherently not boolean and can take any real value between

0 and 1. Therefore, in most retrieval systems the documents retrieved in

response to a query are ranked according to their inferred relevance to the

query.

The performance metric used to evaluate ranked retrieval is called av-

erage precision. It combines recall and precision by averaging precisions

at different recall points. Starting from the top document in the list and

keeping track of the subset of documents retrieved so far, we compute pre-

cision whenever a relevant document is encountered in the ranked list and

therefore recall increases. Mean average precision is the arithmetic mean

of average precision for a set of queries. The precise mathematical defini-

tions for average precision AP , given a query q, and mean average precision

mAP , given a set of queries Q, are given below:

AP (q) =

∑

r∈Rel(q) P (r)

| Rel(q) |

mAP =

∑

q∈Q AP (q)

| Q |

where P (r) is precision at rank r and the document at r is relevant. Av-

erage precision is visualized by drawing recall-precision curves which show

precision at standard recall points, e.g. 10%, 20%,..., 100%, and interpolate

between points.

The same definitions of recall, precision and mean average precision

can be used to measure the performance of an image retrieval system. We

can evaluate a model on a portion of the annotation examples, which have

been put aside for testing and not used for estimating model parameters.

The manual annotations are assumed to be the ground truth and ideally

the system would reproduce all and only the manual annotations. Thus,
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in order to measure annotation performance for a given word we compare

the generated and the manual annotations of test images. The relevant

documents are those images whose manual annotations contain the word;

the retrieved documents are those images whose generated annotations

contain the word.

2.4 Vector Space Model

A simple Boolean retrieval model represents documents as binary vectors

in V -dimensional space, where V is the number of distinct terms in the

collection. The components of a document vector are set to either 1 or 0

depending on whether the corresponding index term is present or absent

in the document. Although this framework provides enough information

to make a binary decision (the document is either relevant or nonrelevant

depending on whether it contains the query word or not), it is insufficient

to measure the degree of similarity between a document and a query and

therefore to rank documents with respect to their relevance. The classical

Vector Space retrieval model makes partial matching between a query and a

document possible by assigning non-binary weights to the index terms, e.g.

computed using TF×IDF weighting. Given a query, the model estimates

for each document a value which is interpreted as a measure of how well

the document matches the query and therefore of how much it is relevant.

A straightforward result of computing degrees of relevance is the capability

to rank documents in terms of how well they are supposed to satisfy the

information need.
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2.5 Latent Semantic Indexing

One IR technique for analyzing the context of terms more extensively is

Latent Semantic Indexing (LSI). It is based on a straightforward mathe-

matical procedure for reducing the rank of a matrix and was first proposed

by Deerwester et al [7].

TF and IDF are computed independently for each term. Consequently,

these measures fail to capture how terms are related across the collection.

However, if two terms tend to appear in the same documents, they should

be considered interconnected. LSI attempts to address this problem by

mapping related terms to a single term.

If we have represented documents as vectors in V -dimensional space,

we can construct an index matrix M with documents along the rows and

terms along the columns. Then component Mij reflects the weight of term

j for document i. In the worst case, this matrix has rank RM = V although

it is possible that RM < V if there are linearly dependent terms.

LSI analyzes co-occurrence patterns existing in the document-by-term

index matrix to discover semantic relatedness among terms. If two (or

more) terms tend to occur in the same documents, they are projected onto

the same dimension in the latent semantic space, which implies that they

are mapped to the same concept. Thus, even if a document does not match

any of the query words, it can still be considered relevant if it is similar to

the query in the concept space created by LSI.

2.5.1 Singular Value Decomposition

LSI uses Singular Value Decomposition (SVD) to project documents and

queries into a low-dimensional space. According to the following linear

algebra theorem,
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For every m × n matrix M : Rn → Rm, there exists a factorization in

the form M = U[m×n]S[n×n]V[n×n].

Here S is a diagonal matrix: all its entries are zeros except for those

along the main diagonal. Moreover, both U and V are orthogonal, so that

UTU = I and VTV = I, where I is the identity matrix. The components

along the main diagonal of S are the singular values or eigenvalues of M.

Taking a subset of the singular values and the corresponding columns of U

and the corresponding rows of V gives us a low-rank approximation of M:

M′ = U′
[m×k]S

′
[k×k]U

′
[k×n]

Of course, by ignoring singular values we discard some information,

but taking the k biggest singular values guarantees that we get the closest

approximation for the particular value of k (closest in terms of squared

error since the approximation error is determined by the sum of the squared

singular values that were excluded).

This transformation maps M into a low-dimensional space. An obvious

benefit is saving space because the system needs to store a much smaller

matrix and a bigger part of it will fit into main memory. However, this strat-

egy has an additional, subtler advantage: it attempts to automatically find

associations between related terms, the very analysis which makes people

so good at judging relevance. If a retrieval system is unable to identify

how terms are related, it can only find documents which directly match

the query by containing all query words. However, there are words with

the same meaning, and by not taking such words into account the system

may miss relevant documents (the issue of synonymy). Also, words usu-

ally have several meanings and the system might retrieve documents which

are actually nonrelevant (the issue of polysemy). One approach for dealing

with synonymy and polysemy is using SVD and a low-rank approximation



CHAPTER 2. BACKGROUND 24

of the index matrix. (There are others as well, such as query expansion

and a thesaurus, but we are not looking into these here.)

An important point to make is that LSI has no underlying linguistic

foundation. Rank reduction and matrix transformations do not perform

linguistic analysis of the meaning of text; they are mathematical tools for

analyzing co-occurrence patterns. A system which uses a different tech-

nique to investigate co-occurrences may be able to identify the same or

better word relationships.

Deerwester et al show that LSI performs better than classical vector

space retrieval, especially for high-recall searches. LSI increases recall

because it finds relevant documents that would be overlooked in case of

straightforward term matching. But at the same time, LSI can hurt preci-

sion by assessing as relevant documents which are in fact nonrelevant and

by reducing very fine differences to the same level of detail.

The LSI approximation of the index matrix is U′S′V′, where the columns

of U′ and the rows of V′ are in a concept space of size k. Thus, after the

transformation documents are represented in terms of k concepts rather

than n terms and by using U′ and V′ a retrieval system can retrieve on

concepts instead of terms. The document and term mappings are U′ and

V′, respectively. In essence, LSI considers documents which have many

terms in common to be semantically similar and documents which have

few terms in common to be semantically unrelated.

After LSI transformation the coordinates of document vectors no longer

explicitly reflect term frequency. In fact, LSI data is not easily interpreted

as it has no direct semantic meaning and the generated concepts are not

directly related to what a human would consider a concept. For example,

LSI does not explicitly find groups of words that all refer to the same object

or idea: while ‘Bengal’ and ‘tiger’ are not synonyms in the literal sense, LSI
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might consider those words to be the same concept as they often appear

together. By decomposing the index matrix the retrieval system does not

begin to understand what words and documents mean, but takes advantage

of global word usage patterns to find related terms.

Latent semantic indexing reduces the rank of the index matrix to k.

While there are many possible k-rank approximations, LSI guarantees that

we use the optimal one in terms of squared error, and therefore the one

which incurs the smallest loss of information. However, choosing the opti-

mal value of k is an open question. This is usually done empirically rather

than taking into consideration the characteristics of the collection. The in-

herent difficulty lies in the fact that LSI tries to model hidden relationships

and it is not clear how obvious features such as the size of collection and

the average size of documents are related to the underlying the semantic

structure of the collection. Another potential problem is the computational

cost of performing singular value decomposition on a huge matrix. SVD

has complexity O(n2k3) where n is the number of terms plus the number

of documents and k is the rank of the approximation. Although k is kept

small (in the range 100 to 300), n grows fast as the size of the collection

increases. However, the computational cost involved might be acceptable

since LSI needs to be performed only once for a static collection.

2.6 Language Modeling

Language modeling (LM) is a probabilistic method that has long been used

in speech recognition, optical character recognition and machine transla-

tion. In all these applications, LM is used to choose between several al-

ternative hypotheses, which are considered highly likely. For example, a

speech recognizer might be unable to distinguish between ‘trait’ and ‘trade’
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given the acoustics alone. In order to disambiguate, the system can use a

general model of the English language. Let assume that the next word is

‘union’. Since ‘trade union’ is more likely to appear in an English sentence

than ‘trait union’ , the recognizer should choose ‘trade’. This is an example

of a bigram language model, one that considers two instances - the current

and the previous observation.

LM is also used in information retrieval. With this approach the system

estimates a language model from each document in the collection. (Inter-

nally, the representation of a document is a probability distribution rather

than a multidimensional vector.) Then, the models are used at search time

to rank documents in terms of the probability that the query is generated

by the corresponding model.

A language model is built by counting the word occurrences in the

document and assigning probabilities to words - the more frequently a

word appears, the higher probability it gets since it is considered more

descriptive of semantic content. Notice that LM explicitly looks only at

the term frequency TF of a word. This could suggest that the Vector

Space model is superior because it also takes into account the document

frequency through TF×IDF weighting. In fact, it can be shown that LM

includes an IDF component in its estimations as well, though not explicitly.

We return to this discussion in Section 4.1.1.

2.6.1 Relevance Modeling

Relevance modeling (RM) is a generative Language modeling (LM) ap-

proach but while the classical LM considers documents to generate queries,

RM assumes that both the documents and the query are generated by an

underlying conceptual model R, which describes a particular information

need. This is an accurate representation of reality since it is possible to
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express an information need in various ways, for example by using words

and phrases that have similar meaning. Therefore, one and the same rele-

vance model R can generate different queries and several documents that

are relevant to those queries.

RM introduces query expansion, which is discussed in Section 2.1, in

a language modeling setting. The process of query generation is directly

modeled at search time (in contrast to other methods who precompute

probability tables) and the algorithm ranks documents on the probability

of observing the query terms during a random sampling from the underlying

probability distribution. As with other query expansion techniques, there is

an initial retrieval step but rather than explicitly selecting additional terms,

RM compares the query with the top documents, re-estimates probabilities,

and then re-ranks documents.

RM has a formal theoretical foundation and yet a simple, intuitive

and well-understood framework. It does not rely on specific knowledge

about the syntactical rules of the language in which the documents are

written; hence it is straightforward to apply in cross-language retrieval or

in monolingual retrieval in languages for which no linguistic theory has

been developed. This last characteristic makes the RM especially suitable

for annotating images (we consider this to be a cross-media retrieval task,

where the two media are image and text), because the language of visterms

is linguistically unstructured. In this work, we extend the original definition

of relevance modeling by including information extracted from groups of

similar documents in addition to information extracted from individual

documents.
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2.7 Image Retrieval Techniques

Image retrieval techniques are classified into two types, text-based (TBIR)

and content-based (CBIR), and the foremost difference between those is the

internal image representation. While text-based methods represent images

indirectly in terms of annotation, caption, file name and/or surrounding

text, content-based methods represent images directly in terms of their

visual features.

Representation determines how images are indexed and searched, and

consequently how queries are formulated. Text-based image retrieval allows

for a query-by-text approach where the query is expressed in words and the

system should return images whose annotations are most relevant, e.g. the

user asks ‘tiger in a natural environment’ and gets back images of tigers

in the savanna or in the jungle. Content-based image retrieval allows for

a query-by-example approach where the query itself is an image and the

system should return images whose visual features are most similar to those

of the provided image.

Because of the differences outlined above, the two types of image re-

trieval techniques are suitable for different application domains. Text-based

retrieval is practical in a more general setting, e.g. browsing a collection of

digital photographs where images are automatically arranged based on key-

words extracted from their annotations [19], while content-based retrieval is

practical in a more specialized context, e.g. face detection for surveillance

purposes [22].

Although querying by example and hence content-based image retrieval

have many potential applications, querying by text is actually more con-

venient for users. An Internet user would most probably not search for

sunset images if she already has one. So she would have to first draw a

picture resembling a sun disappearing behind the horizon, e.g. an orange-
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to-red circle on a blue background. This seems relatively easy but imagine

drawing a human face or a tiger! Because content-based techniques require

thinking (and visualizing) what we are searching for in terms of low-level

visual features such as color, shape and texture, they are unintuitive and

unnatural. Moreover, tigers are taken picture of from different angles and

therefore appear in different shapes and colors. So even if the user success-

fully draws a tiger turned to the left, the system will be able to find only

very similar tigers while the user probably wants to search for any tiger

regardless of the way it faces the viewer.

Because querying by providing an example is cumbersome, using a ver-

bal description to specify the desired images and hence text-based image

retrieval are advantageous in interactive search systems. Users rely on tex-

tual information more than on visual information to validate their search

results, as demonstrated by a study on the role of text and image repre-

sentations of video segments reported in [10]. In this investigation, the

retrieval system displayed both textual (title and description) and visual

(three frames) surrogates for the video information and an eyetracking de-

vice was used to determine which representation users looked at first and

more often. Most of the subjects used the text to make their relevance

judgments and the images afterwards to confirm the selection. A simi-

lar conclusion is made in another study on the utilization of textual and

non-textual relevance criteria for judging the relevance of photographs [6].

Text-based image retrieval represents images in terms of keywords or

concepts. Therefore, systems can search for relevant images based on se-

mantics rather than appearance and users can formulate queries in a natural

language. However, the process of acquiring the annotations necessary for

building such a system is not trivial. Annotations can be assigned manually

but to have someone work through the entire collection, analyzing every
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single image, would be time-consuming and expensive since it would re-

quire training annotators, the way reference librarians are trained to work

with paper documents and archives. In addition, human annotations are

inherently subjective as they reflect the annotator’s personal view and un-

derstanding of the image. Human annotation relies on the person to decide

what the most salient objects are. Common, background objects such as

the sky might be left out because they seem trivial to the annotator. There-

fore, images might be labeled inconsistently when several people work on

the same collection.1

The annotation model proposed in our work attempts to improve the

cross-media relevance modeling approach by incorporating clustering. The

idea is motivated by the fact that human annotations are often incomplete:

sometimes an object that is obviously in the picture doesn’t appear in the

annotation. On the other hand, visterms are imperfect descriptors of im-

ages as the same visterms can appear in semantically unrelated images. The

hypothesis is that a cluster-based Cross-media Relevance model will deal

better with these difficulties than the classical Relevance model since it will

use the global similarity between images and thus capture correspondences

between words and visterms more accurately.

2.8 Clustering

Clustering is an extensively studied technique with various applications

in information retrieval, including organizing and browsing collections and

retrieval results, interactive relevance feedback and summarization. Clus-

1Of course, the annotations used to train an automatic system for generating
annotations are still produced manually and therefore are susceptible to human
subjectivity. However, since we need only a small portion of the collection for
training, the consistency problem could be efficiently dealt with. Also, more
time could be allocated per image, so that the manual annotations are carefully
created and validated.
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tering attempts to utilize similarity relationships between documents. In

the Vector Space retrieval model a document is represented as a vector

in multidimensional space, where each dimension corresponds to a term

in the vocabulary and the terms are weighted by their importance as in-

dicated by the number of occurrences in the given document and across

the collection. Queries are represented in the same way. The degree of

similarity between two documents (or between a document and a query)

is computed on the basis of how many terms they have in common, e.g.

using the inner product of two vectors (Euclidean distance) or the cosine

of the angle they determine (cosine coefficient). Similar documents would

be represented by vectors that are close to each other in space. Therefore,

the distance between the index vectors is inversely related to the similarity

of the corresponding documents.

The cluster hypothesis, proposed by C. J. van Rijsbergen, states that

“closely associated documents tend to be relevant to the same request”.2

It implies that similar documents are about the same topic and there-

fore groups of similar documents should be retrieved together. Ideally,

documents which are relevant to the same information need are clustered

together and can be retrieved in response to the same queries. Likewise,

documents which are far apart in the document space are not expected

to appear in the same context. Thus clustering can increase performance

by bringing relevant documents together and separating nonrelevant ones.

If we know that a certain subset of documents are relevant to the query

and we also know that these documents are similar to another subset of

documents, then we conclude that we should combine the two subsets and

retrieve them together. Therefore, we could consider clustering to be a

learning algorithm that allows us to analyze relationships between docu-

2C. J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979.
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ments and make inferences and generalizations.

Another classifying procedure used in information retrieval is catego-

rization, where a hierarchy of categories is chosen manually in advance

and a document is assigned to one category or another depending on its

characteristics. However, to define a general set of categories is a difficult

task, as it requires deciding what categories are most applicable and how

they are related. In contrast, clustering is unsupervised and the groups

are discovered automatically. And since there are no category labels pro-

vided, clusters have no explicit meaning: though we know that documents

grouped together are similar in some respect, we do not know the central

theme that connects them.

Again, we emphasize the fact that when using clustering we make the

assumption that documents in the same cluster have a topic in common.

(If this premise is true, then it is reasonable to conclude that we should

retrieve all these documents whenever the query refers to the underlying

topic.) In practice, documents are clustered in terms of their vector rep-

resentations and therefore on the basis of purely mathematical properties:

clusters combine documents whose corresponding vectors are close in vector

space. However, there is no linguistic theory which guarantees that geo-

metric adjacency stems from semantic similarity. In this respect, clustering

makes a very strong assumption.

We paraphrase the cluster hypothesis to say that “similar images tend

to be annotated with the same words” and we investigate whether this

statement is true by using statistical information, shared by images clus-

tered together, to extend the original Cross-media Relevance model. And

because textual and visual information complement each other, training

images are partitioned into groups based both on their visual characteris-

tics and annotations.
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2.8.1 Static & Query-Specific Clustering

Clustering is either static, performed prior to answering queries and over

the entire collection, or query-specific, performed at search time on the in-

dividual documents retrieved in response to a given query. Though some

studies demonstrate the benefits of using static clustering [21], there is

no consistent evidence proving that it effectively improves retrieval perfor-

mance for general collections. This could be explained by the fact that

general relationships do not conform well to specific information needs.

A query defines its local context and the general structure of the collec-

tion might not be pertinent to individual queries. Query-specific clustering

techniques are more flexible because they adapt better to local context [9].

Clusters can also be updated according to local feedback, a retrieval

technique which iteratively refines search results in response to relevance

judgments provided by the user on the previous set of retrieved documents.

The strategy can also be implemented automatically: the system retrieves

once using default model parameters, assumes the highest ranked docu-

ments are relevant and re-estimates term weights or expands the query

based on the initial result. This approach for generating relevance feed-

back is based on the following observation. Most users inspect only the

first couple of pages of retrieved documents, which amounts to the 20 to

30 highest ranked documents. Even if the search engine finds thousands of

relevant documents, it is highly unlikely that someone would take the time

to look through all of them. Let us assume that if the user clicks on the

link to a retrieved page, she makes a positive relevance judgment for this

document. We can generalize this line of reasoning by making the further

assumption that the user always inspects the first N documents. In this

case, the system does not need someone to actually sit down and click on

the links - it can directly consider the top N documents to be relevant.
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Whether manually or automatically generated, feedback information

can be used to recluster documents and find clusters which are better struc-

tured with respect to the individual query.

Separating dissimilar documents increases precision as the system avoids

retrieving nonrelevant documents since they are far away; bringing together

similar documents increases recall as the system retrieves more relevant

documents since they are grouped together. Therefore, clustering helps

retrieval only if it finds well-formed (tight and clearly separated) clusters.

However, clustering itself does not transform document representations -

performance depends on the initial configuration of the document space. If

term vectors are not well separated, a clustering algorithm will fail to find

good clusters. Deciding how to represent documents is therefore crucial:

this determines distances between individual documents and, consequently,

how successfully a clustering algorithm can minimize intracluster distances

and maximize intercluster distances (in order to separate unrelated docu-

ments and bring together related ones). Recall from Section 2.1 that term

selection and weighting can influence performance. For example, if we use

only TF to represent documents we will measure the informativeness of

words within documents but not across documents, which is not enough to

get a clear separation between relevant and nonrelevant documents.

A clustering technique can be defined in terms of an abstract similarity

measure and then implemented in terms of a particular metric, e.g. Eu-

clidean distance or cosine coefficient. Clustering techniques are classified

into two major groups depending on the structure of the partitioning they

generate. Hierarchical clustering produces a hierarchical tree of clusters

where each node unites a pair of related subclusters. Figure 2.2 shows an

example of such a hierarchy, called a dendrogram. The leaves of the den-
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Figure 2.2: Dendrogram representation of hierarchical clustering: At each
internal level a horizontal line segment merges the two intermediate clusters
with greatest similarity.

drogram are individual documents and their relative similarity is indicated

by the height of the node that joins them together. Thus, lower internal

nodes represent smaller clusters of closely related documents and nodes

higher in the tree represent larger clusters of loosely related documents.

Flat or non-hierarchical clustering simply assigns objects to one of a given

number of clusters without deriving relationships between clusters.

The choice of which clustering technique to apply should depend on

the features of the items to be clustered and the desired characteristics of

the clusters themselves [17]. Next, we describe several specific clustering

algorithms.

2.8.2 Agglomerative Clustering

Agglomerative clustering is a type of hierarchical clustering which creates

the dendrogram bottom-up. An algorithm of this kind starts with each

element of the set in its own cluster and then iteratively combines the

two closest clusters to form larger ones until there is a single cluster left.

Or alternatively, the process stops when the desired number of clusters is
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reached.

Agglomerative clustering computes a distance matrix which specifies

the distances between objects to be clustered. However, after the two

closest objects are merged, the distance matrix is no longer accurate - first

because two of the clusters represented no longer exist as separate entities,

and second because there is a new cluster whose distances to each of the

other clusters are unknown. While removing the two rows and columns in

the matrix which correspond to the merged clusters is trivial, to deal with

the second issue we need to define a similarity function that will determine

how the new distances are computed. Within the general framework of a

bottom-up clustering procedure, there are several versions of agglomerative

clustering which differ only in their similarity function.

Single-Link Clustering

Single-linkage defines the distance between two clusters be the distance be-

tween the two most similar members. So, to update the distance matrix,

we need to compare all pairs of objects from two different clusters and take

the smallest distance (or greatest similarity). Because the similarity func-

tion looks at adjacent objects, it is locally defined and therefore it produces

clusters with good local coherence. This means that objects that are close

to each other are grouped together but it also leads to a tendency to form

long, ‘straggly’ clusters. An example of a straggly cluster is presented in

Figure 2.3.

In retrieval, clustering is used to analyze the structure of a document

collection and the discovered similarities are used to generalize about overall

occurrence patterns. Therefore, producing loose clusters, even if they have

good local coherence, could be considered an undesired property because

we are interested in creating clusters with good global qualities, i.e. clusters
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The initial con-
figuration with eight
points to be clustered:
a, b, c, d, e, f, g, h.

Following initial
four merges, there
are four small clusters:
{a, b}, {c, d}, {e, f}, {g, h}.

After two more
merges, there are
two straggly clusters:
{a, b, c, d}, {e, f, g, h}.

Figure 2.3: This example shows how single-linkage clustering can produce
long and loose clusters. Notice how in the final configuration a and d are
grouped together while a and e are assigned to different clusters, although
a is closer to e than to d.

that are compact with respect to the rest of the clusters.

Complete-Link Clustering

Complete-linkage defines the distance between two clusters to be the dis-

tance between the two most dissimilar members. As with single-linkage, to

update the distance matrix we need to compare all pairs of objects from

two different clusters but in this case we take the greatest distance (or least

similarity). Because this similarity function is globally defined, it avoids

chaining objects in elongated clusters and produces tight spherical ones.

An example of a spherical cluster is presented in Figure 2.4.

Although theoretically single-linkage might be the “correct” clustering

algorithm to use in specific situations, generally we would prefer tighter

clusters because they would not contain elements that are strikingly dis-

similar. (This could happen within a very long cluster.) In our particular

situation we will use clustering to find groups of images assumed to be

similar in some aspect: all pairs of images within a cluster should share a

commonality, a unifying feature or theme. We could imagine this common

feature as a focal point around which cluster members are centered (and
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The initial con-
figuration with eight
points to be clustered:
a, b, c, d, e, f, g, h.

Following initial
four merges, there
are four small clusters:
{a, b}, {c, d}, {e, f}, {g, h}.

After two more
merges, there are two
spherical clusters:
{a, b, e, f}, {c, d, g, h}.

Figure 2.4: The same example as in Figure 2.3 using complete-linkage
clustering. The first four merges are the same but on the next step a and e
are clustered together. The final result are two spherical and more compact
clusters.

none of the elements should be too far away from this central point). Think-

ing about this idea geometrically, we could see how it would correspond to

spherical rather than elongated clusters.

For a collection of n documents agglomerative clustering completes in

n − 1 steps. Computing the initial similarity matrix of n documents re-

quires calculating distances between all pairs of documents in the collection,

which amounts to n(n−1)
2

computations. Each merging step of single-link

clustering requires updating the matrix by comparing the respective dis-

tances from the two merged clusters A and B to each of the other clusters

C:

distance(A + B, C) = min{distance(A, C), distance(B, C)}

Each comparison can be done in constant time as we already know

the distances between individual objects but we need to make n − k − 1

comparisons where k is the current dendrogram level. Thus, single-linkage
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takes at most n(n−1)
2

+(n− 1)n = 3
2
n2 steps, so it has overall complexity of

O(n2).

Complete-linkage is more computationally expensive because each it-

eration of the merging algorithm requires O(n2) comparisons to find the

greatest distance between any two elements for each pair of clusters. Again,

there are n − 1 merging steps for an overall complexity O(n3).

Group-Average Clustering

Group-average defines the distance between two clusters as the average

distance between all pairs of members (including pairs originally from the

same cluster). If this computation is not optimized each update of the

distance matrix will take at most O(n2) steps. However, if the objects to

be clustered are represented as length-normalized vectors, the update can

be completed in linear time; in this case group-average clustering partitions

a set of n elements in O(n2) steps. Thus, it is a compromise between

single and complete linkage because it is less computationally intensive

than complete-linkage but it also has less tendency to produce straggly

clusters.3

2.8.3 Non-Hierarchical Clustering

Non-hierarchical clustering techniques take the number of clusters as an

input argument and refine an initial partition of the element set iteratively

until there is improvement of cluster quality.

The most widely used non-hierarchical algorithm is K-means [17]. It

requires specifying the desired number of clusters explicitly. Then it par-

titions the element set into hard, non-overlapping groups. Given a set of

3Refer to [17] for a derivation of O(n2) running-time complexity for average-
linkage in the case of vector-space representation.
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n elements to be clustered into k disjoint subsets, the procedure starts

by randomly selecting k elements as the initial centroids. A centroid is

the weighted average of the elements comprising a cluster. By computing

the distances from an element to each of the centroids the algorithm finds

the closest centroid and thus assigns the element to one of the k clusters.

Next, the centroids of each cluster are reevaluated and the elements are re-

assigned if necessary. The reevaluation/reassignment step is repeated until

no element changes cluster and the clustering converges. (Alternatively,

execution stops after a fixed number of iterations.)

The algorithm is guaranteed to converge: at each step the overall clus-

tering is improved, therefore no configuration is repeated; since there are

finite number of ways to allocate n elements among k groups, a local op-

timum is reached after a finite number of iterations. The complexity of

K-means is O(kn) with linear factors in the dimensionality of the vectors

and the number of iterations (assuming a fixed number of iterations).

K-means is more efficient than hierarchical clustering in terms of com-

putational resources, since k is usually a much smaller number than n. It is

also conceptually simpler but it has limitations. One critical aspect is how

we choose the initial centroids since K-means is sensitive to the starting

configuration. If there is preliminary information about the cluster config-

uration, better than random initial selection can be made based on some

kind of a heuristic method. For example, if the working data or data sim-

ilar to it has already been clustered before, the algorithm can easily take

advantage of the existing clusters by starting with their centroids. In case

there is no a priori information, K-means could fail to find a good solution

if it gets trapped in a local maximum depending on the initial condition.

K-means is also sensitive to outliers, extreme points which lie notably
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far away from most of the points in the dataset. This is due to fact that

K-means computes the centroid of points as their mean, and an outlier

could pull the centroid away from its true position.

Finally, K-means requires that the final number of clusters is decided in

advance and just like the initial centroids this is hard to determine without

a priori knowledge. In this respect, agglomerative clustering algorithms

have one important conceptual advantage over K-means. They take as an

input argument a similarity threshold θ which determines at what level to

cut the dendrogram to generate clusters. Clusters whose similarity is less

than 1−θ are not merged, so the process of merging can stop once this level

is reached. An example is shown in Figure 2.5. This gives more flexibility

as we only need to decide at what point the advantage of relative similarity

is less than the disadvantage of relative dissimilarity, and hence there is no

information gain in joining clusters any further.
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Figure 2.5: The dendrogram in Figure 2.2 cut at two different similarity
thresholds. On the left, specifying the threshold at 0.5 results in creating
five (and looser) clusters; on the right, specifying the threshold at 0.4 results
in creating eight (and tighter) clusters.

Ultimately, the important distinction between the different kinds of

clustering algorithms is the quality of the clusters they produce and this

depends to great extent on the similarity structure of the space we want

to partition. Therefore, there is not a universally applicable clustering

technique which fits all data equally well.
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2.9 Textual Images

Textual images are images of typed or typeset documents such as scanned

or faxed pages. They are made up primarily of text although they may

include some nontextual elements, e.g. logos, trademarks, signatures or

drawings. Figure 2.6 provides an example of such an image. Although

neither textual images nor compression is the subject of this paper, the

efficient compressing technique described below resembles closely the image

processing phase of automatic image annotation.

Figure 2.6: Textual image and its reconstruction after compression.

The compressing method utilizes the fact that textual images contain

only or mostly text in the form of strings of characters [23]. By extracting

connected groups of black pixels, a library of the distinct symbols occurring

in the image is constructed. Figure 2.7 shows the symbol library generated

from the textual image in Figure 2.6. The library is similar to an alphabet

of shapes, which usually correspond to characters and digits. It is not

necessary to recognize the symbols by determining which characters they

stand for, as they can be processed and saved as bitmaps. This allows

representing each symbol by a number that points to a position in the

library. The compression is achieved by substituting repeated symbols

with the same number and having one entry for all of them in the library.

The number sequence together with the library can be used to restore the

original image, though the reconstruction is an approximation rather than

an exact copy of the original document since what we have described is a
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Figure 2.7: The symbol library built to represent the textual image shown
in Figure 2.6.

lossy technique.

Of course, in general images are more complex than a digitized image

of printed text. However, a similar technique can still be applied in order

to represent images in terms of a library of symbols rather than visual

features. This is discussed further in the next section.

2.9.1 Image Processing

The preliminary step of automatic annotation is to obtain an image vo-

cabulary for the collection and use it to represent images in terms of the

elements of a finite set of symbols describing visual components. First,

an image is divided into regions and a set of visual features is extracted

from each region. Those features may include RGB histograms (measur-

ing amount of red, green and blue color) and LAB histograms (measuring

color differences), color moments and texture gradients. The partitioning

itself can be implemented either by applying a segmentation algorithm, e.g.

Normalized cuts, or simply by dividing the image into a rectangular grid.

Dividing into a grid of rectangles is fast and simple but a segmentation

algorithm can be applied with the intention of getting semantically con-

tiguous regions. However, Carbonetto et al report that the two approaches

result in equal performance [5]. In fact, current segmentation algorithms

often have poor accuracy and the process might split an object into sev-

eral pieces or fail to separate two objects. Since segmentation has a higher

computational cost and the naive approach does not penalize performance,

it is more reasonable to use grid partitioning.
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After partitioning, the regions from the entire collection are grouped

together on the basis of the extracted visual features. The regions forming

one group are represented by the same visual token.4 This is analogous

to the process of compressing textual images and the result is building a

restricted vocabulary. But in contrast to the representation of a textual

image, the token representation of an image is not structured: it is a bag

of visual tokens in no particular order. Thus the synthetic visual language

has no structures similar to the words and sentences making up the text

captured in a textual image.

Once image processing phase is completed, the system relies on a set

of training images that have been manually annotated to learn correspon-

dences between words and visterms.

2.10 Automatic Annotation

Finally, we give a theoretical definition of the task we set to achieve -

assigning suitable, descriptive words to images given their visual compo-

nents. Those visual components, which we would call for now visterms,

are abstract concepts for representing the visual appearance or features of

images such as color, shape and texture. We explain how they themselves

are generated in the next chapter. In the most general setting, visterms

are similar to the symbols used to compress textual images.

Formally, we want to construct a model M that assigns words to each

image I in an unannotated collection C. The model formulates its decision

given the visterms of I and selects those words from a restricted vocabulary

V that best describe the content of the image:

4Visual token refers to the identifier of a group of similar regions. There is
not a standard term for this concept in the literature.
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M : (I = {v1, ..., vm} ∈ C) → (A = {w1, ..., wk} ∈ V )

To achieve this, we use a training collection T consisting of already

annotated images J for which we know both the visterm representation

v1, ..., vm and the textual representation w1, ..., wk. In our dataset the num-

ber of visterms m is the same for all images in C and T , but in general

images might have visterm representations of varying length (this is the

case when segmentation is used to discretize images into regions).

The vocabulary V is restricted to include only words appearing in the

annotations of training images because the model requires examples to

learn how particular words and visterms relate to each other.

By assigning words to images, the annotation model in effect generates

annotations. These annotations can be used by a text-based image re-

trieval system for finding relevant images given a set of query words. The

system represents images indirectly by indexing their annotations instead

of their visual features; given a specific query it performs straightforward

text retrieval by comparing query and annotations to find matching words.

In the next chapter, we present three approaches that have been pro-

posed for achieving this task. In particular, we introduce the Cross-media

Relevance model, the generative language modeling technique that we ex-

tend by incorporating clustering.
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Previous Work

Learning how visual features and words are associated has many potential

applications. For example, it can be applied in a straightforward way to

create automatic image annotations, which in turn can be used to organize,

browse and search image collections. A variety of approaches have been

proposed for automatically assigning words to describe images [11].

3.1 Co-occurrence Model

In one of the earliest studies on automatic image annotation, Mori et al

proposed using the co-occurrence of words and image regions to discover

region-to-word relationships [18]. The procedure they developed includes

the following steps:

1. Divide each training image into a rectangular grid and extract a set

of visual features from each rectangular region.

2. Partition the space of feature vectors. Represent the regions corre-

sponding to vectors belonging to the same subspace by the centroid

of the subspace.

46
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3. Assume each region inherits the words assigned to the whole image.

Count the frequencies of words across regions and use word-region

co-occurrences to estimate the probability of a word given a region.

4. To annotate a test image, divide it into a rectangular grid and extract

the same visual features as for training images. For each region find

the closest centroid from the training space and assign it to the group

corresponding to that centroid. Take the word probabilities for all

regions comprising the test image and average them to get the final

probabilities. Use the n most likely words to construct an annotation

of length n.

For the second step Mori et al use an incremental vector quantization

algorithm that maps a set of vectors fi ∈ Rn into a finite set of centroids

cj ∈ Rn. The Rn space is partitioned among the centroids so that no two

quantization regions overlap. The number of partitions is selected auto-

matically in the mapping process but depends on an input parameter that

specifies the threshold error: if the distance from a vector fi to one of

the centroids is smaller than the threshold value, then fi is assigned to

the respective partition and represented by its centroid. Otherwise, a new

partition is created with centroid cj = fi.

To estimate the probability of a word wi being associated with a centroid

cj, Mori et al use word-region co-occurrence statistics:

P (wi|cj) =
mji

∑V

k=1 mjk

where mji is the frequency of wi in the group represented by cj, and V is

the size of the vocabulary. The idea is to gather a lot of training statistics

and use it to distinguish correct from incorrect region-to-word correlations.

For example, consider an image of a tiger in the grass. Regions with grass
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pattern inherit both ‘tiger’ and ‘grass’. However, in other images ‘grass’

might appear in other settings, e.g. in a garden, so the particular region

will inherit ‘grass’ and ‘flowers’. By combining the information of just

these two occurrences we have ‘grass’ twice, ‘tiger’ once and ‘flowers’ once.

Thus ‘grass’ would get a higher probability than either ‘tiger’ or ‘flowers’.

Collecting more examples would help to get better estimates and give low

probability to unsuitable words and high probability to appropriate ones.

The Co-occurrence model is simple and requires large amounts of train-

ing data to estimate the true probabilities. It is also biased towards as-

signing frequent words. (Rare words are probably more useful for retrieval

as users would most often search for specific, interesting people, animals,

places, etc.)

Several other models for automatic image annotation have been pro-

posed, which all follow the general procedure outlined above: Start by

dividing images into regions (either rectangular blocks or segments), then

extract visual features and discretize the feature space by grouping similar

regions into tokens. Next, compute the conditional probabilities P(word |

visual token) for each pair of word and token. Finally, use those probabili-

ties to rank words given an annotated image and select the highest ranked

to describe it.

The definition of an automatic annotation model is independent of what

visual features are chosen to process the images. Any combination of fea-

tures can be used and the decision can be based on a heuristic or system-

atic approach, which tries to pick features maximizing overall performance.

How the images are split into regions also affects performance without mod-

ifying the definition of the annotation model. Annotation models differ in

the approach used to estimate the conditional probabilities of words given

visual tokens and the specific details of how the probabilities for individual
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image regions are combined to choose the most likely words for the image

as a whole.

The next section describes a model which treats the assignment of word

probabilities like translation from visual components to words.

3.2 Machine Translation Model (MT)

Duygulu et al model the process of assigning words to images as a form

of multi-modal translation from visual tokens to words, which is similar to

translation from one written natural language to another [8].

Statistical machine translation maximizes the conditional probabilities

P (e|f) where f is a word in the target language and e is a word in the source

language. Training data consists of aligned bitext: portions of text such as

paragraphs or sentences which are translations of each other. While it is

known that the segments correspond in meaning, the exact correspondences

between pairs of words are unknown. This is a missing data problem:

given the correspondences we can estimate the translation probabilities

and, vice versa, given the translation probabilities we can estimate the

correspondences. The missing data problem can then be resolved with an

unsupervised iterative technique called Expectation Maximization (EM).

The EM algorithm iterates between the following two steps:

• Estimation: Compute the expected value of correspondences using

the current value of the translation probabilities. (Start with the

co-occurrence matrix on the first iteration.)

• Maximization: Revise translation probabilities using the new align-

ments.

The Machine Translation model considers the annotation and the blob

representation of an image as aligned sentences and applies a classical IBM
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statistical translation mechanism with blobs being the source language and

words being the target language [4].1 For each blob, the model learns which

word it most probably translates into. One of the issues is that images

and annotations are complimentary rather than interchangeable sources

of information. With natural languages, when two sentences translate into

each other, then they contain the same information. This is not exactly the

case with words and visual tokens. Annotations might leave out obvious

details, e.g. the color of a dog, and point to more interesting, semantic

properties, e.g. its breed. Just like it is difficult to infer the color of a dog

only from the word ‘terrier’, it is difficult to deduce its breed by considering

color, shape and texture only. Also, most statistical machine translation

techniques take into account the syntactic structure of a sentence to achieve

better results. However, neither blob representation nor annotations have

such structure.

The Machine Translation model assumes that there is a one-to-one cor-

respondence between words and blobs, and therefore labels each region

with the word that has the highest probability. The assumption, however,

is not true in general. First of all, images have a different number of blobs

and words in general. Also, words might not refer to a specific object and

a region might be composed of (parts of) several objects.

In fact, the Machine Translation model attempts to associate each re-

gion with a particular word (this task is referred to as region naming), which

is more ambitious than annotation. This task is close to object recogni-

tion, a very hard computer vision problem. However, region naming and

object recognition are not necessary for creating annotations, though is the

system is capable of correctly identifying the objects in an image, it would

probably do a better job at annotating. The goal of automatic annotation

1In this paper, a blob denotes a region token derived after segmentation, and
a visterm denotes a region token derived after grid partitioning.
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is to associate words with the image as a whole rather than linking image

regions with particular words.

The next section describes a technique which models the assignment of

word probabilities as a discrete stochastic process.

3.3 Maximum Entropy Model

Maximum Entropy (MaxEnt) is a technique successfully applied to a vari-

ety of language tasks, including machine translation [3]. It is used to model

a discrete stochastic process based on a series of observations. Knowledge

about the process is incomplete as the algorithm relies on a set of training

examples considered to be samples generated by the process. From the in-

finite number of models which satisfy the input constraints, the algorithm

chooses the one with the highest entropy or uncertainty.2 Thus the algo-

rithm prefers a uniform distribution where no information is available, so

as not to make additional assumptions.

Jeon et al apply a maximum entropy approach to automatic annotation

[14]. They define two kinds of predicates which check for the co-occurrence

of words and visterms and are weighted automatically by the MaxEnt al-

gorithm. The weights are the conditional probabilities P (word|image).

Unigram predicates pair a word and a visterm. Bigram predicates pair two

adjacent (vertically or horizontally) visterms and a word. The stochas-

tic process takes an image as input and generates an annotation word as

output.

Even complex low-level visual features have limited ability to identify

objects. The Maximum Entropy model proposes a way to incorporate

higher-level information by looking at image configuration. Therefore, this

2In information theory, entropy is more specifically defined as information
content.
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method has the advantage of taking into account, though in a simple way,

how visterms are positioned relative to each other in contrast to the Ma-

chine Translation model, which considers the image as a bag of visual

tokens. This is useful because certain concepts have the same placement

with respect to one another in most images, e.g. sky always appears above

grass.

The benefit of the Maximum Entropy model is incorporating addi-

tional, spatial information by using predicates of higher order. Although

this might lead to performance improvements, it comes at the price of in-

creased computational demands. Consider data consisting of m visterms

and n words: there are mn unigram predicates, m2n bigram predicates and

m3n trigram predicates. Obviously, there is a considerable increase in the

number of model parameters, as the model tries to include more complex

predicates. The other drawback is data scarcity. Even for a large collec-

tion, many combinations of visterms and words would appear hardly ever

and there would be not much information for the algorithm to make good

parameter estimations. This problem would quickly aggravate for predi-

cates of higher order. Therefore, the Maximum Entropy model does not

scale well.

In the next section we introduce a language modeling technique, which

considers automatic image annotation as a retrieval problem and ranks

words in terms of their relevance to the unannotated image.

3.4 Cross-Media Relevance Model (CMRM)

Jeon et al adapt a cross-lingual retrieval method for automatic image an-

notation [13]. To predict the underlying concepts of an unannotated image,

their Cross-media Relevance model computes the joint probability of ob-



CHAPTER 3. PREVIOUS WORK 53

serving a word w and the blobs of the image together, for all words in the

vocabulary. The joint distribution is estimated by comparing the test im-

age with training images that contain w and a fixed number of the words

with the highest probability are included in the annotation. Rather than

assuming that particular words correspond to particular blobs as the Ma-

chine Translation model does, the Cross-media Relevance model uses blobs

to measure the similarity between two images, assuming instead that im-

ages which are similar in terms of blobs are also similar in terms of their

annotations. Therefore, this technique does not associate words and blobs

directly but provides context for individual blobs - thus helping to dis-

ambiguate blobs based on the other blobs forming the image. Another

advantage is that it is capable of performing ranked retrieval in addition to

image annotation. Lavrenko et al have also proposed a modification of the

Cross-media Relevance model that directly uses continuous-valued feature

vectors rather than discretizing them into blobs [15].

The Cross-media Relevance model is a generalization of a text retrieval

technique, which uses the query to estimate word probabilities in the class

of relevant documents. As its name indicates, CMRM retrieves across

media: the query is in one medium and the documents are in another. In

the case of images, for example, the query is a word and the document is

an image and the degree of similarity measures the likelihood of annotating

the image with the word.

3.5 Cluster-Based Text Retrieval

Document clustering within the framework of language modeling for text

retrieval has been investigated by Liu et al in [16]. They define two cluster-

based methods: Cluster Query Likelihood (CQL), which builds language
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models for clusters instead of documents, and Cluster-based Document

model (CBDM), which smooths the language models of documents with

the model of their respective cluster.

The motivation behind the cluster-based approach to information re-

trieval in general is exploiting corpus structure: how are documents re-

lated to each other given term co-occurrence patterns. Clustering utilizes

collection-wide features that are ignored by individual-document analy-

sis (such as TF×IDF weighting). Liu et al propose cluster-based lan-

guage models for full-text retrieval which explore across-document word

co-occurrence patterns in addition to within-document occurrence patterns.

CQL ranks clusters based on the probability of generating the query.

First, document-based retrieval is performed and then the 1000 highest-

ranked documents are clustered using an agglomerative clustering method.

The resulting clusters are ranked according to P (Query|Cluster) and the

documents within a cluster are ranked according to P (Query|Document),

which is already computed in the first step. In CQL clusters play primarily

a ranking role as they are directly used to estimate the conditional proba-

bilities, which determine the level of relevance. Liu et al experiment with

different hierarchical clustering algorithms, different threshold values for

the clustering and different smoothing methods on various collections, and

their results show that CQL is as effective as document-based retrieval.

CBDM ranks documents as in a straightforward document-based re-

trieval but smooths the probability estimates of words given documents

with the cluster frequencies (and the cluster frequencies themselves are

smoothed with the background collection frequencies). In CBDM clus-

ters play primarily a smoothing role as they are indirectly used to smooth

the language models of individual documents. Again, Liu et al experi-

ment with different clustering techniques (both static and query-specific),
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different clustering parameters and different smoothing methods on var-

ious collections, and their results show that LM retrieval, i.e. estimat-

ing P (Query|Document), with CBDM performs significantly better than

with the standard document model, and RM retrieval, i.e. estimating

P (Query, Document), with CBDM performs as well as with document

model.

The experiments in [16] are extensive: they use six different document

collections (one for parameter setting and five for testing) and therefore

their results convincingly demonstrate that cluster-based language models

used either for ranking or smoothing are at least as good and sometimes

significantly better than document models. This implies that the similarity

structure of the collection is a potentially useful source of information be-

cause clusters provide more representative statistics for term distribution

as a result of combining multiple similar documents. Clusters, considered

as longer “documents”, include much more observations and this allows for

a better approximation of their language model.

The investigation of Liu et al also brings up the question whether clus-

tering would be effective in improving the performance of language models

for image annotation. In the next chapter we discuss how CQL and CBDM

are applied to the image annotation task, and explain how smoothing is

used to refine estimations which are based on a limited set of sample ob-

servations.



Chapter 4

Cluster-Based Annotation

This work explores the hypothesis that clustering information can effec-

tively improve automatic image annotation and hence image retrieval. We

extend the Cross-media Relevance model to analyze the structure of an

image collection and exploit statistics about groups of similar images in ad-

dition to statistics about individual images when estimating relationships

between words and visterms. We believe that incorporating cluster-based

information will improve the effectiveness of a system which takes into ac-

count only information derived from single images. To test our hypothesis,

we propose two cluster-based models that define the Cluster Query Like-

lihood and Cluster-based Document model in an image retrieval context,

and compare their performance with that of an unclustered image-based

annotation model. We describe the models in this chapter and then we

discuss implementation and experimental setup in the next chapter. For

reference, we keep the names CQL and CBDM (although Cluster-based

Image model is perhaps more appropriate in our case). We also keep in

mind that text collections and image collections have different characteris-

tics (including average size of the collection and the vocabulary and average

length of individual documents). Therefore, when the documents are im-

56
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ages instead of text, model parameters would most probably have different

optimal values and the models in general might exhibit different behavior.

The two cluster-based models we propose, CQL and CBDM, as well as

the original model compute the joint distribution of words and visterms.

Given a particular image, these probabilities are used to rank potential

annotation words in terms of their likelihood of being sampled from the

conditional probability distribution given the visterms of the image. This

joint distribution of words and visterms is the relevance model referred to

in the name CMRM. A fixed number of the highest-ranked words are finally

selected as the actual annotation.

4.1 Cross-Media Relevance Model (CMRM)

As explained in Section 3.4, Relevance modeling (RM) assumes that the

words and visterms representing an image are generated stochastically from

the same underlying probability distribution. For text retrieval, think

about the query and a relevant document as two articles of different length

written on the same topic - one is a very brief summary and the other is

a full-text elaboration. The goal of RM is to model the underlying topic

and use its model to estimate how likely it is that both the query and the

document are generated by this same model.

When the documents are images, RM assumes that we can sample words

and visterms from a joint probability model. This assumption seems jus-

tified because words and visterms are naturally related - after all, they

describe the same concepts in two different ways. Think about a person

who is reading a book about the jungle and comes across a paragraph de-

scribing a tiger in the grass. If she has some spare time, she can write

down a few words summarizing the passage; she can also draw a picture of
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the animal and its surroundings as she imagines it. The summary and the

picture both represent the same idea as it is expressed in the book passage.

Therefore, we can think of the relevance model of an image I as a black

box containing all the visterms that could possibly appear in I as well

as all the words that could appear in its annotation (the box can contain

the same word or visterm multiple times). We do not know what exactly

the black box contains but the actual visterms representing the image are

observations obtained by sampling m times from the distributions P (·|I),

i.e. by randomly taking m objects out of the black box.1 To annotate the

image, we need to select words but we cannot sample directly from the

black box because the distribution P (·|I) is unknown. Our best strategy is

to approximate it using the visterms. Returning to the jungle book analogy,

we do not know the passage that the person read but we have the picture

she drew and we want to guess what summary she wrote.

P (w|I) ≈ P (w|v1, ..., vm)

The visterm representation of an image contains no words, therefore

the maximum likelihood estimation for each word in the vocabulary would

be equal to zero. Maximum likelihood is defined as PMLE(ai|A) = #(ai,A)
|A|

,

where #(ai, A) denotes the number of occurrences of ai in A and |A| denotes

the overall number of elements in A. Because we cannot directly use the

visterms of I to estimate maximum likelihoods for words (they are all

zero), we use the training collection T to estimate the joint distribution

of observing a candidate word w and the visterms of I together, assuming

identical and independent distribution of words and visterms (i.i.d.).

First, we compute the conditional probabilities P (w|J) and P (v|J) for

1The notation · stands for either a word w or a visterm v. Remember that
we assume that the model of an image contains both words and visterms.
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each training image J :

P (w|J) = (1 − αJ)PMLE(w|J) + αJPMLE(w|T ) (4.1)

P (v|J) = (1 − βJ)PMLE(v|J) + βJPMLE(v|T ) (4.2)

We approximate P (·|J), where · stands for a particular word or vis-

term, with a smoothed maximum likelihood. To estimate the maximum

likelihood PMLE(·|J), we count how many times the term appears in the

representation of a training image and normalize that count by dividing by

the total size of the representation. However, for terms that do not actually

appear in image J we have PMLE(·|J) = 0, which effectively renders asso-

ciating the term with J entirely impossible. This should be avoided as it

means that the estimated probability distribution is unreliable, especially

for the images we work with because they have very short representations.

To ensure that terms which do not occur in the representation of an

image have nonzero probability, we take some probability mass from words

that do occur and distribute it among those that do not. We achieve this

by smoothing the maximum likelihood estimates with the general relative

frequency as computed from the entire collection T . Smoothing is discussed

in Section 4.1.1.

We can think of the work so far as a preliminary phase. The set of

training images is the database containing all available information about

word-visterm correlations, but we have calculated only probabilities for in-

dividual words and visterms. In isolation these do not say anything about

what interrelations exist between words and visterms, so we cannot anno-

tate images just yet. It is a specific property of the Cross-media Relevance

model that the computation which actually finds such correlations is per-
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formed at run-time only after the image to be annotated is provided. The

exact formula is

P (w, v1, ..., vm) =
∑

J∈T

P (J)P (w|J)
m
∏

i=1

P (vi|J) (4.3)

where the prior probabilities P (J) are kept uniform because the training

images are equally likely. Thus, we compute word probabilities after we

are given the visterms of the unannotated test image.

The method essentially compares the visterms of a test image I with

the visterms of J for all Js in the set of training examples, implicitly ranks

the Js in terms of their visual similarity to I and finds what words co-occur

with the visterms of similar Js. In IR terms, the Cross-media Relevance

model ranks training images in terms of their relevance to the image we

want to annotate, and looks at the annotations of relevant images because

these should be similar to the annotation we want to estimate. The ap-

proach is based on the assumption that we can use available knowledge, in

this case information extracted from already annotated images, to anno-

tate new ones. Rather than recognizing explicitly the objects in an image

and assigning the corresponding words, we build a statistical model which

estimates the likelihood of words being used to describe an image.

To understand how CMRM ranks images, consider again Equation 4.1.

The part where we compare I and J in terms of their visual similarity

is
∏m

i=1 P (vi|J). First, we look at the individual probabilities P (vi|J) for

the m visterms of I being sampled from the model of J : if I and J are

similar, those probabilities are high. Their product quantifies the degree of

similarity as a single number, which amounts to ranking the Js: for similar

Js this value is higher than for dissimilar Js. The probability P (w|J)

determines the how likely it is to associate w with J . Finally, by multiplying
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∏m

i=1 P (vi|J) and P (w|J) we decide how much weight to assign to the word

w when considering what words to select for the annotation of I.

Following this approach, we estimate a relevance model P (w, I) of ob-

serving a word and a set of visterms together. In contrast, the Machine

Translation model (MT) computes word probabilities given a particular vis-

term, which can be conveniently precomputed and stored before we start

to annotate. (MT is discussed in Section 3.2.) With the Cross-media Rele-

vance model, it is impossible to precompute P (w, v1, ..., v24) because there

are enormous number of ways in which 500 visterms can be combined to

form an image of 24 visterms - 50024 to be exact. However, this does not

mean that a retrieval system based on CMRM is slower than one based

on MT. In the overall design of the retrieval system, the annotation phase

would be completed before the system is finally in use - all unannotated

images that users are to access will be annotated one by one before making

the system available. Annotations are only proxies that enable the system

to search for images based on text and annotation itself is an intermediary

process.

Since there is no prior knowledge about the objects in an image, the

system does not have any indication about what words might be appro-

priate for it. Without making any assumptions, it can compute P (w, I)

for each word in the working vocabulary. Those probabilities reflect the

likelihood of assigning a particular word w to the image with respect to

its visual components. Finally, the system ranks words in terms of these

likelihoods and creates an annotation of the desired length by selecting the

highest ranked words.
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4.1.1 Smoothing

We already briefly mentioned smoothing in the previous section. We discuss

it here in greater detail because smoothing is crucial in relevance modeling

and in language modeling in general.

Smoothing is the process of adjusting the maximum likelihood esti-

mates of events to guarantee that no event is made entirely impossible

by giving it zero probability. The computation looks intuitive but it in

fact overestimates seen events and underestimates unseen ones. Because a

maximum likelihood estimate is computed in terms of the actual number

of occurrences, MLE of an unseen event is of course zero.

The role of smoothing is to correct the maximum likelihood estimates by

taking some probability mass from events that do occur and distributing it

among those that do not. In the case of images, a “seen event” is to observe

a word or a visterm in the representation of an image. To understand why

MLEs over-represent seen events at the expense of unseen ones, consider

the following situation: Because annotations are only a few words long,

we may decide to extend them by adding more words. If we use MLEs, it

would turn out that all words which are not already included have the same

probability - zero. We would not be able to make an informed decision

about which words to select next and our best bet would be to choose

randomly.

The accuracy of maximum likelihoods estimation, i.e. how close MLEs

are to the true probabilities, depends to a great extent on the size of the

observed data. Since MLEs are only approximations of the true values, the

more observations, the better approximation. In our case, the observations

for an image are its words and visterms: 24 visterms and from 1 to 5 words

for a combined sample of 25 to 29 observations. Thus, the sample from the

underlying probability distribution, which we are trying to approximate,
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is very limited. Consequently, for any image, most words and visterms

do not appear at all in its representation. However, the fact that a term

has not occurred in the first 25 observations does not imply that it does

not have even the slightest chance to occur if we continue to draw terms

out of the “black box”. For this reason, it is essential not to rule out

terms with absolute confidence - it is wiser to say that a term is highly

unlikely (very small probability) than to say that it is entirely impossible

(zero probability). To this purpose, some probability weight is taken away

from the higher PMLE words and allocated among those with zero PMLE .

Different smoothing methods do this in a different way, usually using the

background frequency for better approximation. For images, smoothing

has a significant effect because the image representations are so short.

All smoothing techniques define two distributions - one for seen events,

and the other for unseen events. For a general situation, where we want to

build models for the documents D in a collection C, smoothing gives the

following:2

P (t|D) =











Ps(t|D) if the term t occurs in document D

Pu(t|D) otherwise

Having no knowledge about the distribution of unseen terms, we can use

the collection to compute general frequencies and assume that the frequency

of an unseen term is proportional to its general frequency.

P (t|D) =











Ps(t|D) if t occurs in D

αDP (t|C) otherwise
(4.4)

2The probabilities of seen and unseen events together should sum up to 1.
Since we decrease the probability of seen events a little bit, so that we can
distribute the difference to unseen events, we know that Ps(t|D) < PMLE(t|D).
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where the coefficient αD is a general symbol of smoothing which has differ-

ent form in different techniques and controls how much probability mass is

assigned to unseen events and how it is allocated, so that the probabilities

sum up to 1. As the subscript indicates, α can be document-dependent.

Studies have shown that the performance of retrieval methods based

on language modeling is highly sensitive to the choice of smoothing tech-

nique and the setting of smoothing parameters [24]. In our experiments we

alternatively use the two most popular smoothing methods in language pro-

cessing and information retrieval - Jelinek-Mercer smoothing and Bayesian

smoothing with Dirichlet prior. The difference is in how the probability

mass taken from seen events is allocated among unseen events.

Jelinek-Mercer Smoothing

This smoothing technique involves linear interpolation between the doc-

ument model PMLE(t|D) and the collection model PMLE(t|C). It is also

referred to as linear smoothing.

P (t|D) = (1 − λ)
#(t, D)

|D|
+ λ

#(t, C)

|C|

Here the smoothing parameter αD from Equation 4.1.1 is simply λ. It

controls the influence of background frequencies with values ranging from

0 to 1, and has the same value for each document. The bigger λ, the more

smoothing.

Bayesian Smoothing with Dirichlet Prior

With this smoothing technique the estimation is obtained via Bayes rule

given the prior probability of the distribution.
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P (t|D) =
#(t, D) + λ#(t,C)

|C|

|D| + λ

In this case αD has a more complicated form: αD = λ
|D|+λ

. This value

varies with the length of documents because their size |D| determines how

big the denominator is. Thus longer documents are penalized more, which

effectively implements length normalization.

The parameter λ is called the hyper-parameter and it acts as a pseudo

(virtual) count added to the actual number of occurrences for each term.

Values of λ are integers ranging from 1000 to 5000 for full-text retrieval.

Again, the bigger λ, the more smoothing.

Since Bayesian smoothing implicitly involves length-normalization, it

usually performs better than Jelinek-Mercer in IR tasks, where document

collections are typically heterogeneous and contain documents of various

lengths [24]. In general, the decision what smoothing technique to use

should depend on the task and the characteristics of the data we are mod-

eling.3

In Section 2.1 we introduced TF×IDF weighting and explained how

term frequency and inverse document frequency capture two different and

complimentary sources of information about the relative importance of a

term. At first glance, the language modeling approach seems to be funda-

mentally different from the TD×IDF metric commonly used by most IR

3Actually, the definition of Jelinek-Mercer is more general. It involves using
(n − 1)-grams to smooth n-grams; this implies we need n − 1 lower-order linear
interpolation estimations to smooth an n-gram [12]. In fact, it is one of the
most popular smoothing techniques in LM. Here, we only provide the simplest
definition for n = 1 because we build unigrams and we do not need the more
complex general form. However, keep in the mind that we cannot claim either
Bayesian or Jelinek-Mercer smoothing to be universally superior to the other.
They are conceptually different and one would be more appropriate than the
other in specific situations.



CHAPTER 4. CLUSTER-BASED ANNOTATION 66

systems, regardless of the underlying retrieval model. Specifically, it seems

that LM looks only at TF and ignores IDF, which is alarming because IDF

reflects the fact that common words are less informative and have less power

to discriminate between relevant and nonrelevant documents. However, a

more sophisticated analysis of language modeling shows that smoothing

plays a role very similar to IDF weighting by using both language mod-

els of individual documents and a language model of the whole collection

to estimate word probability distributions. In [24] Zhai et al demonstrate

that when using collection frequencies for smoothing, the probability of

a matched query term is directly proportional to the document term fre-

quency and inversely proportional to the collection frequency. This result

not only proves that LM implicitly exploits the across-collection occur-

rence patterns of a term, but also provides a justification for the heuristic

TF×IDF technique.

4.2 Cluster Query-Likelihood Model (CQL)

To understand better the weaknesses of the Cross-media Relevance model

as well as the reasons why clustering could improve it, we first need to

consider the limitations of the image representation we work with. How to

deal with these limitations and what assumptions are made to achieve this

is what actually distinguishes the different methods discussed in Chapter

3.

For example, the manual annotations necessary to train the automatic

system are supplied by humans and therefore are intrinsically subjective.

Even with strict guidelines, different people might choose different terms to

describe objects that appear very similar. One issue arising from this fact is

that huge sets of manually annotated images would be inconsistent because
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assigning annotations would be a collaborative work assembled over time.

People also have different understandings of what is an ‘important’ object

and therefore should be directly referenced in the annotation, and what

is a ‘trivial’ or ‘insignificant’ detail and therefore could be left out. So

another result of subjectivity is that some annotations are incomplete -

the annotation does not indicate one of the objects in the image. Sky, for

example, is so common that it is present in almost every picture in our

collection.4 Of course, this does not remove the sky from the image itself,

so it is still accounted for in the visterm representation. In such cases,

CMRM would fail to detect valid co-occurrences of light-blue patch with

the word ‘sky’.

The visterms, on the other hand, are a somewhat artificial device to

capture the visual content of an image. (In fact, many questions can be

raised about the theoretical foundations and applicability of this approach.

However, we do not examine any of those here, because all annotations

models we have discussed use the same representation and therefore face

the same problems arising from representation constraints.) After all, im-

ages are extremely rich in detail and they are not structured in the rigid

way that a rectangular grid presumes.5 When a person looks at a picture

or a photograph, she certainly does not see a group of rectangular patches

of color, shape and texture. After images are divided into regions, addi-

tional detail is lost when extracting the visual features, and then still more

information is lost when visual features of various regions are clustered into

visterms. And because these procedures are performed automatically, some

error is introduced at each level of analysis.

4The images are almost exclusively wildlife or outdoors photographs. More
detail is provided in Section 5.2.

5For this reason, segmentation should produce a more natural and intuitive
representation. However, existing segmentation algorithms fail to produce seg-
ments with the necessary quality.
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The examples above are instances of a bigger, more profound problem

which CMRM cannot handle - that there is a distinction between the ap-

pearance and the semantics of an image. Images could be not at all alike

on a visual level and at the same time very similar on a higher, conceptual

level. Since CMRM estimates similarity between images based on their

visterms, this poses a significant problem.

To deal with this issue and improve the Cross-media Relevance model,

we take advantage of cluster statistics, thus compensating for the limi-

tations of the image representation we work with. We obtain additional

information from similar images that allows us to get better approximation

of the word and visterm distributions, and therefore we estimate the rele-

vance models better. In short, we try to find word-visterm co-occurrences

not only directly from individual images but also indirectly from similar

images, e.g. visterms which co-occur with visterms which co-occur with a

word become somewhat associated with this word even if it is missing from

the original annotation. And if it is present, the association is reinforced.

Thus we can compensate for missing information and reduce differences

between related images.

Following the ideas of the Cross-media Relevance model, we compute

the joint distribution P (w, I) treating the clusters G as if they were large

images and keeping the prior probabilities P (G) uniform:6

P (w, v1, ..., vm) =
∑

G∈T

P (G)P (w|G)
m
∏

i=1

P (vi|G) (4.5)

To find the conditional probabilities P (w|G) we count how many times

the word w appears in the cluster G. The maximum-likelihood estimates

6For consistency we use the following notation: C for the set of test images,
T for the set of training images, G for a cluster (or group), I for a test image,
and J for a training image.
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are smoothed with the collection frequency. We compute P (w|G) in a

similar way.

P (w|G) = (1 − αG)
#(w, G)

|G|
+ αG

#(w, T )

|T |
(4.6)

P (v|G) = (1 − βG)
#(v, G)

|G|
+ βG

#(v, T )

|T |
(4.7)

4.3 Cluster-Based Document Model

(CBDM)

A logical extension of the idea that clusters are a source of useful informa-

tion is to use clusters for generalization of co-occurrence patterns. Recall

that CMRM has to smooth word and visterm frequencies, so that the prob-

abilities of unseen words and visterms are not underestimated, and that

smoothing techniques use a background (also called fallback or back-off )

distribution to adjust the models.

A very trivial fallback method is to assume a uniform distribution but

this is not realistic, since in any collection, some terms tend to occur more

often than others. The non-uniform distribution of terms within the collec-

tion itself is another source of generalization, which is immediately available

and is moreover derived from information actually contained in the images.

Clusters are an alternative source of generalization. Less general than

the entire collection and more specific to a subset of images, clusters are

more sensitive to the occurrence patterns of individual words, especially

rare, non-uniformly distributed words. For example, a word might occur

only a few times in the whole collection with most of those occurrences

concentrated in a certain group of images. In this case, clusters might be

more appropriate for smoothing image models with respect to that par-
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ticular word since the cluster combining the relevant images gives a high

probability of the word while all other clusters keep the probability low.

For example, word and visterms distributions in wildlife images would be

different from word visterm distributions in city images, so they should

be computed separately even is the same collection contains both kinds of

images.

In this cluster-based annotation technique we use the training images

J instead of the clusters G in estimating the joint probability of observing

words and visterms together:

P (w, v1, ..., vm) =
∑

J∈T

P (J)P (w|J)

m
∏

i=1

P (vi|J)

The above equation is exactly the same as Equation 4.1. The differ-

ence is in estimating the conditional probabilities P (w|J) and P (v|J). In

CBDM we smooth the models of individual documents with the model of

their respective cluster while clusters themselves are smoothed with the

collection:

P (w|J) = (1−αJ)
#(w, J)

|J |
+

αJ

(

(1 − αGJ
)
#(w, GJ)

|GJ |
+ αGJ

#(w, T )

|T |

) (4.8)

P (v|J) = (1−βJ)
#(v, J)

|J |
+

βJ

(

(1 − βGJ
)
#(v, GJ)

|GJ |
+ βGJ

#(v, T )

|T |

) (4.9)

In the previous two sections, we defined the two cluster-based models

to be implemented and evaluated. With our investigation we bring up two

main questions: Are clusters better than images for learning word-visterm
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co-occurrences? Are clusters better than the collection for making gen-

eralizations? We ask those questions to corroborate our hypothesis that

clusters provide meaningful information, which is otherwise not present in

the analysis of individual images. We will show that clustering does in-

crease recall and precision and this is extremely important - it implies that

clustering helps us to learn from the collection structure and obtain addi-

tional knowledge even when we do not have any feedback or prior knowledge

about the collection we work with, which is most often the case. And from

a broader perspective, our models do not depend on the particular image

representation in terms of words and visterms, and therefore are general

enough to be applied for analyzing any kind of documents represented in

two different, yet complementary, formats.



Chapter 5

Experimental Setup

In the previous chapter we presented CQL and CBDM, the two cluster-

based models we propose and investigate; in the current chapter we discuss

our methodology and experimental setup.

5.1 Clustering Images

In order to extract information from groups of similar images, we need to

first partition the set of training images into clusters. Since the Relevance

model assumes that words and visterms are generated by the same joint

unigram distribution, it makes sense for the clustering algorithm to take

into account both words and visterms rather than only words or only vis-

terms, when computing distances between images. As discussed in [2], the

main advantage of clustering on both words and visterms is that people

perceive both the visual and semantic content of images. For example,

the user might be interested in pictures of red flowers. However, since

colors are inherently present in images, annotators would probably not as-

sign attributes such as ‘red’, ‘green’, ‘blue’, etc., explicitly.1 Therefore, by

combining visual features and text, the clustering algorithm could generate

1Of course, color is meaningless for black-and-white images.
72
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clusters with both visual and semantic coherence.

Before clustering we use Latent Semantic Indexing (LSI), described in

Section 2.5, to map the vector representations of images into a lower-

dimensional concept space. First, we generate a (Nv + Nw)-dimensional

count-vector ci for each training image i, where Nw is the size of the word

vocabulary and Nv is the size of the visterm vocabulary. In our collection

there are 371 distinct words and 500 distinct visterms, therefore Nw = 371

and Nw = 500. The count-vectors reflect the number of occurrences of

words and visterms in the textual and visual representations of an image:

ci[j] = frequency of j in the representation of image i. For j = 1, ..., 371

the element j is a word; for j = 372, ..., 871 it is a visterm.

At this point, the coordinates explicitly reflect term frequency.2 To

take into account global term usage as well, we apply TF×IDF weighting

on the counts. Recall that IDF stands for Inverse Document Frequency

and it reflects how often a term appears across the entire collection. IDF

penalizes more frequent terms as they are less helpful in differentiating

between relevant and nonrelevant documents.

Next, we apply LSI in order to extract information about global co-

occurrence patterns, which reflect how terms are related to each other

across the collection. LSI considers documents which have many terms

in common to be semantically similar and brings them closer together in

the LSI space; it considers images which have few terms in common to be

semantically different and brings them further apart in the LSI space. We

already emphasized that clustering performance depends on the configu-

ration of the document space. Therefore, our hypothesis is that applying

LSI on the image vectors prior to clustering improves the quality of the

constructed clusters.

2Recall that we refer to words and visterms jointly as terms.
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After performing LSI and clustering, we combine the images in the

same cluster by grouping their words on one hand and their visterms on

the other hand, and without removing duplicates. The LSI representation

where documents are represented as vectors is used only for the clustering

phase. Once the clusters are created by assigning a particular cluster la-

bel to each training image, the reduced co-occurrence matrix is no longer

used. In fact, index matrices are not used in language modeling in the first

place because this family of methods encompasses a variety of statistical

probabilistic techniques that estimate probability distributions rather than

weighted occurrences using TF×IDF or another weighting scheme.

5.2 Dataset

For our experiments we use a portion of the Corel Stock Photo library [20].

This is a collection of high-resolution color photographs grouped according

to specific themes into CDs of 100 images each. We use 50 CDs; of the

5000 images, 4500 are for training and the rest are for testing. Each image

is assigned a manual annotation consisting of 1 to 5 words. For the 5000

images, there are 371 distinct words. This is the same data used in [8] and

[13] but the images are discretized using a rectangular grid instead of a

segmentation algorithm, and hence into visterms instead of blobs.

The actual image processing has been performed at the Multimedia

Retrieval Lab, Center of Intelligent Information Retrieval, University of

Massachusetts, Amherst. The images have been divided into a grid of 4-

by-6 rectangular blocks. Vertical images have been divided into a grid of

6-by-4 rectangular blocks. Color features (standard deviation and skewness

of the RGB values, and standard deviation, skewness and average of the

CIE-Lab values) have been extracted from each of the 24 blocks of an
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image. K-means clustering with K = 500 has been used to partition the

visual feature space and cluster regions into visterms. Details can be found

in [1] and [13].

The purpose of clustering feature space is to represent images using

a finite discrete set of visual components. We want to emphasize that

clustering for obtaining discrete image representations has nothing to do

with clustering for finding groups of similar images. This is an example

of applying the same general technique for two different tasks: one is to

generalize regions in image space with similar visual features, the other

is to generalize images with similar visterms and annotations. In theory,

we are not interested in how image representations are created. Had a

different approach been used to generate the visterms, Cluster-based Rel-

evance models would still be used in exactly the same way. The definition

of an automatic annotation model is independent of the particular image

representation, although performance depends on its quality.

5.3 Parameter Setting

The cluster-based models apply a lot of smoothing in their estimations -

the parameters αJ , βJ , αG and βG in Equations 4.6, 4.7, 4.8 and 4.8 are

all general symbols for smoothing. To avoid confusion when discussing

the parameters and their optimal values, we give each parameter its own

unique name and consistently use those names throughout the rest of this

text. We refer to the smoothing parameter for words in image models as α,

the smoothing parameter for visterms in image models as β, the smoothing

parameter for words in cluster models as γ, and the smoothing parameter

for visterms in cluster models as δ.

The two cluster-based methods CQL and CBDM involve an additional
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clustering parameter θ, which determines the size and therefore implicitly

affects the quality of the clusters. Of course, when we partition a given set

of elements, the more clusters we create, the fewer elements fall into the

same cluster. Therefore, the fewer clusters, the greater diversity among

cluster members. In K-means θ directly specifies the number of clusters.

In agglomerative clustering θ specifies the similarity threshold at which we

stop merging clusters. The threshold in turn determines at what level the

dendrogram is cut to produce clusters: the lower in the tree, the more and

smaller clusters; the higher in the tree, the fewer and bigger clusters.

The smoothing parameters also affect aspects of the model and therefore

influence its performance. For example, α determines how much we rely on

word frequency in an individual annotation to approximate the underlying

model of an image. The bigger α is, the more we discount what words

actually appear in the annotation and fall back to the general collection

frequencies. Thus, as α increases image models and the corresponding

probability distributions move closer to the background distribution and

therefore they become more and more similar to each other. As a result

of smoothing out the individual frequencies, the model becomes strongly

biased in favor of the words which appear most often in the collection. In

annotation this would have the effect of assigning the same words over and

over again - the most frequent ones - to every test image.

Since we do not have additional data on which to estimate the smooth-

ing parameters, we have to use the 4500 training images for both training

and parameter setting. We apply 10-fold cross validation by dividing the

4500 images into 10 subsets of equal size and optimizing on some evalua-

tion measure. For a given set of smoothing parameter values, we train the

model 10 times using one of the folds for testing and the rest for training,
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and we average the results of the 10 different trials. We choose the param-

eter setting that maximizes the average result. This strategy requires 10

times as much computational time but it is more reliable than the simpler

holdout method which divides the training set into two subsets and trains

the model only once. Evaluation based on the holdout method can strongly

depend on the particular division, i.e. which images are used for training

and which are used for validation. Evaluation with K-fold cross validation

has less variance because it uses each image for validation exactly once

(and for training K − 1 times).

All three methods require tuning at least two parameters: CMRM - α

and β; CQL - γ, δ and θ; CBDM - α, β, γ, δ and θ. During optimization we

do not need to train all combinations of parameter values exhaustively in

order to find the optimum (and in practice this is virtually impossible since

there are too many combinations of different values to try out). Because

the parameters are independent of each other, we can set all of them but

one to a certain value and then vary that one to find a local maximum. For

example, with CQL we start by setting β = βstart and θ = θstart and vary

α. We run cross-validation on the 10 folds into which we have divided the

training set optimizing on the chosen evaluation measure which specifies

how we decide which value of α gives the highest performance. (The evalu-

ation measure in question is the F -measure, described in the next section.)

The starting values βstart, γstart, δstart are chosen with respect to the par-

ticular smoothing technique. For example, with Jelinek-Mercer smoothing

we start at 0.5 which gives equal weight to the document frequencies and

the collection frequencies.

Next, we fix α = αmax, keep θ = θstart and vary β. Again, we cross-

validate on the 10 folds to select the best value of β. Finally, we keep

α = αmax, set β = βmax and vary θ. Another cross-validation gives us the
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optimal clustering parameter. Then we put the 10 folds back together to

obtain the full set of training images and train the model one last time

with αmax, βmax and θmax. Finally, we are ready to evaluate performance.

We follow the same procedure to train CBDM, the only difference is

that it has more parameters to tune. With CQL we optimize γ, δ, θ in this

order; with CBDM we optimize α, β, γ, δ, θ in this order.

5.4 Evaluation

Recall from Section 2.3 that in order to estimate recall and precision for

a given query we need to know what the relevant documents actually are,

i.e. we need relevance judgments. Similarly, to evaluate automatically

generated annotations we compare them with the “true” annotations. To

achieve this, we consider manually created annotations to be the ground

truth. For evaluation we can gather a set of images and have someone sit

down and annotate them. Or alternatively (and this is what we did), we

can set aside a portion of the training images and use them for testing,

since we already have manual annotations for these. (Of course, we should

not train the models on the test images because results would be biased

and deceptively better than what we would get in general.) And we will

define an image to be relevant to a word if its manual annotation contains

that word.

As discussed in the previous section, before being able to evaluate the

performance of a model, we first have to train it by finding the optimal

values of its parameters. And to tune parameters, we need to choose an

evaluation measure for optimization.
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5.4.1 F-Measure

The probabilistic models we work with involve smoothing maximum like-

lihood probabilities and therefore include smoothing parameters. As dis-

cussed in Section 2.3, there is an implicit tradeoff between recall and preci-

sion. Therefore, we should not use either measure for setting model param-

eters: we do not want to optimize on recall at the expense of precision or

vice versa. Therefore, we optimize on the F -measure, a single comprehen-

sive measure which combines the two. It is defined as the harmonic mean

of precision and recall:

F =
2 · recall · precision

recall + precision

We use the F-measure only during training. As a single quantity, it can-

not illustrate how recall and precision change with respect to each other.

To evaluate and compare performance, we need a more comprehensive eval-

uation metric, therefore we use both recall and precision.

Finally, we discuss the distinction between annotation and retrieval

performance. Annotation performance reflects the quality of annotations

by themselves and it matters most when the application involves actually

displaying the annotations to the user. For example, if we are building

an image browsing tool, it is advantageous to display images paired with

their respective annotation. Text can represent visual information very

concisely and in general people find it helpful when images are accompanied

by captions or some other kind of explanatory information. For such an

application, we would want each annotation to contain as many correct

words as possible.

A different kind of application is an image retrieval system where we
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need annotations only as image proxies. The internal representation of

retrieved documents is not displayed, so the user would not see the an-

notations themselves. Therefore, annotations do not have to be lists of

specific words. In fact, it would be more advantageous if rather than a

few fixed words, the annotation of an image is a probability vector, whose

components reflect the probability of associating the corresponding word

with the image. To understand why this is more helpful than assigning

concrete words, recall the Boolean and Vector Space models discussed in

Section 2.4.

When given annotations made up of actual words, we can think of each

word in the vocabulary as being either selected or not selected for a par-

ticular annotation. Therefore, we can represent such annotations as binary

vectors where we assign 1 if the annotation contains the corresponding word

and 0 otherwise. These binary vectors would have the same dimension as

probability vectors, with one component for each word in the vocabulary.

Therefore, with annotations, which give words explicitly (this situation cor-

responds to the Boolean model), the system would only be able to return

a set of relevant images without a notion of ordering in terms of relevance.

With annotations that give a probability for each word (this situation cor-

responds to the Vector Space model), the system would be able to rank

images with respect to their degree of relevance. Typically, the second

scenario is preferable in IR - otherwise the user would be compelled to go

through the entire retrieved set to convince herself that she would not miss

an appropriate image. On the other hand, if the results are ranked, she

would have the best matches right at the top of the list.

Probabilistic annotations are directly generated by our statistical mod-

els; they are constructed from the P (w, I) values, which reflect how likely

it is to annotate the image I with the word w. Then for a multiple-word
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query Q = q1, ..., qk and an image I = v1, ..., vm we can use a general lan-

guage modeling technique to compute P (Q|I), the probability of the model

of I generating the query Q:

P (Q|I) =
k

∏

j=1

P (qj|I)

Although probabilistic annotation allows us to formulate queries of ar-

bitrary length, in our experiments we evaluate retrieval performance using

only single-word queries, one for each word in the controlled vocabulary,

averaging recall and precision across the queries.

Fixed-length annotations are created by sorting the word probabilities

in decreasing order and picking the top n words for the actual annotation.

We must decide in advance how many words to select for an annotation,

keeping in mind that annotation length directly influences performance.

Shorter annotations mean higher precision as we assign few but good words;

longer annotations mean higher recall as we assign many (both correct and

incorrect) words. Notice that we cannot create annotations of varying

length because all images have 24 visterms and therefore nothing in the

visual representation indicates how long the true annotation is. Thus, an

additional shortcoming of explicit annotations for ranked retrieval is that

length normalization would have absolutely no effect.

Because we propose two very general models, which can be applied in

various contexts, we are equally interested in how incorporating cluster-

ing information affects annotation performance and retrieval performance.

Therefore, when presenting experimental results we will report both alter-

natives - retrieval performance using probabilistic annotations and anno-

tation performance using fixed-length annotations.

And finally, we want to make the following clarification. We use a

retrieval technique, relevance modeling, to automatically annotate images,
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the query being the image we want to annotate and the document collection

being the set of training images. Then we use a different retrieval technique,

language modeling, to retrieve images, the query being a word and the

document collection being the set of test images, already automatically

annotated.



Chapter 6

Experiments and Results

In this chapter we lay out the experiments conducted to test our hypothesis

that information shared by similar images can be effectively employed to

improve the performance of an image retrieval system. First, we present

procedures and results, and then we analyze our findings.

6.1 Baseline Model

To measure the improvement gained from incorporating clustering into the

Cross-media Relevance model (CMRM), we compare the performance of

our cluster-based approach with that of the original method which is based

exclusively on individual image ranking. The baseline model is introduced

briefly in Section 3.4 and discussed in depth in Section 4.1.

The results obtained by Lavrenko et al, who first proposed the Cross-

media Relevance model, are reported in [13]. Although we use the same

dataset that they used to train and test CMRM, we cannot directly com-

pare our results with theirs: they apply a segmentation algorithm to di-

vide the images into blobs while we use visterm representations generated

from a rectangular-grid partitioning. One immediate difference is that seg-

mentation produces different number of blobs per image while partitioning

83
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produces the same number of visterms - in our case 24 per image. So to

make a fair comparison between cluster-based and image-based automatic

annotation and retrieval, we first train CMRM with visterms instead of

blobs.1

Using Jelinek-Mercer smoothing, we find that the optimal value of α,

the parameter for smoothing words in the image models, is equal to the

one reported by Lavrenko et al, α = 0.1. This is not surprising. Note that

the textual representation of training images (their annotations) do not

change as a result of modifying the visual representation. In fact, the two

representations are generated completely independently: annotations by

manual labeling and visual tokens by automatic image processing. Also,

when the training data is analyzed, word and visterm distributions are

computed separately of each other, as Equations 4.1 and 4.2 indicate. When

we use the same example images for training, even though represented with

visterms instead of blobs, we should still get exactly the same probability

distributions P (w|J) for w ∈ V , and therefore the same α.

On the other hand, in our experiments the optimal value for β, the

parameter for smoothing visterms in the image models, turns out to be

β = 0.7 while Lavrenko et al report β = 0.9. The disparity is likely due to

differences between blobs and visterms arising implicitly from the fact that

they are generated according to different procedures. We have decided to

use visterms because studies show that visterms are as effective as blobs

while they require much less time and computational resources to generate

[14].

An interesting question to consider is why the value for α is low while

the value for β is high. Recall that the value of a smoothing parameter sig-

1The preliminary image processing work required to generate the visterms was
completed at the Multimedia Retrieval Lab, Center for Intelligent Information
Retrieval, University of Massachusetts, Amherst.
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nifies how much the maximum likelihood estimation of the specific model is

interpolated with a general background model. The smaller the parameter

is, the more weight is put on the specific model, which implies that we

“trust” it more. In theory, when we model a process, it is reasonable to be

more confident in our estimations if we use hundreds of observations rather

than tens of observations.
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Figure 6.1: Distribution of individ-
ual words where words are sorted
in decreasing order with respect to
number of occurrences. Few words
occur very frequently and most
words occur only rarely. This dis-
tribution follows Zipf’s Law which
says that the inverse relationship
between the frequency f of a word
and its position in the sorted order
of words - its rank r, has the form
f × r = k where k is a constant.
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Figure 6.2: Distribution of indi-
vidual visterms where visterms are
sorted in decreasing order with re-
spect to number of occurrences.
Most visterms occur between 100
and 300 times.

The quality of a language model is measured by its power to discrimi-

nate between hypotheses. For example, in speech recognition the hypothe-

ses are all the possible transcriptions of a word the speaker utters; in ma-

chine translation the hypotheses are all the possible translations of a word

in the source language. In our particular case the hypotheses are all the

possible words that we can assign to an image. Why visterms need more

smoothing than words and therefore have less power to distinguish between
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hypotheses, is explained by the fact that words and visterms are distributed

differently across the collection. As shown in Figure 6.1 and 6.1, words have

a very skewed distribution while visterms have a much more uniform dis-

tribution. Intuitively, the more uniform a distribution is, the less power it

has to discriminate.

For completeness, we also test using Bayesian smoothing with Dirichlet

prior instead of Jelinek-Mercer smoothing, since the former technique is

usually better for full-text retrieval. We optimize β for Bayesian smoothing

by setting α to its best value 0.1 and varying β from 10 to 80 in 10-size

increments. (Recall from Section 4.1.1 that in this case the smoothing

parameter plays the role of a pseudo count added to the actual number of

occurrences, so there is no reason to restrict the values in the range [0,1].)

We get βmax = 40. The result of comparing the two different methods of

smoothing is presented in Figure 6.3.
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Figure 6.3: Retrieval performance of CMRM using two different techniques
for smoothing visterms. (Linear refers to Jelinek-Mercer smoothing; the
alternative name comes from the fact that this technique performs a linear
interpolation between the models of seen and unseen events.)

The experiment shows that the performance is virtually the same no

matter whether we use Bayesian or Jelinek-Mercer smoothing. The expla-
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nation lies in the conceptual differences between Bayesian and Jelinek-

Mercer smoothing. As discussed in Section 4.1.1, Bayesian smoothing

yields smaller αD for longer documents, hence it smooths longer docu-

ments less - a reasonable distinction given the fact that longer documents

provide more observations from which to estimate the distribution. How-

ever, in our collection images have representations of the same length - 1-5

words and exactly 24 visterms. This implies that the smoothing parameter

αD is the same for all document, just like with Jelinek-Mercer smoothing.

Therefore, in this particular case there is no actual difference between the

two smoothing techniques.

To implement cluster-based annotation and retrieval, we first need to

partition the set of training images into subsets. Of course, this has to

be completed automatically or otherwise we would compromise one major

requirement - to build a system that works entirely automatically or at

least with minimal manual intervention. Therefore, we apply an unsuper-

vised clustering algorithm (one of the four approaches described in Section

2.8: K-means, single linkage, complete linkage or group-average). Another

characteristic of the generated clusters is that they are global because we

divide the images into groups prior to performing any other kind of image

analysis which might be specific to the image we want to annotate. Thus,

clusters are created with respect to the global similarity structure of the

collection rather than with respect to a particular image or feature.

6.2 CQL - Ranking Clusters

The goal of this set of experiments is to examine whether clusters are as

effective as individual images for estimating the joint distribution of words

and visterms.
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We start by partitioning the training images into clusters and construct-

ing textual and visual representations of the clusters. Recall that we con-

sider images to be “bags” of visterms, and annotations - “bags” of words.

A bag is a set with repetitions: an unordered group of elements where an

element can occur more than once. This definition of an image and its

annotation allows us to combine images and their annotations without loss

of information. The rest of the procedure is described in length in Section

4.2 and is summarized below:

1. Represent training images in terms of count vectors, indicating num-

ber of occurrences for both words and visterms.

2. Weight the count vectors using Latent Semantic Indexing, reducing

dimensionality to 100.

3. Cluster the weighted vectors to find groups of similar images.

4. Construct clusters, combining the words and visterms of comprising

images.

5. Build probabilistic models of cluster frequencies, smoothing with col-

lection frequencies.

6. Given an image I to annotate, rank clusters in terms of their visual

similarity with I. Taking into account what words tend to co-occur

with the visterms of similar clusters, compute probabilities of words

being selected to annotate I.

Before we can evaluate this model, we need to perform a set of initial

experiments to optimize its parameters - γ, δ and θ. (Recall that according

to the definitions in Section 5.3 γ determines the level of smoothing for

words in cluster models, δ determines the level of smoothing for visterms
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in cluster models, and θ determines the desired number of clusters if we use

K-means or the similarity threshold if we use an agglomerative technique.)

First we set the smoothing parameters γ and δ choosing somewhat

arbitrarily to cluster the image space using K-means with θ = 100. Fol-

lowing the procedure described in Section 5.3, we start by setting δ = 0.5

and θ = 100 and varying γ from 0.1 to 0.9. After cross-validating we

get γmax = 0.1. Next, we fix γ = 0.1 and θ = 100 and vary δ. We get

δmax = 0.1. Finally, we fix γ = 0.1 and δ = 0.1 and vary θ from 50 to 300

in 25-size increments. We get θmax = 250.

To summarize, we get the following optimal values for the two smooth-

ing parameters when we use Jelinek-Mercer smoothing: γmax = 0.1, δmax =

0.1. Substituting with the actual values in Equations 4.6 and 4.7, we get the

following linear interpolation between cluster and collection frequencies:

P (w|G) = 0.9
#(w, GJ)

|GJ |
+ 0.1

#(w, T )

|T |

P (v|G) = 0.9
#(v, GJ)

|GJ |
+ 0.1

#(v, T )

|T |

6.2.1 Jelinek-Mercer vs. Bayesian Smoothing

While image representations have the same length, images are not equally

distributed among clusters. When θ = 250 cluster sizes vary from 1 to 71

images with average of 18. Therefore cluster representations have different

lengths and a reasonable question to ask is whether Bayesian smoothing

with Dirichlet will perform better than Jelinek-Mercer smoothing.

Since there are two smoothing techniques we can use and we smooth

words and visterms separately, there are four different combinations: Jelinek-

Mercer for both words and visterms, Bayesian for visterms and Jelinek-

Mercer for words, Bayesian for words and Jelinek-Mercer for visterms, and
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Bayesian for both words and visterms. We want to evaluate each combina-

tion but we do not need to run the cross-validation procedure four times

as we already know the best parameters for Jelinek-Mercer smoothing and

for the clustering algorithm. First, we optimize γ for Bayesian smoothing

by setting δ = 0.1 and θ = 100 and varying γ from 10 to 70 in 10-size in-

crements. We get γmax = 10. Next, we optimize δ for Bayesian smoothing

by setting γ = 0.1 and θ = 100 and varying γ from 10 to 80 in 10-size

increments. We get δmax = 50.
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Figure 6.4: Retrieval performance of CQL using two different smoothing
techniques for smoothing words and visterms.

The result of comparing the different methods of smoothing is presented

in Figure 6.4. It shows that none of the techniques outperforms the rest.

Our intuition is that the variance in cluster sizes is not enough for length

normalization to have a significant effect. Also, notice that smoothing

does not really affect performance at high precision because it is more

effective when there are many nonrelevant documents: it is when we are

less confident about the foreground frequencies that we start relying more

on the background frequencies. If a word appears several times in a cluster

we can reasonably assume that is it semantically important. On the other
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hand, if a word appears only once, then we should take into account its

overall frequency to decide whether it is semantically important or not.

For the final evaluation of CQL with K-means clustering as well as for

the rest of our experiments on CQL, we use Jelinek-Mercer smoothing for

both words and visterms setting γ = γmax = 0.1 and δ = δmax = 0.1.

6.2.2 K-means vs. Agglomerative Clustering

To investigate whether the model is robust in terms of the algorithm used to

find groups of similar images, we run another set of experiments, this time

changing the clustering algorithms and adjusting the clustering parameter.

In the experiments so far we used K-means clustering. As discussed in

Section 2.8.3, K-means defines a cluster in terms of its centroid, the center

of mass of the comprising member elements, and it requires specifying the

number of clusters into which to group the elements as an input argument.

Not having any prior knowledge about the right value of this parameter,

we have to apply the algorithm for different values and use the one which

gives the highest F-measure for the final evaluation.

An alternative to K-means is agglomerative clustering, discussed in Sec-

tion 2.8.2, which starts by assigning each object to its own cluster and then

proceeds iteratively by merging the two closest clusters until there is only

one cluster left. We introduced three variants of this approach that differ

only in the definition of the similarity function, which determines how the

distances between clusters are computed. Single-linkage takes the distance

between the pair of closest elements, complete-linkage takes the distance

between the pair of most distant elements, and group-average takes the

average distance between pairs.

We train all three techniques using Jelinek-Mercer smoothing for the

words and visterms with γ and δ set to their optimal values, γmax = 0.1 and
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Figure 6.5: Comparison of the performance of three agglomerative cluster-
ing algorithms with CQL.

δmax = 0.1. As already discussed, agglomerative clustering algorithms take

as input a similarity threshold θ which determines when to stop merging

clusters. Since similarity is a real number in the range [0,1] we vary θ from

0.05 to 0.95 in 0.05-value increments. Results are reported in Figure 6.5.

Complete-linkage and group-average have comparable performance and

both consistently outperform single-linkage for all but the highest thresh-

old levels. Recall from Section 2.8 that the primary difference between

complete-linkage and group-average, on one hand, and single-linkage, on

the other hand, is the compactness of generated clusters. Single-linkage is

very sensitive to spread-out data and we can see that for values of θ less

than 0.85, its performance quickly deteriorates. The other two methods

are much more robust and their performance decreases only very slightly

as we continue to augment clusters.

Although it is somewhat difficult to see, the highest point in the graph

corresponds to group-average at θ = 0.75 and this is the value that we use

for the final experiment comparing K-means and agglomerative clustering.

The result of this experiment is shown in Figure 6.6.
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Figure 6.6: Comparison of K-means
and group-average clustering for im-
age retrieval based on ranking clus-
ters of similar images.
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Figure 6.7: Comparison of K-means
and group-average when both clus-
tering algorithms were used to pro-
duce 250 clusters.

Group-average clustering at θ = 0.75 generates 984 clusters with aver-

age size of 4.6 images. Because the similarity threshold is relatively high,

group-average produces small but precise clusters - all cluster members

are relatively close to each other and to the cluster centroid. In terms of

their characteristics, group-average clusters are in between the individual

images and the bigger and looser K-means clusters. Therefore, they are

more consistent in terms of membership variability. Recall that K-means

is sensitive to outliers and because it has to generate exactly 250 clusters, it

might have forced together elements that are relatively dissimilar. And you

can see from Figure 6.6 that the difference in performance is at high recall.

Intuitively, reducing the compactness of clusters by including images that

do not fit so well with the other cluster members reduces precision because

we inevitably include some incorrect information.

In order to show that the difference between K-means and group-average

is not simply in the number of clusters but in the quality of clusters, we use

group-average to produce exactly 250 clusters and compare it with K-means

again. (Recall from Section 2.8.2 that we can generate an exact number

of clusters by cutting the dendrogram at an arbitrary level k producing

n−k+1 clusters.) The result is reported in Figure 6.7. Because we cut the
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dendrogram much higher, we compromise our criterion for including images

in the same cluster and hence we lose the advantage that agglomerative

clustering has for high precision. But performance is now better at high

recall, where the influence of outliers on K-means starts growing. Note that

this is evidence for the implicit tradeoff between recall and precision. By

including more information in a cluster, we reduce its focus but increase

its scope.

After we run experiments with various smoothing techniques and clus-

tering algorithms, we conclude that CQL, the cluster-based model which

ranks clusters instead of images, has the best performance with Jelinek-

Mercer smoothing at γ = 0.1 and δ = 0.1 and group-average clustering

with θ = 0.75. Now that we have trained the model we can compare it

with CMRM, the original relevance modeling approach which ranks images.

As you can see from Figure 6.8, CQL substantially outperforms CMRM on

the retrieval task, except for precision at high recall.
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Figure 6.8: Performance of CQL and CMRM on the ranked retrieval task.
The improvement of our cluster-based approach is statistically significant
with p-value 0.001045 according to the Wilcoxon signed rank test.

Before we analyze this result, we want to remind readers how a recall-
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precision curve is drawn. We consecutively issue 260 1-word queries and for

each one we know which the relevant images are by looking at the manual

annotations.2 To evaluate the result of a particular query, we start at the

top of the ranked list, checking whether an image is relevant or not, and

move down the list until we have found 10% of the actually relevant images.

We stop and measure precision up to this point of recall, and continue the

procedure for all points of recall that we are interested in - 10% through

100%. Finally we average across the 260 queries. Therefore, the left portion

of the curve corresponds to highly ranked images, and as we move to the

right we add more and more images that we are not so confident about.

It is obvious from Figure 6.8 that the significant improvement of using

clusters is in precision and not recall. In fact, our hypothesis that clus-

ters should help to compensate for information missing in the very short

image representation, implies that CQL is better at assigning rare words.

Intuitively, missing information hurts precision because we fail to notice po-

tentially good co-occurrences. Missing co-occurrences for frequent words,

for which there are many other examples anyway, is relatively less impor-

tant. The fact that CQL is better at annotating rare words is evident in

Table 6.1 which shows that CQL assigns 15 more words correctly at least

one time.

6.3 CBDM - Smoothing with Clusters

The goal of this set of experiments is to examine whether clusters are as

effective as the collection for smoothing the models of individual images.

2There are a total of 371 words in the vocabulary. Many words appear only
once, so when the complete set of images is divided into subsets for training
and testing, those singletons appear once in either the test images or training
images. For the final evaluation we take the intersection of training words and
test words, thus obtaining 260 words for which we can both train the system
and test it.
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CMRM CQL
Average annotation 28.35% 35.10%

accuracy (0.000005)
Nonzero words 86 101

Table 6.1: Performance of CQL and CMRM on the annotation task. The
numbers in brackets report p-values for the Wilcoxon signed rank test. Im-
provement is statistically significant if the p-value is less than 0.05. Nonzero
words are words that have been correctly assigned to at least one image,
so they have nonzero recall and precision.

We have already created the clusters when we implemented the previous

technique; now we are going to incorporate them in the Cross-media Rel-

evance model in a different way. We do not discuss the procedure here,

since it is described in length in Section 4.3, but we give a brief summary

below:

1. Represent training images in terms of count vectors, indicating num-

ber of occurrences for both words and visterms.

2. Weight the count vectors using Latent Semantic Indexing, reducing

dimensionality to 100.

3. Cluster the weighted vectors to find groups of similar images.

4. Construct clusters, combining the words and visterms of comprising

images.

5. Build probabilistic models of cluster frequencies, smoothing with col-

lection frequencies. Then, build probabilistic models of image fre-

quencies, smoothing with cluster frequencies.

6. Given an image I to annotate, rank images in terms of their visual

similarity with I. Taking into account what words tend to co-occur

with the visterms of similar images, compute probabilities of words

being selected to annotate I.
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Therefore, instead of considering each cluster as a big pseudo image,

we use clusters as generalizations of their comprising elements. However,

notice that this is not enough to guarantee nonzero probabilities for all

words and visterms. For example, a term which appears only once in the

collection is assigned to one particular cluster; for the rest of the clusters

its frequency is zero. Therefore, the language models of clusters need to be

smoothed too, and for this we use the collection. For both words and vis-

terms, the two-step smoothing procedure is a linear interpolation between

three distributions. The exact definitions are given in Equations 4.8 and

4.9.

An immediate consequence of using a more complex statistical model

is the need to optimize five instead of three parameters - α, β, γ, δ and θ.

(We remind that according to the definitions in Section 5.3, α determines

the level of smoothing for words in image models and β determines the

level of smoothing for visterms in image models. γ, δ and θ have the same

definition as in the previous section.) This means that we have to run the

cross-validation procedure five consecutive times but at least we already

have generated the clusters.

As with CQL, in the first round of experiments we set the smooth-

ing parameters α, β, γ, δ. To be consistent, we use the K-means clusters

generated with θ = 100 and Jelinek-Mercer smoothing for all parameters.

Following the procedure described in Section 5.3, we start by setting

β = 0.5, γ = 0.5, δ = 0.5 and θ = 100 and varying α from 0.1 to 0.9.

After cross-validating we get αmax = 0.1. Next, we fix α = 0.1, keep

γ = 0.5, δ = 0.5, θ = 100 and vary β from 0.1 to 0.9. We get βmax = 0.6.

Next, we fix α = 0.1, β = 0.6, δ = 0.5, θ = 100 and vary γ from 0.1 to 0.9.

We get γmax = 0.7. Finally, we fix α = 0.1, β = 0.6, γ = 0.7 and θ = 100

and vary δ. We get δmax = 0.1.
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To summarize, we get the following optimal values for the four smooth-

ing parameters when we use Jelinek-Mercer smoothing: αmax = 0.1, βmax =

0.6, γmax = 0.7, δmax = 0.1. Substituting with the actual values in Equa-

tions 4.8 and 4.9, we get the following linear interpolation between image,

cluster and collection frequencies:

P (w|J) = 0.9
#(w, J)

|J |
+ 0.1

(

0.3
#(w, GJ)

|GJ |
+ 0.7

#(w, T )

|T |

)

= 0.9
#(w, J)

|J |
+ 0.03

#(w, GJ)

|GJ |
+ 0.07

#(w, T )

|T |

P (v|J) = 0.4
#(v, J)

|J |
+ 0.6

(

0.9
#(v, GJ)

|GJ |
+ 0.1

#(v, T )

|T |

)

= 0.4
#(v, J)

|J |
+ 0.54

#(v, GJ)

|GJ |
+ 0.06

#(v, T )

|T |

Of course, we want to consider these results in the context of our previ-

ous findings for CMRM and CQL. To begin with, the values of the image

parameters α and β are very similar to what is optimal for CMRM, 0.1 and

0.7 for α and β respectively, and this is very reasonable. We use the same

image representations and therefore the informativeness of images has not

changed. Specifically, a lot of weight is given to word image frequencies.

The explanation, just as with CMRM in Section 6.1, is the Zipfian distribu-

tion of words. Most of the words occur very few times and if we smooth out

their actual occurrences, then the model would exhibit a strong tendency to

assign frequent words. If we rely almost exclusively on the overall frequen-

cies, then annotation would be strikingly similar to each other as we assign

‘sky’, ‘water, ‘grass’ and few other very frequent words to most images.

While these words might be correct (recall that the dataset is a collection

of wildlife photographs), they describe background rather than foreground

objects and hence we could consider them less semantically important than
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rare words like ‘tiger’.

On the other hand, the value of γ is different from what we found opti-

mal for CQL. The difference is likely due to the fact that clusters play very

different roles in the two cluster-based models - in CQL we directly compare

clusters with the image to be annotated, while in CBDM we smooth train-

ing images with clusters. In the first case, we want to build cluster models

which are good for discriminating because we rank the clusters themselves;

in the second case, we want to build cluster models which are good for

capturing global similarity patterns because we generalize with clusters.

Finally, we fix the smoothing parameters at their optimal values and

vary θ from 50 to 300 in 25-size increments to find the optimal value for

the K-means clustering parameter. Again, we get θmax = 250.

6.3.1 Jelinek-Mercer vs. Bayesian Smoothing

Next, we determine what effect Bayesian smoothing has on performance.

Recall from Section 6.1 that for CMRM it acts just like Jelinek-Mercer

smoothing, the reason being that images have the same length. Here too,

there is no reason to smooth images with the Bayesian approach. But since

clusters have different lengths, Bayesian smoothing can turn out to work

better for clusters.

We discover a similar pattern as in CQL: Bayesian smoothing performs

slightly worse than Jelinek-Mercer for either words or visterms, and the

errors are compounded if we use Bayesian smoothing for both. Again,

we point out that the influence of the smoothing technique is particularly

evident at high recall. As we retrieve more and more images, we need to

choose from images that are less confidently associated with the query word

and we rely more and more on the fallback method in our estimations.
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Figure 6.9: Retrieval performance of CBDM using two different smoothing
techniques for smoothing words and visterms.

6.3.2 K-means vs. Agglomerative Clustering

To investigate whether the model is robust in terms of the algorithm we use

to find groups of similar images, we run another set of experiments using in

turn one of the three agglomerative clustering approaches: single-linkage,

complete linkage and group-average.

We train all three techniques using Jelinek-Mercer smoothing for the

words and visterms with α, β, γ and δ set to their optimal values, αmax =

0.1, βmax = 0.6, γmax = 0.7 and δmax = 0.1. We vary the similarity thresh-

old θ from 0.05 to 0.95 in 0.05-value increments. The results are reported

in Figure 6.10.

As a whole, the curves are very similar to what we get for CQL:

complete-linkage and group-average have comparable performance and both

consistently outperform single-linkage for all but the highest threshold lev-

els. The performance of single-linkage, which is very sensitive to spread-

out data, quickly deteriorates for values of θ less than 0.85. The other

two methods are much more robust. However, notice that the peak of

complete-linkage and group-average has shifted to the left when compared
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Figure 6.10: Comparison of the performance of three agglomerative clus-
tering algorithms with CBDM.

with results in Figure 6.5: for complete-linkage it is at θ = 0.25 and for

group-average it is roughly in the middle at θ = 0.55. Therefore, the best

performing agglomerative clusters in this case are bigger than for CQL be-

cause we cut the dendrogram at a lower similarity threshold and therefore

we continue to merge clusters even as dissimilarity between merged clusters

continues to grow. In fact, performance would be low if we stop merging

clusters too soon. The reason why bigger clusters work better in CBDM

is that we use them for making generalizations of patterns observed in in-

dividual images. If the clusters are too small, then our generalizations are

not useful enough as they fail to capture existing global structures. In this

case we care less about the compactness of the clusters themselves, and can

allow some relatively dissimilar elements to join the same cluster.

The highest point in Figure 6.10 corresponds to group-average at θ =

0.55 and this is the value we use for the final experiment comparing K-

means and agglomerative clustering. The result of this experiment is shown

in Figure 6.11.

The performance of the two clustering algorithms is similar and K-
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Figure 6.11: Comparison of K-means and group-average agglomerative
clustering for image retrieval based on smoothing images with clusters.

means is only marginally better. Our intuition is that the shape and quality

of clusters matter less in this case because we do not use the clusters for

direct comparison with the image to be annotated. Therefore, a general-

purpose algorithm like K-means works comparably well as a conceptually

more sophisticated algorithm like group-average.

After we run experiments with various smoothing techniques and clus-

tering algorithms, we conclude that CBDM, the cluster-based model which

smooths image frequencies with cluster frequencies, has the best perfor-

mance with Jelinek-Mercer smoothing at α = 0.1, β = 0.6, γ = 0.7 and

δ = 0.1 and K-means clustering with θ = 250. Now that we have trained

the model we can compare it with CMRM, the original relevance modeling

approach which ranks images. As you can see from Figure 6.12 and Table

6.2, CBDM substantially outperforms CMRM on both the retrieval and

annotation tasks. The performance of CQL is shown for comparison.
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Figure 6.12: Performance of CBDM, CQL and CMRM on the ranked re-
trieval task. The improvement of the cluster-based approaches is statisti-
cally significant with p-value = 0.001045 for CQL and p-value = 0.000003
for CQL according to the Wilcoxon signed rank test.

CMRM CQL CBDM
Average annotation 28.35% 35.10% 37.75%

accuracy (0.000005) (0.000000)
Nonzero words 86 101 102

Table 6.2: Performance of CMRM, CQL and CBDM on the annotation
task.

6.4 Discussion

In their study Liu et al report that text-retrieval CQL sometimes performs

slightly better and sometimes slightly worse than document-based retrieval

and they conclude that in general it is just as effective [16]. For text-

retrieval CBDM they report a statistically significant improvement over

the baseline model. Our results show that both cluster-based methods are

better with statistical significance than CMRM. Of course, we evaluate the

proposed techniques on one collection only, so to confirm that CQL and

CBDM are better in general than CMRM for automatic annotation and

retrieval we should conduct experiments on other collections in addition to

the Corel dataset. (Liu et al test on five different document collections.)

It is essential to keep in mind that the relevance modeling techniques



CHAPTER 6. EXPERIMENTS AND RESULTS 104

described in the previous sections, both the cluster-based and the image-

based, adapt a text retrieval approach to annotate images. However, full-

text documents and images have different features. Most importantly, with

their 1 to 5 words and 24 visterms image representations are substantially

shorter than written documents. For example, the average size of docu-

ments in the five collections used by Liu et al varies between 412 and 874

terms.

The significant improvement when using clusters instead of images is

evident in the increase of both recall and precision. A more subtle proof

of our hypothesis is what parameters turn out to work best for smoothing

clusters in CQL. Since γ = 0.1 and δ = 0.1, both words and visterms

require minimal smoothing with the collection frequency. This implies that

more weight is given to the observed occurrences in clusters rather than

the background frequencies, therefore we can conclude that PMLE(·|C) from

clusters is closer to the true distribution than PMLE(·|J) from images alone,

particularly for visterms.

Our hypothesis is based on the assumption that the underlying distri-

butions of similar images are themselves similar but this should not imply

that images clustered together have relatively the same probabilities for

all words and visterms. Actually, we would expect images that are se-

mantically similar to be similar in some important aspects of their visual

appearance and yet be dissimilar in other less important aspects. For

example, foreground objects are usually more relevant than background

objects because users would consider them more interesting. However, by

representing images as bags of visterms we discard any implicit positional

information; consequently the model has no way of distinguishing between

foreground and background visterms, and therefore no way of distinguish-

ing between appearance and semantics - the very capability that makes
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humans good annotators.

By using clusters to estimate probability distributions we reinforce the

weight of some terms - the terms that co-occur in the images clustered

together. We believe that performance improves because the reinforced

terms are semantically important, thus we achieve a simple but effective

image analysis. Clustering allows us to take advantage of this assumption

in a natural way by finding groups of similar images. The actual observa-

tions from each individual distribution on which we base our approximation

are limited by the number of words and visterms per image, but we can

complement this insufficient information with information extracted from

similar images, thus getting a closer, more reliable approximation of the

underlying distribution.

To illustrate our claim that clusters are informative, we look at the

performance of CQL obtained by ranking only a few selected clusters, the

criterion for selection being the similarity between the test image I and

the cluster G. To do this, we first need to compute this similarity - we use

the value P (I|G), which measures the probability of G generating I. This

is LM ranking with the query being I and the document being G. The

specific formula is:

P (I|G) = P (v1, ..., vm|G) =

24
∏

i=1

P (vi|G)

Figure 6.13 shows the performance we get with only the 1, 5 or 10 high-

est ranked clusters out of 250. While one cluster, even though it is the very

best one, is not enough to assign good annotations, the top 5 clusters give

virtually the same performance that we get using all of the clusters. Us-

ing additional clusters only marginally increase performance at high recall

but not precision because the most relevant information is contained in the
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top clusters. The fact that only 5 examples are sufficient to find suitable

annotation words shows that clusters have substantial information content.
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Figure 6.13: Informativeness of clusters: We get very similar performance
using the 5 visually most similar clusters and all of the 250 clusters gener-
ated by K-means.

Another point to take into account is that after clustering we have fewer

examples for comparison on which to base probability estimation. Consider

that we group 4500 training images into 250 clusters, therefore we have

18 times fewer examples and yet we get comparable performance. This

is another convincing proof the clusters are meaningful and they provide

useful and discriminating information.

In this line of reasoning, a straightforward advantage of CBDM over

CQL is that we have more training examples - as many individual images

as we are provided with. And more examples implicitly mean that, for a

given query word, we discover more related visterms, which increases both

recall and precision.

The choice of a clustering technique also has a significant effect on the

final performance. We made the important observation that agglomerative

clustering has better performance than non-hierarchical clustering in CQL
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and similar performance in CBDM. Since with the agglomerative approach

we have more control on the quality of clusters rather than on their number,

this could be extremely useful when working with huge collections - in such

cases setting parameters experimentally by varying their value in small

increments can be prohibitive. It is more realistic to learn how to set the

similarity threshold automatically by taking into consideration the specific

properties of images, rather than analyzing the global similarity structure of

a collection (which can moreover change over time by adding more images)

and trying to guess the number of clusters that images fall naturally into.

Agglomerative clustering is also more powerful in terms of providing us

with an opportunity to control the coherence of clusters. From our analysis

so far it is clear that we propose to use clusters into two conceptually

different ways - on one hand, as training examples which are somewhat

more general than images, and on the other hand as background collections

which are somewhat more specific than the entire collection. To visualize

this idea, imagine images, clusters and the collection appearing in this

order from left to right on an x-axis which shows how the granularity of

document representations varies from very specific to very general. The

actual position of clusters along the axis can change and depends on their

compactness - tighter clusters are closer to images, looser clusters are closer

to the collection. The ability to determine the quality of clusters is very

important and with agglomerative clustering we can bring up the similarity

threshold to get very compact clusters, which works well for CQL, or bring

it down to get more general clusters, which works well for CBDM.



Chapter 7

Conclusion

In this thesis we proposed two cluster-based techniques for automatic im-

age annotation, Cluster Query Likelihood (CQL) and Cluster-based Docu-

ment model (CBDM). Our main contribution was to develop and evaluate

a method for incorporating cluster statistics into a general Cross-media

Relevance model (CMRM), which is originally based on analyzing only in-

dividual images. The main motivation behind this work was to determine

whether groups of similar images are a useful source of information and can

improve the automatic annotation and effectiveness of a text-base image

retrieval system.

Even a straightforward implementation of either cluster-based approach

was demonstrated to have a significantly better annotation and retrieval

performance when compared to the original approach. One final compari-

son, in terms of gain in mean average precision, is reported in Table 7.1.

CMRM CQL CBDM
mAP 0.1354 0.1522(+12.41%) 0.1738(+28.36%)

Table 7.1: Performance improvement measured in Mean Average Precision

In conclusion, our results give consistent evidence that by examining

across-collection similarities, which are ignored by an image-by-image anal-

108
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ysis, a cluster-based approach is able to find additional patterns of word-

visterm co-occurrences. The immediate benefit from this complementary

information is better estimation of the correlations existing between tex-

tual and visual components, and consequently, significant improvement of

the quality of automatically assigned annotations.

Although we demonstrated the usefulness of clusters in the context of

creating annotations for text-based retrieval, image descriptors have a wider

range of applications. These include auto-illustration, organizing image col-

lections, facilitating browsing and in general any task which involves users

looking at images, since working with images becomes more intuitive for

people if visual information is presented together with a short description.

We do not claim that one of the two cluster-based models is superior

to the other and should be preferred in any situation. Although Table 7.1

shows the mean average precision of CBDM to be 14.2% higher than that of

CQL, the improvement is not statistically significant with p-value 0.316211

according to the Wilcoxon signed rank test. On the contrary, we believe

that CQL and CBDM are appropriate in different contexts. CQL could

be particularly useful when representations are very short, and therefore

small but very compact clusters would likely perform better than individual

images. CBDM could be especially effective for very heterogeneous collec-

tions, where broad but still coherent clusters would likely perform better

than a too outspread overall collection.

A primary characteristic of the cluster-based approach to image anno-

tation, and of CMRM in general, is its independence of the actual docu-

ment representation. Its conceptual foundation is finding groups of similar

objects, which is theoretically possible for all kinds of data. The only re-

quirement so far is that representations are discrete, but this is imposed by

the clustering algorithms rather than the overall approach. To implement
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cluster-based annotation for continuous objects, we would only need to

select a clustering technique capable of processing continuous data. There-

fore, the models we described are not limited to image annotation, they

can be applied in any situation where we want to automatically interpret

objects from one format to another. In the context of IR, such applications

include video and audio retrieval where instead of still images we have

dense streams of images and sound.

However, our investigation so far has not addressed some of the com-

plexities inherent in using a finite set of examples to learn a general model.

Here are some ideas for improvement and future work.

To investigate how specific image properties affect performance, we plan

to run a similar set of experiments on a very specialized collection. While

the Corel dataset is a general collection with great diversity among its

elements, there are many collections which are narrowly specialized and

used only in specific settings. An important example are databases of

medical images, in which hospitals and research institutes store the medical

history of their patients. Typically, a medical collection contains a few

generic image types, e.g. X-rays of limbs, torso and head, while diversity

within each group is small (because patients are told to stand in front of

the radiograph in a particular position). Another significant distinction is

that medical images are almost always black-and-white.

In this thesis we did not discuss in details visual features extraction

because we used visterm representations that were already generated. But

the image processing phase and in particular the selection of visual features

should be paid a special consideration since both directly affect how well

visterms discriminate between images. Although we did not mention this

fact, it turns out that color is the most useful feature in processing the

Corel images. With black-and-white medical images, however, color is
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meaningless, which prompts the following questions: How do we choose

what visual features to use? How do we decide whether a particular feature

is useful in describing an image or an image region? Experimenting with

a medical collection and implementing all the steps from dividing images

into regions to annotating and retrieving images will provide answers or at

least an insight to the answers of these questions.

Another significant area for future investigation is clustering. We al-

ready compared two conceptually different approaches to creating clusters

- hierarchical and non-hierarchical. And our results demonstrated that hi-

erarchical clustering is either better (in the case of CQL) or comparable

(in the case of CBDM) to non-hierarchical clustering, while providing us

with a fairly sophisticated way to control the quality of clusters. However,

additional research is necessary to define the relationship between similar-

ity threshold and cluster coherence more precisely. Advances on this issue

could make cluster-based annotation more attractive to people building

commercial systems by alleviating the need to set the clustering parameter

heuristically or experimentally, which takes up an impractical amount of

time and resources. A crucial question in this respect is what character-

istics of a collection and its documents affect clustering performance and

therefore determine whether cluster-based annotation is successful or not.

Another clustering approach that we want to experiment with is query-

specific clustering, where instead of creating the clusters beforehand we

take a subset of images that are very similar to the image we want to

annotate and cluster only these to obtain specific clusters. This could

be particularly useful in large collections where there are many levels of

similarity. Consider for example the following situation: We have a huge

diverse collection of animal images and an initial static clustering puts

images of tigers and lions in the same group. This could be justified if there
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are various other, more dissimilar patterns corresponding, for example, to

reptiles, birds, etc. However, to annotate an image of a tiger correctly,

the system should be able to distinguish between tigers and lions. In this

case, query-specific clustering can be especially helpful by assigning the two

species to their own group given an image of a tiger.

This last point brings up one more time the fact that similarity is rela-

tive and it is usually defined in terms of global rather than local patterns.

Two objects can be considered different with respect to their immediate

neighborhood and yet they can be considered very similar with respect of

the entire space in which they exist. The Cross-media Relevance model,

however, does not take into account global similarity patterns, even though

it annotates images by finding documents that are similar to it. In this the-

sis, we showed how this fundamental limitation can be compensated by ex-

tracting and incorporating information from groups of similar images that

have been created by examining the structure of the entire collection. Fur-

thermore, this information improves the quality of automatic annotations

and image retrieval performance.
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