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Abstract 

 As obesity rates in the United States continue to rise, numerous 

programs across the nation have been created in order to educate the 

population about obesity and cardiovascular disease, and to reduce their 

prevalence. The purpose of the first part of my research is to investigate the 

effects of a particular bariatric program at North Shore Medical Center (Salem, 

MA).   

 Although 397 patients underwent the procedure before September of 

2004, only 191 patients have returned for their two year follow-up.  Are 

patients who returned systematically different in some way than patients who 

did not return?  Conclusions based on available-case analysis are only valid if 

the missing data are missing at random—that is, observed values are a random 

subsample of the complete dataset (Rubin and Little 1987).  When data are 

missing at random, the observed distributions match the underlying 

distributions, and the missing data mechanism is ignorable (Rubin and Little 

1987).  When the data are not missing at random, available-case analysis 

underestimates and/or overestimates effects, and thus the missing data 

mechanism must be taken into account in order to reach valid conclusions. 

 Unfortunately, we cannot know the missing data mechanism for the 

bariatric surgery dataset and so we cannot assume that the data are missing at 

random.  The second part of my investigation is therefore dedicated to 
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exploring the missing data mechanism, imputing values based on hierarchical 

loglinear models, and generating new, improved estimates. 
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I. Introduction 

 

1.1 Cardiovascular Disease and Bariatric Surgery 

Cardiovascular disease is the number one killer in the United States 

today, accounting for over 910,000 deaths each year and afflicting another 70 

million Americans who live with it.1  While obesity is a recognized risk factor 

of cardiovascular disease, obesity rates in the United States continue to rise—

around 30% of adults 20 years and older are obese (where obesity is defined at 

having a Body Mass Index of 30 kg/m2 or more).2 Consequently, numerous 

programs across the nation have been created in order to educate the 

population about, and reduce the prevalence of, obesity and cardiovascular 

disease. 

The purpose of the first part of this thesis is to investigate the effects of 

a particular bariatric program at North Shore Medical Center (Salem, MA).  

The bariatric program involves bariatric surgery coupled with a 13-week long 

program on cardiovascular risk reduction.  The North Shore Medical Center 

(NSMC) offers two types of bariatric surgery: the Roux-en-Y gastric bypass 

procedure (both open and laproscopic) and vertical banded gastroplasty 

(laproscopic only).   

____________________________________________________________________________ 
1 Gerberding, Julie Louise. “Chronic Disease Prevention.” Center for Disease Control and 
Prevention. May 2006. Department of Health and Human Services. 5 Dec. 2006 
<http://www.cdc.gov/nccdphp/publications/aag/cvh.htm>. 
2 Center for Disease Control and Prevention. “Overweight and Obesity.” Center for Disease 
Control and Prevention. November 2006. Department of Health and Human Services. 5 Dec. 
2006 <http://www.cdc.gov/nccdphp/dnpa/obesity/>. 

 

https://webmail.mtholyoke.edu/horde/services/go.php?url=http%3A%2F%2Fwww.cdc.gov%2Fnccdphp%2Fpublications%2Faag%2Fcvh.htm
https://webmail.mtholyoke.edu/horde/services/go.php?url=http%3A%2F%2Fwww.cdc.gov%2Fnccdphp%2Fdnpa%2Fobesity%2F
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The Roux-en-Y gastric bypass surgery involves creating a small new 

pouch in the upper portion of your stomach.  The pouch can hold only about 

one cup of food.  The pouch is connected directly to the jejunum (the middle 

section of the small intestine), bypassing the duodenum (the upper section of 

the small intestine where most calories are absorbed). 3  The Roux-en-Y gastric 

bypass procedure thus reduces caloric intake as well as caloric absorption.  

The vertical banded gastroplasty (also known as gastric banding) serves 

to reduce caloric intake, but has no effect on caloric absorption.  A gastric band 

is placed around the top of your stomach, inhibiting the tolerated amount of 

food intake.4  Patients with gastric banding feel full quickly, and vomiting can 

occur if they eat too much or too fast. 

  After surgery, the Cardiovascular Risk Reduction Program serves to 

educate patients about nutrition, exercise, and stress management.  Patients are 

expected to maintain healthy eating habits and exercise routines for the rest of 

their lives.  During the program, patients receive personalized assessments of 

their eating habits and their cardiovascular disease risk factors (e.g. high blood 

pressure).  Exercise is monitored by evaluating blood pressure, heart rate and 

response to exercise.        

____________________________________________________________________________ 
3 Kassel, Karen. “Roux-en-Y Gastric Bypass.” Health Library. November 2006. North Shore 
Medical Center. 18 Dec. 2006 
<http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-
bfeedab0944f&chunkiid=96212>.  
4Kassel, Karen. “Vertical Banded Gastroplasty.” Health Library. November 2006. North Shore 
Medical Center, 18 Dec. 2006 
<http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-
bfeedab0944f&chunkiid=96213>. 

 

http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-bfeedab0944f&chunkiid=96212
http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-bfeedab0944f&chunkiid=96212
http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-bfeedab0944f&chunkiid=96213
http://healthlibrary.epnet.com/GetContent.aspx?token=c969dc7d-0aa7-43de-ba12-bfeedab0944f&chunkiid=96213
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The Executive Director at North Shore Cardiovascular Associates, 

Sandra Skinner, is particularly interested in:  

 (a) Studying the overall benefits of the bariatric program, including its  

effect on weight, blood pressure, cholesterol, and quality of life.  

 (b) Comparing results for females and males.  Do results differ between  

genders? 

 (c) Studying the effect of compliance.  Is compliance with exercise and  

nutritional recommendations associated with more positive results? 

(d) Studying preliminary results from five year follow-up.  

 

1.2 Missing Data  

Although 525 patients have undergone the procedure since 1999, many 

have been lost to follow-up: 

Follow-Up N 
1 month 323 
4 months 285 
8 months 211 
12 months 177 
24 months 191 
36 months 40 
5 years 27 
 

These dwindling numbers are not only due to patients’ failure to return 

for a follow-up, but also a result of patients who recently had surgery.  For 

instance, for patients who underwent surgery in January of 2006, we could 

only have up to 8-month follow-up data since it has not even been one year 
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since their surgery.  Figure 1a shows the percentage of patients who returned at 

each follow-up, out of the patients who could have returned. 

 

Figure 1a. Follow-up exam versus return rate.  The general trend is that the 
percentage of patients who return decreases as time increases. 

      

In the face of such extensive missing data, it is difficult to assess 

whether conclusions made are valid.  After all, ordinary estimates and 

inferences take into account only the data which is available.  It is plausible 

that patients who returned for follow-up differ considerably in various aspects 

from patients who did not return.  For example, it could be that patients who 

did not lose much weight were less likely to return for follow-up; consequently, 

estimates on weight loss (and probably other risk factors) would be 

overestimates.  Alternatively, it could be that patients who lost the most weight 

were less likely to return (maybe they were satisfied with their success and did 

not feel they needed a check-up); if such were the case, available data would 

lead to underestimates.  A third (and most unlikely) situation is that the 
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missing data are missing at random (MAR), meaning the observed values are a 

random subsample of the complete data set (Rubin and Little, 1987).  In this 

last situation, the observed distributions match the underlying distributions, 

and, as Rubin and Little note, the missing data mechanism is ignorable (1987).  

In other words, conclusions made from available data are valid.   

Unfortunately, we cannot know the missing data mechanism for the 

gastric bypass surgery (GBP) dataset, and so we cannot assume that the data 

are MAR.  Therefore, the second part of this paper is dedicated to exploring 

the various statistical methods that try to account for missing data.  The 

methods studied include hierarchical loglinear models, imputation and 

weighted averages. 
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II. Introduction to the Data 

 

2.1 Variables 

The GBP dataset includes more than fifty variables, each followed over 

time.  Albumin, B12, calcium, FBS, iron, glucose, cholesterol, HDL (high-

density lipoprotein), LDL (low-density lipoprotein), triglyceride, HgbA1C, 

potassium, total protein, and magnesium levels were measured pre-surgery, as 

well as 1, 4, 8, 12, 24, 36, and 60 months after surgery.  Weight, diastolic 

blood pressure, systolic blood pressure, and heart rate were also recorded at 

each follow-up.   

Several risk factors for cardiovascular disease were looked at pre-

operation, two years post-operation (24 month follow-up), and five years post-

operation: asthma, binge eating, coronary artery disease, cellulitis, depression, 

hyperlipidemia, hypertension, insulin-dependent diabetes mellitus (IDDM), 

non-insulin-dependent diabetes mellitus (NIDDM), incontinence, joint pain, 

morbid obesity, stress/anxiety, sedentary lifestyle, sleep apnea, and smoking.  

These risk factors are self-reported.    

Any medications patients were on—including antidepressant, 

antihypertensive, insulin and lipid lowering drugs—were recorded pre-surgery, 

two years post-surgery, and five years post-surgery. 

The cardiovascular risk reduction program monitored compliance with 

exercise, compliance with vitamins, whether patients continued food records, 

and whether they continued to practice meditation/relaxation techniques 
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(which they were taught during the cardiovascular risk reduction program 

following surgery).   

Finally, subjective measures to gage success were also considered: 

quality of life pre-surgery and two years post-surgery, emotional improvement, 

and physical improvement.   

See Table 2a for a summation of variables and when they are measured. 
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Table 2a. Summary of what variables are measured  at each follow-up exam. 
Post-Operative Variable Pre-

Operative 1 
mo 

2 
mo 

8 
mo 

12 
mo 

24 
mo 

36 
mo 

5 
year 

Primary Response √ √ √ √ √ √ √ √ 
     Weight         
     Diastolic BP         
     Systolic BP         
     Heart rate         
Blood Chemistry √ √ √ √ √ √ √ √ 
     Albumin         
     B12         
     Calcium         
     FBS         
     Iron         
     Glucose         
     Cholesterol         
     HDL         
     LDL         
     Triglyceride         
     HgbA1C         
     Potassium         
     Total Protein         
     Magnesium         
Risk Factors √     √  √ 
     Asthma         
     Binge eating         
     CAD         
     Cellulitis         
    Depression         
     Hyperlipidemia         
     Hypertension         
     IDDM         
     Incontinence         
     Joint Pain         
     Morbid Obesity         
     NIDDM         
     Stress/Anxiety         
     Sedentary Lifestyle         
    Sleep Apnea          
     Smoking         
Compliance √     √  √ 
     Exercise         
     Vitamins         
     Food records         
     Relaxation techniques         
Medications √     √  √ 
     Antidepressant         
     Antihypertensive         
     Insulin         
     Lipid Lowering         
Other √     √  √ 
     Quality of life         
     Emotional improvement         
     Physical improvement         
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2.2 Baseline Characteristics 

Patients were between 20 and 65 years old, and weighed between 180 

and 560 pounds at the time of surgery.  Neither age nor weight follow a normal 

distribution, although neither has a very skewed distribution either.     
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         Figure 2a. Baseline age   Figure 2b. Baseline weight 

 

The majority of patients were female (85.3%).  Although national rates 

of obesity are currently higher for women (34%) than for men (30%), the 

percentages in this study are not reflective of those in the larger population.5  

Skinner notes that men, in addition to feeling less societal pressure than 

women to lose weight, are also more successful in losing weight non-surgically.      

Many patients exhibited risk factors for cardiovascular disease above 

and beyond obesity.  For example, 61.3% suffered from hypertension while 

49% had been diagnosed with hyperlipidemia.  Patients also exhibited high 

rates of depression (61.7%), stress/anxiety (66.8%), and joint pain (83.6%).   

 

____________________________________________________________________________ 
5 Center for Disease Control and Prevention. “Health, United States, 2006.” Department of 
Health and Human Services. 2006. National Center for Health Statistics. 5 Dec. 2006. 
<http://www.cdc.gov/nchs/data/hus/hus06.pdf>. 

 

http://www.cdc.gov/nchs/data/hus/hus06.pdf
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Patients rated their quality of life pre-surgery from 0 (being the lowest) 

to 100 (being the highest).  Of the patients with ratings, the mean quality of life 

rating was 35.6 (see Figure 2c).  Almost a quarter of the patients rated the 

quality of their life below 10. 
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Figure 2c.  Quality of life rating pre-surgery 

 

For more baseline characteristics, see Table 2b on the next page. 
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Table 2b. Baseline Characteristics 
Characteristic  Mean SD Range n 

Age   43.2 9.4 20-65 482
Weight   311.4 51.6 180-560 472

BMI   51.4 7.2 39-80 416
Total Cholesterol   201.3 39.0 101-417 431

 LDL  124.2 34.4 37-269 372
 HDL  44.1 11.6 24-98 398

SBP   132.3 15.9 92-180 485
DBP   82.3 10.1 50-118 485

Heart Rate   81.3 9.4 54-120 481
   
  N %   

Diabetes   
 NIDDM 85 16.6  512
 IDDM 28 5.5  512 

Hypertension  314 61.3  512 
Hyperlipidemia  251 49.0  512 

Cellulitis  15 2.9  512 
Asthma  135 26.4  512 

Joint pain  428 83.6  512 
Sedentary lifestyle  457 89.3  512 

Sleep apnea  163 31.8  512 
Stress/anxiety  342 66.8  512 

Depression  316 61.7  512 
Smoking  68 13.3  512 
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III. Analyses of the Data 

 

3.1 Overall Results 

For the 191 patients who returned for a follow-up 24 months post-

surgery, results are positive.  On average, patients lost 35.7% of their original 

weight (p < .001); the mean weight loss is113.6 pounds.  Mean blood pressure, 

heart rate and cholesterol also decreased significantly (see Table 3a). 

Table 3a. Comparison of means pre-surgery and 24 months post-surgery  
 n Mean(SD) 

Pre 
Mean(SD) 

Post 
Difference in 

Means 
p-valuea

Weight 189 316.5(52.0) 202.9(44.5) 113.6 <.001
SBP 181 133.9(15.5) 124.8(17.9) 9.1 <.001
DBP 181 82.2(10.1) 76.5(11.8) 5.7 <.001

Heart Rate 177 81.7(9.3) 69.4(10.1) 12.3 <.001
Cholesterol 113 207.8(39.0) 178.9(35.3) 28.9 <.001

QOL 169 34.7(27.3) 58.9(30.4) -24.2 <.001
a.Paired-samples t test used to calculate p-values.  Distributions of the difference in means 
were roughly normal (none were considerably skewed), and pre and post SDs were similar.  
Therefore, a t-test is appropriate.  Each difference is highly significant.       
 

The average rating for quality of life rose 24.2 points.  Prior to surgery, 

half of the patients (out of the subgroup that returned two years post-surgery) 

rated the quality of their life below 30.  Two years post surgery, the median 

quality of life rating doubled: half the patients rated the quality of their life 

higher than 61.  As shown in Figure 3a, the distribution for quality of life pre-

surgery is skewed to the right, indicating more patients gave their life low 

ratings.  Conversely, the distribution for quality of life two years post-surgery 

(Figure 3b), is skewed to the left.   

Recovery rates for most cardiovascular risk factors were found to be 

statistically significant (see Table 3b).  In particular, 55 out of the 63 people 
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who had sleep apnea prior to surgery reported no sleep apnea two years post-

surgery.  Other factors that saw the most success are sedentary lifestyle, 

morbid obesity, and joint pain. 
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Figure 3a. Quality of life ratings   Figure 3b.  Quality of life ratings 
pre-operation.  Only a quarter of the   post-operation.  A quarter of the 
respondents rated the quality of their life   respondents rated the quality of their life 
over 53.  over 89. 
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Figure 3c.  Scatterplot of quality of life pre-surgery versus quality of life-post surgery.  The 
identity line corresponds to no change in quality of life rating.  Most points are above the line, 
indicating that the quality of life improved after surgery for the majority of the patients. 
 
 
 
 
 
 

 
 
 

 

 



14

Table 3b. Recovery rates for several risk factors associated with obesity (n=191). 
Recovery rate is the percentage of patients who do not report a risk factor two years post-
operation, out of the patients who did report the risk factor pre-operation.   

Risk Factor % Yes Pre Recovery Rate p-valuea

NIDDM* 16.2 80.6 .001 
IDDM* 9.9 63.2 <.001 

Hypertension* 68.1 75.4 <.001 
Hyperlipidemia* 56.0 74.8 <.001 

Cellulitis 4.2 75.0 .031 
Asthma* 29.3 71.4 <.001 

Joint pain* 92.7 70.1 <.001 
Sedentary Lifestyle* 95.8 85.2 <.001 

Morbid Obesity 100.0 82.7  
Sleep Apnea* 33.0 87.3 <.001 

Stress/Anxiety* 80.1 24.2 <.001 
Depression* 78.0 33.6 <.001 

Incontinence* 16.2 67.7 <.001 
Smoking 11.0 42.9 .021 

a. McNemar’s test (binomial distribution) used to calculate p-values.  
* Significant at the .01 level 
 

The recovery rates for stress/anxiety and for depression were not as 

high; around a quarter of the patients “recovered” from stress/anxiety and a 

third “recovered” from depression. (“Recovered” meaning that patients who 

reported these risk factors prior to surgery did not report them two years post-

surgery.)  While the recovery rates for smoking and cellulitis are encouraging 

(43% and 75%, respectively), they are not significant at the .01 level.  Only a 

small number of patients reported these risk factors at baseline, and thus results 

are less conclusive than for risk factors that were initially more frequent.   

Many patients in the bariatric program were able to reduce or get off 

their medication by two years after surgery: 76.4% of patients on insulin had 

either reduced or were no longer taking insulin; 62.5% of patients on lipid 

lowering drugs were off the drugs completely; 73.5% of patients on 
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hypoglycemic medication were off the medication completely; 79.4% of 

patients on hypertensive medication had either reduced or were no longer 

taking hypertensive medication.  Of the 191 patients who returned, 94 patients 

were on antidepressant medication at intake.  Two years post-surgery, the 

majority (almost 80%) of those patients were still on antidepressants.  It 

appears that the bariatric program is able to help patients reduce or get off 

medications related to metabolism, but not medication related to mood.   

Consistent with the positive findings described above, 96.3% of 

patients recorded that they saw physical improvement two years post-surgery.  

The majority also experienced emotional improvement (88.5%).  

 

3.2 Gender Comparisons 

Females and males showed similar baseline values for many of the risk 

factors related to obesity.  However, on average, males weighed significantly 

more than females.  Males also saw considerably higher rates of cellulitis and 

sleep apnea.  On the other hand, females had a significantly higher mean HDL 

level than males and were also more likely to report depression.      

Out of the 191 patients who returned for a follow-up two years post-

surgery, 159 (83.2%) were female and 32 (16.8%) were male.  These 

percentages are consistent with the percentages of females and males in the 

beginning of the study.  Compliance rates are similar across the two genders—

about half of the females and half of the males complied with exercise 

recommendations, while a little over 80% of each gender complied with taking 
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their vitamins and Tums.6  Rates of physical improvement and emotional 

improvement are also about equal for females and males, around 95% and 89%, 

respectively.         

 Males lost more weight on average than females, although the 

difference was not statistically significant (see Table 3d).  (Remember that 

males also weighed more at baseline, which means they had more weight to 

lose.  In fact, if we look at the percentage of weight lost, the relationship is 

reversed: the mean weight loss percentage for females is 36.3 whereas that for 

males is 32.9; this difference is also not statistically significant).  Females did 

see a significantly greater reduction in heart rate.  Reductions in blood pressure 

and cholesterol were similar for males and females, as were rates of reduction 

in the number of patients who had hypertension, hyperlipidemia, sleep apnea, 

joint pain, etc. (refer to Tables 3a and 3b for overall rates).          

The mean quality of life rating increased for both genders, although it 

increased about 10 points higher for females than for males (from 35 to 50.2 

and 60.8, respectively).  See Figure 3d. 

 

 
 
 
 
 
 
 
 
 
____________________________________________________________________________ 
6 Tums is taken for calcium. 
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Table 3c.  Baseline characteristics, by gender.  For the number of patients measured for each 
variable, see Table 3.i in Appendix A. 

Characteristic  Female  Male  p-value
    n=434 (85%)   n=76 (15%)     
  Mean(SD)  Mean(SD)   

Age  42.8(9.3) 44.9(9.4) .086a

Weight*  302(46) 359(54) <.001a

BMI  51.1(7.0) 53.1(8.3) .037a

Total Cholesterol  201.8(38.9) 198.9(39.9) .721a

 LDL 124.8(34.3) 120.9(35.0) .473a

 HDL* 45.1(11.7) 39.0(10.0) <.001b

SBP  131.8(15.9) 135.3(15.7) .079a

DBP  82.3(10.1) 81.8(10.3) .647a

Heart Rate  81.6(9.1) 79.6(11.1) .132b

  N % N %  
Diabetes       

 NIDDM 67 15.4 18 23.7 .094c

 IDDM 21 4.8 7 9.2 .165c

Hypertension  260 59.9 54 71.1 .074c

Hyperlipidemia  205 47.2 45 59.2 .062c

Cellulitis*  8 1.8 7 9.2 .003c

Asthma  122 28.1 13 17.1 .049c

Joint pain  366 84.3 61 80.3 .400c

Sleep apnea*  108 24.9 54 71.1 <.001c

Stress/anxiety  295 68.0 46 60.5 .234c

Depression*  279 64.3 36 47.4 .007c

Smoking   58 13.4 10 13.2 1.00c

a. Independent-samples t test used to calculate p-values.  Equal variances assumed. 
b. Independent-samples t test used to calculate p-values.  Equal variances not assumed. 
c. Fisher’s Exact Test used to calculate p-values. 
* Statistically significant at the .01 level 
 
 
Table 3d. Comparing mean weight loss percentage and reduction in heart rate and cholesterol 
for females and males. 

 Female Male p-valuea

Weight Loss Percentage 36.3 32.9 .08 
HR Reduction(SD)* 13.6(10.6) 6.2(15.7) .002 

Cholesterol Reduction(SD) 28.9(34.6) 25.8(41.9) .715 
a. Independent-samples t test used to calculate p-values. 
* Significant at the .01 level 
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Figure 3d.  The top two pie charts represent all patients who returned for follow-up two years 
post-surgery. The majority of these patients rated the quality of their life below average (either 
low or very low) before surgery; two years after surgery, the majority rated the quality of their 
life above average (either high or very high), with the largest percent of patients rating the 
quality of their life as very high.  The distribution for females (the middle two pie charts) 
follows this same pattern.  The distribution for males (the bottom two pie charts) is a little 
different: prior to surgery, the majority of males rated the quality of their life below average.  
After surgery, less than half of the males rated the quality of their life as “high” or “very high”; 
still, the percentage that gave above average ratings increased considerably.  [Very Low=0-20,  
Low =21-40, Average=41-60, High=61-80, Very High=81-100] 
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3.3 Compliance with Exercise 

 Out of the 191 patients who returned for a follow-up 24 months post-

operation, 50.3% reported compliance with exercise guidelines.   

Compliance with exercise is associated with greater weight loss.  Two-

years post-surgery, those who had complied with exercise recommendations 

had lost 37.3% of their baseline weight, on average, while those who had not 

complied with exercise lost 34.1% of their baseline weight on average.  While 

this 3% difference is statistically significant at the .05 level (p=.028), it is not 

as large of an effect as might be expected. 

 Compliance with exercise did not seem to have an impact on systolic or 

diastolic blood pressure, heart rate, or cholesterol.  

 Exercise does not appear to have as much an effect as expected on 

weight loss and other risk factors relating to obesity.  However, it should be 

noted that responses are subject to not only non-response bias, but also to 

response bias.  Whether or not one complied with exercise was reported by the 

patient, and not monitored closely by doctors once the 13-week Cardiovascular 

Risk Reduction Program ended.  Patients who did not exercise regularly might 

have indicated that they had complied with exercise, because they know that is 

what their doctors expected of them.  If such were the case, the average weight 

loss for those who exercised regularly might be underestimated. 
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3.4 Compliance with Vitamins 

Compliance with vitamins is very important for bariatric surgery 

patients.  Because patients will be drastically reducing their amount of food 

intake, malnutrition is a serious risk.  This is especially true for patients who 

received the gastric bypass operation; bypassing the duodenum not only 

reduces caloric absorption but also reduces nutrient absorption.  Patients must 

carefully monitor their nutrient levels and take the required supplemental 

vitamins as advised by their doctor. 

Of the patients returning two years post-operation, 82.2% were still 

taking the recommended vitamins and Tums.  Compliance with taking 

vitamins and Tums was not associated with greater weight loss; both groups 

lost about 112 pounds, on average.  It was also not found to be associated with 

greater reduction in diastolic blood pressure, cholesterol or heart rate.  

However, those who took vitamins and Tums regularly did see a greater 

decrease in their systolic blood pressure, with an average reduction of 10.8 

mmHg compared to a reduction of only 1.3 mmHg for those who did not take 

vitamins and Tums (95% confidence interval: -17.2 to -1.9).    

Since compliance with vitamins should closely relate to levels of B12, 

potassium, magnesium, etc., I decided to look at these variables as well.  Those 

who continued to take vitamins regularly had higher levels of glucose (93.3 

versus 81.8), magnesium (4.8 versus 2.2), iron (86.7 versus 82.0), and B12 

(352.9 versus 260.8) (although none of these differences are statistically 
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significant).  Average potassium, protein, and calcium levels were similar for 

the two groups. 

Again, findings may be biased due to self-reporting and non-response.      

 

3.5 Other Measures of Compliance 

Because the number of patients who reported using meditation and 

relaxation techniques was small (n=26, 13.6%), as was the number who 

reported having continued their food records (n=13, 6.8%), it is difficult to 

assess the effects of either.       

 

3.6 Five Year Preliminary Results 

The five year follow-ups are currently being conducted.  To date we 

have 27 patients who have reported for their five year follow-up.  Preliminary 

results on these patients are not as positive as two year results, but they are 

more encouraging than the expected relapse rate.  Skinner says that many 

bariatric programs find that their patients end up maintaining only 50% of their 

initial weight loss.    

 Therefore, it is not surprising that, for the 27 patients that returned, 

their mean weight, systolic blood pressure, diastolic blood pressure, and heart 

rate have all increased since their two year follow-up.  However, none of the 

means have reached their baseline values.  For example, the mean weight five 

years post-surgery is 214.4 pounds.  This is 26 pounds heavier than the mean 
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weight for those patients at two years post-surgery (188.4 pounds).  It is still 

not nearly as heavy, though, as their mean baseline weight of 305.3 pounds.  In 

other words, patients were between 31 and 160 pounds lighter than their 

baseline weight, but were between 6 pounds lighter (one person) to 53 pounds 

heavier than their two year post-surgery weight. 

 

Figure 3e. Patients for whom we have five year post-op results have seen a slight increase in 
their weight since the two-year exam.  

 
Figure 3f. Patients for whom we have five year post-op results have seen an increase in their 
blood pressure since their two-year exam, although means have not surpassed baseline values.   
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It is important to note that the 27 patients who have returned for their 

five year post-surgery exams may not be a good subsample of all patients.  

Their mean weights (both baseline and two years post-op) are noticably lower 

than those for all patients who returned for a two year post-op exam.  They 

also vary somewhat in systolic blood pressure, diastolic blood pressure and 

cholesterol reductions.  See Table 3e.    

Table 3e.  Patients who returned for a five year follow-up exhibited weight gain, as well as 
increases in blood pressure and heart rate, since their two year follow-up exam.  These patients, 
however, differed in these variables from the overall patients who returned for a two-year 
follow-up.   

  

  
5 Yr Follow-Up Patients

  

  
2 Yr Follow-Up Patients

  
  N Mean SD N Mean SD 
Base Weight 27 305.3 42.6 189 316.5 52.0
Weight 24 mos 17 188.4 39.6 189 202.9 44.5
Weight 5 yr 27 214.4 43.2    
Systolic BP 27 131.9 14.2 181 133.9 15.5
Systolic BP 24 mos 17 116.6 16.8 181 124.8 17.9
Systolic BP 5 yr 26 127.5 14.4    
Diastolic BP 27 82.2 11.8 181 82.2 10.1
Diastolic BP 24 mos 17 71.5 7.6 181 76.5 11.8
Diastolic BP 5 yr 26 79.0 9.9    
HR 26 84.5 6.8 177 81.7 9.3
HR 24 mos 17 68.9 7.3 177 69.4 10.1
HR 5 yr 25 71.8 7.5    
Cholesterol 13 216.5 37.3 175 206.8 40.2
Cholesterol 24 mos 6 163.3 26.8 128 177.9 34.0
Cholesterol 5 yr 14 190.9 46.5  
 

Five years post-surgery compliance rates were lower (as could be 

expected).  Only four of the 27 people (about 15%) were still complying with 

exercise recommendations, down from around 50% compliance for the two-
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year follow-up.  The majority was still taking their vitamins and Tums, about 

70% (19 of the 27) compared to 80% three years ago.  Four patients were 

continuing to use meditation and relaxation techniques.  None of the patients 

had continued their food records five years post-surgery.    

Rates of depression and stress/anxiety still remain high.  About half the 

patients indicated that their lifestyles were sedentary, and over half the patients 

are experiencing joint pain.  Rates of hyperlipidemia and sleep apnea remain 

low.   

Patients were slightly less happy with their physical and emotional 

improvement than they were three years ago, with 81.5% (vs. 96.3%) 

recording physical improvement and 70.4% (vs. 88.5%) indicating emotional 

improvement.  To see the specific changes, see Tables 3.ii and 3.iii in 

Appendix A.  

Interestingly enough, the five year follow-up patients do not differ 

significantly in their pre-surgery and two year post-surgery quality of life 

ratings from the entire sample.  Their mean quality of life rating pre-surgery is 

35.7 (which is also the baseline mean).  Their mean quality of life rating two 

years post-surgery is 61.0 (which is close to the 58.8 mean rating that 189 

patients gave).  Three years later, their mean quality of life rating is down ten 

points to 51.1 (SD=31.4).  See Figure 3g for the distribution. 

Rather than continue to lose weight and improve on other 

cardiovascular risk indicators, many of the patients who have returned for a 
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five year follow-up have more or less regressed (as can be expected).  Even so, 

none are worse off (on the risk factors studied here) than they were before the 

surgery.  Nevertheless, it is important to remember, as I said before, that, in 

addition to being a small sample, these 27 patients are unlikely to represent a 

random sample of all patients, and so preliminary results could be biased.  It 

will be interesting to see how findings change as more patients return for their 

five year follow-up exam.     
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Figure 3g.  Histogram of the ratings for quality of life, five years post-operation.   Half of the 
patients rated the quality of their life below 45.5. A quarter of the patients rated the quality of 
their life above 78.   
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IV. Missing Data 
 
 
4.1 Introduction to Missing Categorical Data 

 While we have information for 512 patients at baseline, we have two 

year follow-up data on only 191 patients, suggesting a very low return rate.  

However, only 397 patients had surgery more than two years ago.7  After 

accounting for patients who received surgery less than two years ago (and 

therefore whose 24 month follow-up would not have occurred yet), there are 

only 188 patients who failed to return for a follow-up, or about a 50% return 

rate. 

 Unfortunately, this is still a substantial amount of missing data.  

Furthermore, as stated in the introduction, we do not know the missing data 

mechanism.  For example, we do not know the way in which patients who 

returned differ from those who did not return (e.g. did they lose less weight? 

More weight?  About the same?).  Although the analyses done in Part I use 

only the available data, available-case analysis can lead to serious biases if the 

data are not missing at random (MAR) (Little and Rubin 1987).  If, for 

instance, patients who lost less weight were less likely to return for a follow-up, 

then an available-case analysis would lead to overestimating two-year weight 

loss.   

____________________________________________________________________________ 
7 There are 397 patients who received surgery before September 1, 2004.  I chose this date as 
the cut-off date because I obtained the data in October of 2006.  Assuming it takes time for 
data to be entered into the system, I estimated that the data I received was updated as of 
September 1, 2006. 
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In addition, it is unlikely that the missing data are MAR; rather, the 

missing data mechanism of the GBP dataset is probably nonignorable.  In 

order to understand the true underlying distribution of any specific variable, it 

is necessary to try to impute the missing values.  In this paper, I will be using 

model-based procedures to estimate missing categorical data.  Before I begin 

estimating missing values, however, it is important to first understand 

contingency tables and hierarchical loglinear models. 

 

4.2 Contingency Tables 

 A contingency table is used to summarize the relationship between two 

or more categorical variables.  Since I will be working with a three-way table 

to model return status, I will start with a concrete, three-dimensional example 

using pre-operation variables (so that there is no missing data).8  Let Y1 = 

Depression, Y2 = NIDDM, and Y3 = Stress: 

 
  NIDDM 

 0 1 
0 66 20

 
 
 
 

NIDDM 
 0 1 
0 20 4 

 

 
 Stress = 0     Stress = 1  
 
If Y1 = 0, then the patient does not report depression; Y1 = 1 indicates that the 

patient does report depression.  If Y2 = 0, then the patient does not have  

____________________________________________________________________________ 
8 I use the term “return status” in place of Rubin and Little’s term “missingness” (1987).  

Depression 

1 15 1

Depression

1 212 36 
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NIDDM; Y2 = 1 indicates that the patient has NIDDM.  If Y3 = 0, then the 

patient does not report stress; Y3 = 1 indicates that the patient does report stress.  

For example, there are 66 patients who fall into cell (0, 0, 0), meaning there are 

66 patients who are not depressed, do not have NIDDM and are not stressed.  

Likewise, there are 15 patients who fall into cell (1, 0, 0), indicating that there 

are 15 patients who are depressed but do not have NIDDM and are not stressed.  

To save space, I will use Yijk to refer to the cell frequency of row i, column j, 

table k, where i, j, k = 0, 1 (e.g. Y000=66, Y100=15).  The total number of 

patients is Y = 374. 9   

The marginal distributions refer to the total number of patients in Yi++, 

Y+j+, and Y++k, where the plus sign indicates summing over that index.  Thus, 

Y0++ is the total number of patients who are not depressed (86 + 24 = 110), 

Y1++ is the total number of patients who are depressed (16 + 248 = 264), Y+0+ is 

the total number of patients who do not have NIDDM (81 + 232= 313), etc.      

 

 NIDDM  
 Depression   0 1  
  0 66 20 86
  1 15 1 16
  81 21 102

  NIDDM  
Depression   0 1  
  0 20 4 24
  1 212 36 248
  232 40 272

Stress = 0     Stress = 1 
 
 
 
 

____________________________________________________________________________ 
9 I have used data on the 397 patients who had surgery before 9/1/04.   We have complete 
information regarding depression, NIDDM and stress status for 374 of these patients; thus, the 
total of the contingency table is 374.  
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4.3 Hierarchical Loglinear Models  
  

To determine the relationship among the three variables—are they 

mutually independent?  Does knowing one variable help predict another’s 

response? etc.—we need to test how well various models fit the data.  For 

clarity, I will divide the process into three steps.  First, assume a model.  

Second, calculate the expected cell frequencies based on the assumed model.  

Third, run a chi-square goodness-of-fit test to see how well the model fits the 

data.  

 

4.3.1 The Model 

 A patient selected at random from the population will fall into cell (i,j,k) 

with probability ijkπ , where 1ijk
i j k

π =∑ ∑ ∑ .  Hierarchical loglinear models 

express the logarithm of cell probabilities (ln ijkπ ) as a sum of effects.  The 

fullest three-dimensional model includes a constant, the main effects of each 

variable, and all two- and three-way interactions: 

.3 1 3 2 31 2 1 2ln Y Y Y Y Y Y YY Y Y Y
ijk i j k ij ik jk ijkπ λ λ λ λ λ λ λ λ= + + + + + + + 1 2 3Y

____________________________________________________________________________ 

10  This model is known 

as the saturated model because it has as many parameters as there are cells in 

the table, and thus fits the data perfectly.  However, we do not want to include 

all eight terms if a smaller model also fits the data.  We want the model that  

10Agresti (1990) defines the λ -terms differently than Bishop, Feinberg and Holland (1975).  
For a detailed mathematical interpretation of model parameters, see Appendix B.  
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has the fewest terms and still fits the data.  There are nineteen different models 

that can be derived from setting certain parameters in the saturated model to 

zero.  Bishop, Fienberg and Holland explain the hierarchical property of these  

loglinear models:  “The family of hierarchical models is defined as the family 

such that if any [λ -term] is set equal to zero, all its higher-order relatives must 

also be set equal to zero.  Conversely, if any [λ -term] is not zero, its lower-

order relatives must be present in the loglinear model” (Bishop, Fienberg and 

Holland 1975).  See Figure 4a for a partial ordering of model parameters.  

1 2 3Y Y Y
ijkλ  
 

1 2Y Y
ijλ   1 3Y Y

ikλ   2 3Y Y
jkλ  

 
1Y

iλ   2Y
jλ   3Y

kλ  
 
λ  
 

Figure 4a. A partial ordering of model parameters.   In a hierarchical model, if a λ -term is in 
the model, then each λ -term below it in the partial ordering must also be in the model.  
Furthermore, if a model with certain λ -terms fits the data, then models involving λ -terms 
above them in the partial ordering also fit the data.   
 

Table 4a lists each comprehensive model for three-dimensional tables, 

along with a brief explanation of the model.11  I am going to concentrate on 

three specific models—{Y1, Y2, Y3}, {Y3,Y1Y2}, and {Y1Y2, Y1Y3}—for a 

more detailed understanding.  I am not concerned so much with whether these  

____________________________________________________________________________ 
11 Comprehensive models are models which include at least the main effects (Bishop, Fienberg, 
and Holland 1975). 
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particular models make sense to fit the depression/NIDDM/stress relationship; 

rather, they are models which will be useful later in my analysis involving 

missing data. 
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Table 4a.  Hierarchical loglinear models for three-way contingency tables.   
Label Description Model 

{Y1Y2Y3} The saturated model has as many 
parameters as there are cells in the table

3 1 3 2 3 1 2 31 2 1 2ln Y Y Y Y Y Y Y YY Y Y Y
ijk i j k ij ik jk ijkπ λ λ λ λ λ λ λ λ= + + + + + + +  

{Y1Y2, Y2Y3, 
Y1Y3} 

There is no three-factor interaction; the 
two-factor interactions are the same at 

each level 

3 1 3 2 31 2 1 2ln Y Y Y Y YY Y Y Y
ijk i j k ij ik jkπ λ λ λ λ λ λ λ= + + + + + +  

{Y1Y2, Y1Y3} Y2 and Y3 are “conditionally 
independent, given Y1”; NIDDM is 

independent of stress, given depression 

3 1 31 2 1 2ln Y Y YY Y Y Y
ijk i j k ij ikπ λ λ λ λ λ λ= + + + + +  

{Y1Y2, Y2Y3} Depression is independent of stress, 
given NIDDM 

3 2 31 2 1 2ln Y Y YY Y Y Y
ijk i j k i j j kπ λ λ λ λ λ λ= + + + + +  

{Y1Y3, Y2Y3} Depression is independent of NIDDM, 
given stress 

3 1 3 2 31 2ln Y Y Y Y YY Y
ijk i j k ik jkπ λ λ λ λ λ λ= + + + + +  

{Y1, Y2Y3} Y1 is “jointly independent” of Y2 and 
Y3; Depression is independent of 

NIDDM and stress 

3 2 31 2ln Y Y YY Y
ijk i j k jkπ λ λ λ λ λ= + + + +  

{Y2,Y1Y3} NIDDM is independent of depression 
and stress 

3 1 31 2ln Y Y YY Y
ijk i j k ikπ λ λ λ λ λ= + + + +  

{Y3,Y1Y2} Stress is independent of depression and 
NIDDM 

31 2 1 2ln YY Y Y Y
ijk i j k ijπ λ λ λ λ λ= + + + +  

{Y1, Y2, Y3} The three variables are “mutually 
independent” 

31 2ln YY Y
ijk i j kπ λ λ λ λ= + + +  
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a. {Y1, Y2, Y3} denotes the independence model: 

31 2l n YY Y
i j k i j kπ λ λ λ λ= + + + .  The independence model assumes  

mutual independence among the three variables and, accordingly, does not 

contain any higher-order interactions.  In the GBP example, this model implies 

that depression, NIDDM and stress are not associated with each other; 

knowing that a patient is depressed will not help predict her NIDDM status or 

her stress status, and vice versa.  The natural logarithm of the probability of 

each cell can be decomposed into a constant plus the sum of main effects, 

depression status, NIDDM status and stress status.  Visually, this can look like 

the decompositions used in analysis of variance (ANOVA):12   

000π       λ     
1

0
Yλ     

2
0
Yλ     

3
0
Yλ    

                        
                        
                        
    ln( ijkπ )   =       Constant       +    Depression Effect  +   NIDDM Effect   +   Stress Effect 
 
 

b. {Y3,Y1Y2} indicates the model where Y3 is jointly independent of Y1 and Y2: 

31 2 1ln YY Y Y
ijk i j k i j

2Yπ λ λ λ λ λ= + + + + .  In terms of the GBP dataset, this 

____________________________________________________________________________ 
12 I arranged the cells in a 2x2x2 table for this factor diagram, thinking it would be less 
confusing than if the data were arranged in two tables of 2x2, split by the stress variable, as I 
have done earlier in the paper.  The array here is:  

  NIDDM 
  No Yes 

No Stress No Depression     
 Depression     

Stress No Depression     
 Depression     
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model assumes that depression and NIDDM are associated but that stress is 

independent of these two variables.  That is, there is interaction between 

depression and NIDDM, but that interaction remains constant across all levels 

of k (i.e. stress or no stress).  To help clarify the meaning of this model, I will 

draw upon methods of ANOVA again and construct analogous (fictional) 

interaction graphs.  In the interaction graph on the next page on the left you 

can see that depression and NIDDM are related; if a patient is depressed, they 

are more likely to have NIDDM.  This relationship is true at all levels of k 

(independent of their stress status) which is made visible by the single line 

indicating that “stress” and “no stress” are the same line.  Thus, even if we 

know that a patient is depressed and has NIDDM, this does not help us 

determine her stress status.   In contrast, the interaction graph on the right 

exemplifies what it looks like when the relationship between depression and 

NIDDM is not held constant for all levels of k, and thus the lines for “stress” 

and “no stress” are separate, non-parallel lines.  In this case, knowing a 

patient’s depression status and NIDDM status can help predict her stress status.  

For instance, if we know that a patient is depressed and has NIDDM, then she 

is also more likely to be stressed.    
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 Figure 4b. No interaction with stress present  (left) versus interaction with stress present 
(right).  The y-axis is the odds of not having NIDDM.  Lower values of (Yi0k/Yi1k) indicate a 
higher prevalence rate.  For instance, (Yi0k/Yi1k) = 2 indicates that for every person with 
NIDDM, there are two people without it.  Whereas, if (Yi0k/Yi1k) = 10, then there is one person 
with NIDDM for every ten people without NIDDM. 
         

The interaction graph for the actual data can be seen in Figure 4c.  This 

interaction graph would seem to suggest that depression and NIDDM are 

associated with stress.  However, I will continue to use the {Y3,Y1Y2} model 

as an example because it will be necessary to understand this model when I 

begin to work with contingency tables involving missing data. 

 
Figure 4c. The interaction graph for the GBP data suggests that depression and NIDDM are 
associated with stress. 
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c. {Y1Y2, Y1Y3} denotes a model of conditional independence, where Y2 and 

Y3 are conditionally independent, given Y1: 

31 2 1 2ln YY Y Y Y
ijk i j k ij jk

2 3Y Yπ λ λ λ λ λ λ= + + + + + .  In other words, NIDDM is 

independent of stress, given depression.  Out of the three models, this model 

appears to be the best fit to the GBP data.  The interaction graph of the real 

data (Figure 4c) shows that there is an association between depression and 

NIDDM as well as an association between depression and stress.      

 

4.3.2 The Expected Values 

 The expected cell frequencies are calculated according to which model 

is assumed.  Let  equal the expected cell frequency, and  the expected 

cell probability, of row i, column j, table k, where i, j, k = 0, 1.      

îjke ˆ ijkp

 

a. I will start with the independence model.  Mathematically, if P(ABC) = 

P(A)P(B)P(C) is true, then A, B and C are mutually independent.  Therefore, if 

the independence model {Y1,Y2,Y3} is assumed, then the expected cell 

probabilities would have to satisfy the equation: ijk i j kπ π π π++ + + ++= .13  Since 

: ˆ ˆijk ijke Yp=

____________________________________________________________________________ 

ijk i j kπ π π π++ + + ++=13 For the relationship between the equation and the equation of the 

hierarchical loglinear model of independence ( 31 2ln YY Y
ijk i j kπ λ λ λ λ= + + + ), see Appendix 

B. 
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2
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ijk i j k
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Thus, the maximum likelihood (ML) estimate for the expected cell frequencies 

is 2ˆ (ijk i j ke Y Y Y Y++ + + ++= .  See table 4b for the expected values for the GBP data. 

 

b. For stress to be jointly independent of depression and NIDDM (model 

{Y3,Y1Y2}), the cell probabilities must satisfy the equation: ijk ij kπ π π+ ++= .  

For instance, the probability of a patient falling into cell (0,1,1)—i.e. not being 

depressed, but having NIDDM and stress—is equal to the probability of a 

patient not being depressed and having NIDDM multiplied by the probability 

of a patient having stress:  

( 0, 1, 1) ( 0, 1) (P Depression NIDDM Stress P Depression NIDDM P Stress= = = = = = 1)=

Y

 

The ML estimate for the expected cell frequencies, found using the same 

method as above, is: .   ˆ ( ) /ijk ij ke Y Y+ ++=

 
c. Lastly, the third model of conditional independence {Y1Y2, Y1Y3} takes on 

the probabilistic form of: ij i k
ijk

i

π π
π

π
+ +

++

=  .  This translates directly to the ML 

estimate for the expected cell frequencies: ˆ ij i k
ijk

i

Y Y
e

Y
+ +

++

= .     
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Table 4b.  Comparing observed values with the expected values calculated under the assumed 
models {Y1, Y2, Y3}, {Y3,Y1Y2}, and {Y1Y2, Y1Y3}.  Neither the independence model nor the 
joint probability model are a good fit for the data; the conditional probability model fits quite 
well, implying that, given depression, NIDDM and stress are independent. 

    Model 
Depression NIDDM Stress Observed {Y1, Y2, Y3} {Y3,Y1Y2} {Y1Y2, Y1Y3}

Yes Yes Yes 36 31.32 26.91 34.76
  No 1 11.74 10.09 2.24
 No Yes 212 160.68 165.09 213.24
  No 15 60.95 61.91 13.76

No Yes Yes 4 13.05 17.45 5.24
  No 20 4.89 6.55 18.76
 No Yes 20 66.95 62.55 18.76
  No 66 25.11 23.45 67.24
    
 2χ   213.39 204.25 1.33
 d.f.  4 3 2
 p-value  <.0001 <.0001 .5143

 

4.3.2 The Goodness-of-Fit Test 

 Now that we have observed and expected values, we can run a 2χ  

goodness-of-fit test to see whether a particular model is a good fit for the data.  

The null hypothesis (H0) states that the particular model you are testing is a 

valid model for your data, and so any observed departures from the expected 

values are due to chance variation.  The alternative hypothesis is that the 

particular model you are testing is not a valid model for your data—observed 

departures from expected values are not due to chance error but to real 

differences.  Therefore, although statisticians usually want to reject H0, this is 

not necessarily the case here.  Rejecting H0 means you have not found a good 

model for your data, and you are left with the saturated model.  
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 I turn to Agresti to explain degrees of freedom: “The degrees of 

freedom (df) for goodness-of-fit tests equal the difference in dimension 

between the alternative and null hypotheses.  This equals the difference 

between the number of parameters in the general case and when the model 

holds” (Agresti, 175).  For a 2 x 2 x 2 contingency table, the number of 

parameters in the general case (the saturated model) is eight.14  Subtracting the 

number of parameters in the model being tested from eight yields the 

appropriate degrees of freedom.   

 

a. The independence model {Y1, Y2, Y3} 

 H0: ijk i j kπ π π π++ + + ++=  

 H1: ijk i j kπ π π π++ + + ++≠  

df: (# of parameters in saturated model) – (# of parameters in  

independence model)  

= 8 – 4 = 4 

Even before calculating the 2χ  statistic, you can see that this model is not a 

good fit for the data because the expected values are so far off from the 

observed values.  Unsurprisingly, the 2χ  statistic is large and the p-value tells 

us that the chance of observing our data, given that depression, NIDDM and  

____________________________________________________________________________ 
14

1π ++ 0π ++ iπ ++ Note that and count as one parameter ( ) because of the constraint that 

1 01π π++ ++= − . 

 



40

stress are mutually independent, is less than one in one million (the actual p-

value is in the 10-45 range!).  Therefore, we reject the model and conclude that 

depression, NIDDM and stress are not mutually independent. 

 

b. The joint probability model {Y3,Y1Y2}  

 H0: ijk ij kπ π π+ ++=  

 H1: ijk ij kπ π π+ ++≠  

 df: (# of parameters in saturated model) – (# of parameters in H0 model) 

  = 8 – 5 = 3 

The expected values for this model are also far off from the observed values, 

and a goodness-of-fit test tells us to reject the null hypothesis—stress is not 

independent of depression and NIDDM. 

 

c. The conditional probability model {Y1Y2, Y1Y3}    

 H0: ( ) /(ijk ij i k i )π π π π+ + ++=  

 H1: ( ) /(ijk ij i k i )π π π π+ + ++≠  

 df: (# of parameters in saturated model) – (# of parameters in H0 model) 

  = 8 – 6 = 2 

The expected values for the conditional probability model fall close to the 

observed values, and so we can anticipate that this will be a good fit to the data, 

at least certainly better than the other two models.  It is!  The p-value is not 
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even close to being significant (.5143), and so we tentatively accept the model 

associated with the null hypothesis.  Given depression, NIDDM and stress are 

independent.  This result is consistent with our earlier observation of the 

interaction graph.   

Model {Y1Y3, Y2Y3} was also found to be a good model for the GBP 

data (p=.29).  This model indicates that NIDDM is independent of depression, 

given stress.  Practically speaking, this model seems to make more sense than 

the model {Y1Y2, Y1Y3} for this particular data.  Studies have shown that high 

levels of stress are associated with type 2 diabetes (NIDDM).15  Thus there is 

reason to believe that stress should not be independent of NIDDM as the first 

model indicates.  Obviously, stress and depression are also related (and, indeed, 

model {Y1Y2, Y2Y3} proved to be a horrible fit to the data).  The association 

found between depression and NIDDM may be attributed to a confounding 

factor, namely stress.  Controlling for stress, the two variables are shown to be 

independent of each other. 

 

4.4 Iterative Proportional Fitting  

 The models I have worked with so far have all had closed form  

solutions, i.e. a direct way to find the ML estimates .  However, the 

expected values for some three-dimensional loglinear models cannot be  

îjke

____________________________________________________________________________ 
15American Diabetes Association. “Stress.” American Diabetes Association. 11 Feb. 2007 
<http://www.diabetes.org/type-2-diabetes.jsp>. 

 

http://www.diabetes.org/type-2-diabetes.jsp


42

calculated so easily.  When a closed form solution does not exist, we must turn 

to iterative methods.  The iterative proportional fitting (IPF) algorithm is one 

of the more straightforward iterative procedures used to compute expected 

values.  I will use the model of no three-factor interaction {Y1Y2, Y2Y3,Y1Y3}, 

which does not have direct estimates, to demonstrate how to apply the IPF 

algorithm. 

 The IPF algorithm sequentially adjusts cell estimates so that fitted 

marginal distributions approach the sufficient statistics of the model being 

tested.16  In the case of model {Y1Y2, Y2Y3,Y1Y3}, this means that estimates 

are adjusted so that fitted marginal distributions Yij+, Yi+k, and Y+jk, are 

sufficiently close to their respective observed distributions.  (What exactly 

“sufficiently close” implies is discussed at the end of this section.) 

The only restriction on preliminary estimates for cell values is that their 

structure cannot have more interaction terms than that of the model being fitted.  

That is, if we are fitting the model of no three-factor interaction, we cannot 

begin with estimates that have three-way interaction.  Perhaps the easiest and 

most common way to begin is with preliminary estimates .  (0)ˆ 1ijke =

Next, we want to consecutively adjust the estimates to fit the marginal 

distributions.  For {Y1Y2, Y2Y3,Y1Y3}, this involves repeating the same three 

steps over and over again, namely: 

____________________________________________________________________________ 
16 Sufficient statistics contain all the information necessary for estimating a parameter.  Here, 
the marginal distributions are sufficient, and knowing the full data will not contribute any more 
to fitting the model {Y1Y Y2, 2Y Y3, 1Y3}.  
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(1) The first step is to match the fitted and observed marginal 

distributions Yij+: (1) (0)
(0)ˆ ˆ

ˆ
ij

ijk ijk
ij

Y
e e

e
+

+

= .   

(2)  The second step is to match the fitted and observed marginal 

distributions Y+jk: (2) (1)
(1)ˆ ˆ

ˆ
jk

ijk ijk
jk

Y
e e

e
+

+

= . 

(3)  The third step is to match the fitted and observed marginal 

distributions Yi+k: (3) (2)
(2)ˆ ˆ

ˆ
i k

ijk ijk
i k

Ye e
e
+

+

= .17

We repeat this cycle using  to estimate , etc. until each fitted marginal 

distribution is sufficiently close to the observed distributions.  “Sufficiently 

close” is a rather ambiguous term, but there are various stopping rules we 

could use.  Bishop, Fienberg and Holland (1975) suggest stopping when, after 

a complete cycle, no cell values change more than some predetermined 

quantity (e.g. 

(3)
îjke (4)

îjke

.05ϖ = ).  In other words, they stop once the statement 

(3 ) (3 3)ˆ ˆr r
ijk ijke e ϖ−− <  is true for all i,j,k (Bishop, Fienberg and Holland, 85).  

Alternatively, Agresti stops once all fitted marginal frequencies are within .02 

of their respective observed frequencies (Agresti, 186).   

 Interestingly enough, I did not have to use a stopping rule when fitting 

the model of no three-way interaction to the GBP data.  After the first two 

steps—not even completing a whole cycle—the fitted marginal distributions  

____________________________________________________________________________ 
17 See Bishop, Fienberg and Holland (1975), p.85. 
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were exactly equal to the observed marginal distributions (see Table 4c).  A 2χ  

goodness-of-fit test for this model proved not significant (p=.25), meaning the 

model of no-three-way interaction is a good fit for the data.  However, since 

the models {Y1Y3, Y2Y3} and {Y1Y2, Y1Y3} are also good fits and have fewer 

parameters, we should accept one of these models as the best fit for the GBP 

data.  As reasoned at the end of Section 4.3, model {Y1Y3, Y2Y3} is a workable 

model—both statistically and practically speaking; given stress, depression is 

independent of NIDDM. 

Table 4c. Iterative Proportional Fitting of model {Y1Y2, Y2Y3,Y1Y3} to GBP data  
     Fitted Values 
Depression NIDDM Stress (0)

îjke  (1)
îjke  (2)

îjke  
Yes Yes Yes 1.0 18.5 34.76 
  No 1.0 18.5 2.24 
 No Yes 1.0 113.5 213.24 
  No 1.0 113.5 13.76 
No Yes Yes 1.0 12 5.24 
  No 1.0 12 18.76 
 No Yes 1.0 43 18.76 
  No 1.0 43 67.24 
 

4.5 Investigating the Relationship between Binary Variables and Return 

Status 

 Return status (i.e. the status of a patient’s two-year follow up exam: 

returned or did not return) may be dependent upon any single variable or a 

combination of variables, both pre- and post-operative.  For some variables, 

namely the pre-operative variables, we are able to determine whether or not 

return status depends on that variable.  On the other hand, the relationship 
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between post-operative variables and return status cannot be known; we do not 

have information about the health status of patients who did not return for their 

two year follow-up.  In this paper I will be concentrating on the relationship 

between the categorical, binary variables (both pre- and post-operative) and 

return status. 

 I started my investigation by creating 2 x 2 contingency tables, where 

Y1 denotes a binary variable (e.g. asthma) and Y2 corresponds to whether or 

not a patient returned for his two year follow-up.  For example: 

    Two Year Follow-up? 
 0 1 Total % Return 
0 135 135 270 50% 

 
 
 

Asthma? 
1 48 56 104 54%  

 
 

Judging by this contingency table, it appears that asthma and return status are 

unrelated: 50% of the patients without asthma pre-surgery returned for their 

two year follow-up exam and about 53.8% of patients with asthma returned.  A 

patient’s pre-operative asthma status does not affect her probability of 

returning for the two year follow-up.   

In fact, the only binary variables that were found to be associated with 

a patient’s chance of returning are stress and depression (p=.001 for both).18  

See Figure 4d.  While 56.3% of patients with pre-operative stress returned two  

____________________________________________________________________________ 
2χ18 P-values are from  tests for independence.  Hyperlipidemia and IDDM were also found 

to be significant at the .05 level (p=.03 and p=.02, respectively).  However, due to time 
constraints, it is unlikely I will get to work with each variable.  See Figure 4d for my plan of 
attack. 
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years later, only 37.3% of patients without stress returned.  Likewise, 56.4% of 

patients with depression returned, but only 38.2% of those without depression 

returned.  Thus, patients who reported either stress or depression (or both) 

before surgery were much more likely to return for their two year follow-up.  

This is an interesting finding, as I would have assumed that patients who 

reported stress are very busy and would have been less likely to make time for 

their two-year follow up exam.  Retrospectively, perhaps patients who reported 

no stress are more laid back in general and were lackadaisical about returning 

for their follow-up exams, whereas patients with stress and/or depression were 

more inclined to look to people of authority for help and assurance.   

 

 

Figure 4d.  The negative logarithm of the p-value for binary variables with –log(p) > .50.  A 
lower p-value (and thus a higher –log(p)) indicates higher significance.  The conservative 
approach in this situation would involve setting a higher level of significance (say, α =.10) 
since we would rather commit type one error (wrongly rejecting the null hypothesis) than type 
two error (wrongly failing to reject the null hypothesis).  In other words, it is better to 
investigate further the relationship between return status and a variable even if the two are 
actually independent of each other, then to overlook an important association between return 
status and a variable.  Therefore, I will begin by exploring the two most significant variables, 
depression and stress.  I will then continue down the line exploring the other variables.   
 

A three-way contingency table relating depression status, stress status 

and return status can be seen in Figure 4e on the next page. 
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Table 4d.  A three-way contingency table to illustrate the relationship between depression (D), 
stress (S) and return status (M).   

  Stress     Stress  
Depression   0 1   Depression   0 1  
  0 32 10 42   0 54 14 68
  1 6 143 149   1 10 105 115
  38 153 191   64 119 183

   Miss = 0           Miss = 1 
 
 After testing various hierarchical loglinear models, I found that both 

{DS,DM} and {DS,SM} were good fits to the data (p=.267 and p=.321, 

respectively).  The first model implies that, given depression, return status is 

independent of stress.  The second model implies the parallel alternative—

given stress, return status is independent of depression.  The model of three 

two-way associations {DS, DM, SM} was also a good fit to the observed data 

(p=.371).  How can we determine which model is the best fit then?      

Taking a look at the interaction graph can perhaps shed some more 

light on the relationship: 

 

Figure 4e. An interaction graph where the response equals the odds of not returning. 
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Figure 4e shows that the relationship between depression and return status is 

not the same for each level of stress status.  For patients who reported stress, 

the odds of returning depend upon their depression level.  For patients who 

reported no stress, the odds of returning is about equal whether or not they 

reported depression.  In other words, for people who reported stress, there is 

interaction between depression and return status, whereas, for people who 

reported no stress, there is no interaction between depression and return status. 

Let us take a closer look at these relationships, via partial and marginal odds 

ratios.   

 

4.6 Odds Ratios 

 First I will explain odds and odds ratios for 2 x 2 contingency tables, 

and then I will relate them back to Figure 4f and the relationship between 

depression, stress and return status. 

 The odds for a 2 x 2 table is defined to be the probability of falling into 

cell (i,0) divided by the probability of falling into cell (i,1): 0

1

i

i

π
π

.  We can 

estimate these probabilities using the observed cell frequencies ( 0

1

i

i

Y
Y

). Take, for 

example, the 2 x 2 contingency table relating pre-operative asthma and two 

year follow-up status: 
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    Two Year 
Follow-up? 

 0 1 
0 135 135

 
 

       Asthma? 

1 48 56 

For patients who reported no asthma, the estimated odds of not returning for 

their two-year follow up is Y00/Y01 = 135/135 = 1.  For patients who reported 

having asthma, the estimated odds of not returning is 48/56 = .857; for every 

one person that returned, .857 did not return.  We could also look at the odds 

of returning—which is just the inverse of the odds of not returning—which 

tells us that, for every one person that did not return, 1.2 people did return 

(among patients with asthma). 

 The odds ratio compares the odds of returning for those with and 

without asthma.  We estimate the odds ratio by calculating 

00 10 00 11

01 11 10 01

( * )( ) /( )
( * )

Y Y Y Y
Y Y Y Y

= .  Estimated odds ratios close to one indicate 

independence between the variables.  For the asthma example, the odds ratio 

equals 1.16, meaning the odds of returning is 1.16 times as high for patients 

with asthma as for patients without asthma.  The odds ratio is close to 1, 

suggesting independence between pre-operative asthma and return status.  This 

evidence is consistent with the conclusion made in section 4.5 using a 2χ  test 

of independence. 

 For a 2 x 2 x 2 table, there are marginal odds ratios and partial odds 

ratios.  Marginal odds ratios express the association between two variables, 
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ignoring the third variable.  Marginal odds ratios are calculated, after summing 

observed frequencies over the third variable, in the same way odds ratios for 2 

x 2 tables are found.  Partial odds ratios express the association between the 

other two variables while controlling for the third variable.  Thus, for each pair 

of variables, there are two partial odds ratios, one for when the third variable is 

zero and one for when the third variable is one. See Table 4e for marginal and 

partial odds ratios relating depression, stress and return status. 

As shown in Table 4e, the odds ratios relating depression and stress are 

very high, confirming what we already know—depression and stress are very 

much related!  Ignoring return status, the estimated odds of having stress is 

around 56 times higher for patients with depression than for patients without 

depression.  Interestingly enough, the partial odds differed from each other: 

when a patient did not return, the estimated odds of stress were 40 times higher 

for those with depression than those without depression, whereas, if a patient 

did return, the estimated odds of stress were 76 times higher for those with 

depression than for those without depression.   

Furthermore, the partial odds ratios between depression and return 

status correspond to the observations made regarding the interaction graph in 

Figure 4e.  Earlier I noted that the interaction graph shows that, for patients 

who reported stress, the odds of returning depend upon their depression level; 

for patients who did not report stress, on the other hand, the odds of returning 

are about equal whether or not they reported depression.  Indeed, if we 
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condition on stress, we find that the odds ratio is different for patients with and 

without stress.  For patients who reported pre-operative stress, the odds of 

returning were almost twice as high for those with depression than for those 

without depression.  For patients who did not report pre-operative stress, the 

odds ratio is one—that is, the odds of returning do not depend on depression.    

Table 4e.  Odds ratios for depression (D), stress (S), and return status (M).19   
  Variables 

Association  D-S D-M S-M

Marginal  55.54 2.09 2.31

Partial Third Variable=0 40.50 1.01 1.21

 Third Variable=1 76.27 1.91 2.27

 

 

4.7 Model Selection 

 By the end of section 4.5, the decision of which model best fits the data 

had come down to three different models: {DS,DM}, {DS,SM}, and 

{DS,DM,SM}.  Taking into consideration the goodness-of-fit tests, the 

interaction graphs and the odds ratios, the model {DS,SM} emerges as the best 

model for relating depression, stress and return status.  

In rationale for accepting the conditional independence model, (a) its  

goodness-of-fit test gives a higher p-value—i.e. observed values are closer to  

____________________________________________________________________________ 
19 Table 4d is of the same form as that found in Agresti’s Categorical Data Analysis, page 137. 
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expected values—than model {DS,DM}; (b) grounds to believe that the 

association found between depression and return status is due to the 

confounding variable stress, as laid out earlier; (c) the p-value for the model of 

no three-factor interaction automatically must be higher than that of the 

conditional independence model because it has more parameters.  The p-value, 

however, is only .05 higher (.371 versus .321), suggesting marginal 

improvement in fit—an improvement so minor that it is probably just due to 

the fact that the no three-factor interaction model has more parameters; (d) the 

interaction graph and odds ratio reveal dependence between depression and 

stress as well as dependence between stress and missingness.   

Therefore, I conclude that, given pre-operative stress status, pre-

operative depression status and return status are independent.  The findings of 

this investigation will help us as we move on to the heart of the matter: 

imputing missing values. 
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V. Imputing Missing Values 

5.1 Overview 

 There are three kinds of variables in my analysis: return status, 

variables used to predict return status, and variables used to assess the effect of 

surgery.  There are several variables I have and/or will use to predict return 

status, including stress, depression, IDDM, hyperlipidemia, and hypertension 

(all post-operative).  The variables used to assess the effect of surgery—the 

response variables—will include two-year weight loss, systolic blood pressure, 

diastolic blood pressure, and cholesterol reduction.  I hope to adjust these 

estimates by taking into account the missing data. 

 Before delving into the technical aspects of imputing missing values, I 

would first like to illustrate the importance of missing data via a hypothetical 

example.  Let us imagine that we have a study of 200 patients but post-

operative information for only 100 of these patients (i.e. 100 patients did not 

return).  Furthermore, let’s say we are looking at return status, asthma as the 

predictor of return status, and weight loss as the response variable.  First, we 

find an association between pre-operative asthma and return status: whereas 

55% of patients with asthma returned for their follow-up, only 40% of patients 

without asthma returned.  The available-case analysis yields an unadjusted 

weight loss estimate of 161 pounds.  We then notice, however, that, not only is 

return status associated with asthma, but patients without post-operative 

asthma lost much less weight than patients with post-operative asthma (100 
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pounds versus 200 pounds).  Since patients without asthma not only returned at 

a lower rate, but also lost a lot less weight, we should be concerned that our 

unadjusted estimate for weight loss is biased.  Adjusting for the missing data 

(and assuming model {PrePost,PostMiss}), we get a mean weight loss of 134 

pounds.  The adjusted estimate is considerably lower than the unadjusted 

estimate!   

Surely we could also imagine the reverse situation, where available-

case analysis leads to underestimating weight loss.  [In fact, if we switch the 

mean weight loss for the two groups—so patients without asthma lose 200 

pounds on average and patients with asthma lose 100 pounds on average—the 

adjusted estimate (166 pounds) is considerably higher than the unadjusted 

estimate (139 pounds).]20

 

5.2 Contingency Tables with Partially Classified Margins 

 In the example relating depression, stress and return status, we were 

able to create a fully classified 2 x 2 x 2 table because we were working with 

pre-operative variables and we know each patient’s pre-operative status.  

However, in working with post-operative variables, we do not know every 

patient’s status and thus are unable to complete each cell in a 2 x 2 x 2 

contingency table.  We can, however, create a contingency table with a 

supplemental margin.  Since return status was found to be dependent upon pre-

____________________________________________________________________________ 
20 See Appendix B for more details. 
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operative stress status in Chapter 4, I will work with the variables pre-operative 

stress status (Pre), post-operative stress status (Post), and return status (Miss).  

Table 5a. A 2 x 2 contingency table with a supplemental margin. 
  Post     Post  

Pre   0 1   Pre   0 1  
  0 34 4    0 ? ? m0=64
  1 37 116   1 ? ? m1=119
  f = 191     m = 183

Miss = 0   Miss =1 
  

 Since future calculations may get confusing using Yijks, let fij denote the 

fully classified frequencies (Miss=0 cells) and mi refer to the partially 

classified margins (for Miss=1, where we do not know the values for Post);  

denotes imputed (estimated) values.   

ˆ ijm

 Given our investigation in Chapter 4, we can rule out certain 

hierarchical loglinear models that we know would not be reasonable models 

for the missing data.  For instance, the model of mutual independence can be 

ruled out since we’ve already established that return status is dependent upon 

pre-operative stress (and it is also sensible to presume that pre- and post-

operative stress are related).  For that same reason, we can also assume that the 

model of joint independence—that pre- and post- operative stress are jointly 

independent of return status, {PrePost,Miss}—is also not a reasonable model.  

See table 5b for a list of reasonable models that could be used to estimate 

missing values. 
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Table 5b.  Reasonable models for relating pre- and post-operative stress and return status.  The 
“Estimable” column indicates whether the model has parameters that can be estimated without 
additional information. 
Model Interpretation Estimable?
{PrePost,PreMiss} Return status does not depend 

upon post-operative stress status, 
only upon pre-operative stress 
status.  Data are MAR; missing 
data is ignorable. 

Yes 

{PrePost,PostMiss} Return status depends on post-
operative stress. 

Yes 

{PrePost,PreMiss,PostMiss} There is no three-factor 
interaction; two-factor 
interactions are the same at each 
level. 

No 

{PrePostMiss} There is three-factor interaction. No 
    
 The first model in Table 5b assumes that return status is dependent only 

upon pre-operative stress status, but not dependent on post-operative stress 

status.  Another way to interpret the model is to say that, given pre-operative 

stress status, knowing a patient’s post-operative stress status will not help any 

more in predicting whether or not the patient will return for her two year 

follow-up.  If this model is correct, then the data are MAR and the missing 

data mechanism is ignorable.  In other words, estimates of recovery rates, 

weight loss, etc. using imputed values would be equal to the estimates found 

using available-case analysis.  In actuality, it is improbable that return status is 

not related to post-operative stress status, since pre- and post-operative stress 

statuses are highly related.       

However, the second model in Table 5b—which states that, given post-

operative stress, return status is independent of pre-operative stress—is a more 

plausible model.  Having concluded earlier that return status and pre-operative 
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stress are related, how can this be a reasonable model?  A parallel alternative to 

the first model, this model implies that if we know a patient’s post-operative 

stress status, then knowing her pre-operative status is of no help in predicting 

whether or not she returns for her two-year follow-up exam; that is, the 

patient’s pre-operative status does not give us any more information above and 

beyond that which we get from her post-operative status. 

Although we are unable to investigate associations between post-

operative variables and return status (as explained previously), it is logical to 

assume that if a patient’s pre-operative status is related to her return status, 

then her post-operative status will also be related to her return status. Moreover, 

since post-operative status is recorded at the same time as return status, it is 

likely that post-operative status would be an even better predictor of return 

status.  To help recognize why this is true, take a more extreme example: if you 

are trying to guess Jane’s weight today, would you rather know what her 

weight was a week ago or what her weight was at birth?  Similarly, would you 

rather know what her weight was one year ago or two years ago?  In both 

situations, you would want to choose the first option—knowing the most up-

to-date status of Jane’s weight would be the most helpful in predicting her 

weight today. 

Likewise, knowing a patient’s most up-to-date stress status would be 

most helpful in anticipating her return status.  Furthermore, just as knowing the 

aforesaid Jane’s birth weight in addition to knowing her weight yesterday 
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would not offer any more helpful information, knowing a patient’s pre-

operative stress status would also probably offer no more helpful information.  

Therefore, the second model with two two-way associations is a plausible 

assumption: pre- and post-operative stress are associated and post-operative 

stress and return status are associated.  (See Figure 5a for a diagram of the 

relationship of the three variables.) 

The last two models of Table 5b involve more interactions between 

variables.  However, because they are inestimable (that is, model parameters 

cannot be estimated without additional information), I will not be working with 

them in this paper.21

 

 
Figure 5a. The relationship between pre-operative stress, post-operative stress, and return 
status.  Pre-operative stress is predictive of post-operative stress which, in turn, is predictive of 
return status.  Thus, we are able to find an association between pre-operative stress and return 
status because that is the relationship we are able to study.  However, had we been able to look 
at post-operative stress status and return status, it is likely we would have not only found an 
association between the two variables, but also found that, given post-operative stress, pre-
operative stress is no longer helpful in predicting return status. 
   

   
5.3 Imputing Values 

 Since model {PrePost,PostMiss} implies that return status is dependent 

upon post-operative stress, we want the column distributions of the fully  

 

____________________________________________________________________________ 
21 The model of no three-factor interaction and the model of three-factor interaction are 
inestimable because there are more parameters than there are degrees of freedom in these two 
models.  Parameters are unknowns and degrees of freedom are a set of linear equations; having 
more unknowns than equations makes the problem unsolvable. 
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observed values and the imputed values to match.  That is, we want 
ˆ
ˆ

ij ij

j j

f m
f m+ +

= , 

or in terms of the GBP dataset, 10

00

ˆ37
ˆ34
m
m

= and 11

01

ˆ116
ˆ4
m
m

= (see table 5ai 

below).22

Table 5ai. A 2 x 2 contingency table with a supplemental margin.  (Copy of Table 5a) 
  Post     Post  

Pre   0 1   Pre   0 1  
  0 34 4    0 00m̂  01m̂  m0=64
  1 37 116   1 10m̂  11m̂  m1=119
  f = 191     m = 183

Miss = 0   Miss =1 
 

We also know what the row totals of the missing data must be:  

( ) and 

00 01 0ˆ ˆm m m+ =

00 01ˆ ˆ 64m m+ = 10 11 1ˆ ˆm m m+ =  ( 10 11ˆ ˆ 119m m+ = ).  Solving so that an 

estimated  term involves only known (observed) values yields ˆ ijm

11
1 0

01
00

10 11

00 01

116( )( ) 119 (64)( )
4ˆ 62.2337 116( ) ( )( ) ( )

34 4

fm m
fm f f

f f

− −
= =

−−
= .23  The imputed values for the 

GBP data can be seen in Table 5c, and the column distributions do indeed 

match:  37 67.72 1.09
34 62.23

= ≈ and 116 51.28 29
4 1.77

= ≈ . 

The imputed values of Table 5c estimate that, out of the 183 patients 

who did not return for their two year follow-up, 129.95 (or 71%) of them did 

____________________________________________________________________________ 
22 Recall that the new notation is meant to reduce confusion: the fij terms stand for the fully-
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not have post-operative stress.  We would expect the majority of patients who 

did not return to not have post-operative stress (as is the case here), since the 

assumption is that patients are less likely to return if they do not have stress. 

Table 5c.  2 x 2 x 2 contingency table filled in based on model {PrePost,PostMiss}.  Imputed 
values are in grey.  

  Post     Post  
Pre   0 1   Pre   0 1  

  0 34 4   38   0 62.23 1.77 64
  1 37 116 153   1 67.72 51.28 119
  71 120 191   129.95 53.05 183
 Miss = 0     Miss = 1  

 

 The available-case analysis found that 37% of patients are stress-free 

two years after the operation (a 24.2% recovery rate).  In contrast, using the 

imputed values finds that about 53.7% of patients have no stress two years 

post-op (a 38.5% recovery rate). 

  Using the imputed values we can also find adjusted estimates for two-

year weight loss as well as systolic blood pressure, diastolic blood pressure, 

and cholesterol reductions.     

  

 

 

 

5.4 Adjusted Estimates 

                                                                                                                                                         
classified data and the mij terms stand for the missing data. 
23 See Appendix B for the proof. 
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 In using the imputed values to adjust estimates for weight loss, there 

are two main assumptions being made.  First, weight loss depends on stress.  

Second, given stress, weight loss is independent of return status. 

 To check the first assumption, we can compare the two-year weight 

loss of patients with post-operative stress to that of patients without stress (out 

of those patients who returned).  In fact, the values do differ, although not 

considerably: patients with post-operative stress lost, on average, 110 pounds 

while their stress-free counterparts lost around 120 pounds. 

 The adjusted weight loss estimate is found by taking into account the 

proportion of patients with and without post-operative stress and their 

respective mean weight loss.  Table 5d relates return status and post-operative 

stress.  The “No” column values are observed frequencies, while values in the 

“Yes” column are estimated from the three-way analysis of Section 5.2.  Also, 

whereas the column totals (Y+j) are known, the row totals (Yi+) are estimated.        

 
Table 5d. A 2 x 2 contingency table relating return status and post-operative stress.  Observed 
values are in black; imputed values are in grey. 

Missing?    
No 

(Obs.) 
Yes 

(Est.) Total 
No 71 129.95 200.95Post-Operative 

Stress? Yes 120 53.05 173.05
 Total 191 183 374

 

 To find a weighted averaged we will use the estimated row totals Yi+: 
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[(Number of patients with post-operative stress)*(The observed mean weight 

for patients who returned with post-operative stress)] + [(Number of patients 

without post-operative stress)*(The observed mean weight for patients who 

returned without post-operative stress)] all divided by the total number of 

patients.  This comes out to (200.95)(119.6) (173.05)(110) 115.2
374
+

=  pounds.   

The two-year weight loss estimate based on a weighted average is only the 

slightest bit higher than that found in Part I using the available-case analysis 

(113.6 pounds).   

 This conclusion is not surprising.  Patients with and without post-

operative stress varied only slightly in their mean weight loss, and the 

weighted average has to be between their two means.  That is, the weighted 

average was going to be somewhere between 110 and 120 pounds, falling 

closer to one or the other depending on whether there were more or less 

patients with post-operative stress.     

 Patients with and without post-operative stress also did not vary much 

in their blood pressure and cholesterol reductions.  Thus, estimates found using 

weighted averages are again quite close to those found using available-case 

analysis.  See Table 5e below for a comparison of averages. 

Table 5e.  Comparison of estimates found using available-case analysis versus weighted 
averages (based on stress model). 
Estimate Available-Case Average Weighted Average 
Weight Loss 113.6 115.2
SBP Reduction 9.1 8.8
DBP Reduction 5.7 5.9
Cholesterol Reduction 28.9 28.2
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5.5 Adjusted Estimates Based on Other Models 

 Figure 4d from Section 4.5 ordered the strength of the relationship 

between return status and binary variables (based on p-values from 2χ  tests of 

independence), with stress and depression having the strongest relationship 

with return status.  It is safe to assume for the other variables (IDDM, 

hyperlipidemia, etc.) that which was assumed for the stress model: given post-

operative status, pre-operative status is no longer any help in determining 

return status.  Again, it is likely that pre-operative status is predictive of post-

operative status which, in turn, is predictive of return status. 

 Interestingly enough, whereas we did not find a large difference 

between the mean weight loss of patients with and without post-operative 

stress, there is a large difference in the mean weight loss for patients with and 

without post-operative hyperlipidemia as well as those with and without IDDM.  

Patients without hyperlipidemia lost, on average, 117.4 pounds; patients with 

hyperlipidemia only lost 87 pounds on average (n=161 and n=27, respectively).  

Likewise, patients without IDDM lost 114.1 pounds on average while patients 

with IDDM lost an average of 83.4 pounds (n=181 and n=7, respectively).24    

   I imputed values based on models of the form {PrePost,PostMiss}—

where Pre is pre-operative status, Post is post-operative status and Miss is 

return status—for variables depression, IDDM, hypertension and 

____________________________________________________________________________ 
24 I also look at the effect of the combination of IDDM and hyperlipidemia in a 4 x 4 analysis; 
see section 5.6 for more details. 
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hyperlipidemia.  See Table 5f for a comparison of adjusted estimates based on 

these different models. 

 All of the adjusted estimates are quite close to the unadjusted estimates.  

This finding is neither necessarily good nor necessarily bad; rather, this 

investigation shows that we can be confident in the available-case analysis.  

For this particular study, the unadjusted estimates are sound estimates.  

Table 5f.  Comparison of available-case averages and weighted averages, based on various 
models. 

Weighted Average Estimate Available-
Case 

Average 
Depression

Model 
IDDM
Model

Hyperlipidemia 
Model 

Hypertension
Model 

Weight Loss 113.6 115.6 113.5 115.2 114.2
SBP 9.1 9.2 8.7 9.0 10.2
DBP 5.7 6.1 5.5 6.1 6.1
Cholesterol 28.9 29.7 29.3 31.5 30.0
 

 

5.6 Models Involving Two Predictor Variables  

 I have found that the adjusted estimates based on models involving a 

single predictive variable are quite similar to the unadjusted estimates.  What 

about adjusted estimates based on models involving more than one predictive 

variable?  We can, for example, look at the relationship between return status 

and the combination of depression and IDDM.  To summarize this relationship, 

we can make a 4 x 2 contingency table (see Table 5g). 

 While 36.3% of the patients without either depression or IDDM 

returned, 77.8% of the patients with depression and IDDM returned.  This is, in 

fact, the pattern that each of the ten models with two predictive variables 
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follows: the return rate is lowest for patients with neither risk factor and 

highest for patients with both risk factors.        

Table 5g. A 4 x 2 contingency table relating depression, IDDM and return status.  (0,0) 
indicates the patient had neither depression nor IDDM; (1,0) indicates the patient had 
depression, but not IDDM, etc. 

    Missing?   
(Depression,   No (%) Yes   

 IDDM) (0,0) 37 (36.3) 65 102
 Pre (1,0) 135 (54.9) 111 246

 (0,1) 5 (62.5) 3 8
 (1,1) 14 (77.8) 4 18
  191 183 374

 

With two predictive variables, we now have a 4 x 4 contingency table 

with a partially classified margin (See Table 5h).  Furthermore, there are six 

zeros in the completely classified table of Miss=0.  We cannot, therefore, use 

the same equations to impute missing values as we did for the 2 x 2 

contingency tables.  Instead, we need to use the EM algorithm, which “always 

converges to a solution (when IPF is used for the M step), even if the solution 

lies of the boundary of a parameter space,” i.e. an imputed value is equal to 

zero (Baker and Laird, 63).   

 The maximization step, or M-step, involves fitting the nonresponse 

model to the data (Baker and Laird 1988).  Since we are continuing to assume 

that, given post-operative status, pre-operative status and return status are 

independent (model {PrePost,PostMiss}), the maximum likelihood estimates  
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are obtained by making 
( )( )ij jk

ijk
j

Y Y
Y

Y
+ +

+ +

= .  Let ijkM equal the maximum 

likelihood estimate at the present iteration for cell i, j, k, where i, j, k = 1, 0.   

 
Table 5h. A 4 x 4 contingency table with a partially classified margin. 

    (Depression, IDDM) Post   
(Depression,   (0,0) (1,0) (0,1) (1,1)   

 IDDM) (0,0)  37 0 0 0  37
Pre (1,0)  46  89  0  0 135

  (0,1)  2  1  2  0 5
  (1,1)  3  6  1  4 14

  88 96 3 4 191
Miss = 0 

    (Depression, IDDM) Post   
(Depression,   (0,0) (1,0) (0,1) (1,1)   

 IDDM) (0,0) ? ? ? ? 65
Pre (1,0) ? ? ? ? 111

  (0,1) ? ? ? ? 3
  (1,1) ? ? ? ? 4

  ? ? ? ? 183
Miss = 1 

The expectation step, or E-step, revises the expected missing values by 

setting 0( )ij ij0E Y Y=  (since values of  are the known, observed values), and 0ijY

1 1
1

1

( )(
( ) i ij

ij
i

Y M
E Y

M
+

+

=
)

 (where, again, 1iY +  are the observed counts of the 

incompletely classified table Miss=1, and 1iM +  are the mles at the present 

iteration) (Baker and Laird 1988).   

Using the stopping criterion as suggested by Baker and Laird—to stop 

once the consecutive change in the log-likelihood is less than .001—the EM 
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algorithm for the depression and IDDM model converges after 228 steps 

(1988).  The resulting table with imputed values is shown in Table 5i. 

 
Table 5i. A 4 x 4 x 2 contingency table.  All values are imputed.  If the model 
{PrePost,PostMiss} is indeed a good model, the maximum likelihood estimates will be the best 
estimates.  

    (Depression, IDDM) Post   
(Depression,   (0,0) (1,0) (0,1) (1,1)   

 IDDM) (0,0)  36.82 0 0 0  36.82
Pre (1,0)  47.37  89.42  0  0 136.79

  (0,1)  1.71  0.97  2  0 4.68
  (1,1)  2.09  5.61  1  4 12.7

  87.99 96 3 4 190.99
Miss = 0 

    (Depression, IDDM) Post   
(Depression,   (0,0) (1,0) (0,1) (1,1)   

 IDDM) (0,0) 65.18 0 0 0 65.18
Pre (1,0) 83.86 25.36 0 0 109.22

  (0,1) 3.04 0.28 0 0 3.32
  (1,1) 3.71 1.59 0 0 5.3

  155.79 27.23 0 0 183.02
Miss = 1 

After imputing values, we follow the same process used before to find 

the new adjusted estimates using a weighted average.  Once again, adjusted 

estimates based on this particular model (depression and IDDM) are very 

similar to the unadjusted estimates.  In fact, the adjusted estimates resulting 

from each of the ten models involving two predictive variables are all close to 

the unadjusted estimates: the adjusted weight loss, systolic blood pressure, 

diastolic blood pressure and cholesterol estimates are within, respectively, five 

pounds, 1.6 mmHg, 3.5 mmHg, and 4 mg/dL of the unadjusted estimates.  
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These results are consistent with previous findings and support the 

conclusion that the available-case analysis is reliable. 
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VI. Conclusions 

6.1 Further Research  

As the number of people opting for bariatric surgery increases, it is 

important that prospective patients are fully informed about the benefits and 

risks involved before proceeding with the surgery.  This thesis has 

concentrated on the benefits of a particular bariatric program at North Shore 

Medical Center.  The two year results are quite positive and, although the 

preliminary five year results show a small relapse, they are still more 

encouraging than what might be expected.  Five year weights are still much 

lower than baseline weights and, as I said before, these five-year figures are 

only preliminary results based on a small sample of 27 patients.  I look forward 

to completing a more thorough analysis of the five year results as more 

patients return for their five year follow-up exam.        

Furthermore, I would like to study the risks involved with the surgery.  In 

light of the evidence suggesting gastric bypass patients have a reduced 

tolerance for alcohol post-surgery, it would be worthwhile recording whether 

patients noted a heightened sensitivity toward alcohol post-surgery (if 

consumed).25  Also, what is the risk of death for this particular program?  

What is the risk of other complications associated with the surgery?  Such 

information could help potential patients decide if the benefits of the surgery  

____________________________________________________________________________ 
25 Klockhoff, H., Naslund, I., and Jones, A.W. (2002), “Faster Absorption of Ethanol and 
Higher Peak Concentration in Women after Gastric Bypass Surgery,” British Journal of 
Clinical Pharmacology, 54, 587-591. 
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outweigh the risks.  In addition, for North Shore Medical Center, a study 

involving risks could help identify areas of the program that deserve increased 

attention, care and/or improvement. 

   

6.2  Conclusions Regarding Missing Data 

For this particular study, the unadjusted (available-case) and adjusted 

analyses yielded similar estimates.  Despite what one might expect, the fact 

that only 50% of the patients returned for their two year follow-up exam does 

not introduce much bias.  Insofar as my investigation is concerned, the 

available-case analysis can be trusted.   
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Appendix A 

Table 3.i Number of patients per sample.  (From Table 3c on Page 17)  
Characteristic  Female Male 

    N (%) N (%)  
    

Age  411 (85.3) 71 (14.7) 
Weight*  400 (84.7) 72 (15.3) 

BMI  350 (84.3) 65 (15.7) 
Total Cholesterol  364 (84.5) 67 (15.5) 

 LDL 315 (84.7) 57 (15.3) 
 HDL* 336 (84.4) 62 (15.6) 

SBP  410 (84.7) 74 (15.3) 
DBP  410 (84.7) 74 (15.3) 

Heart Rate  405 (84.4) 75 (15.6) 
Diabetes  434 (85.1) 76 (14.9) 

 NIDDM 434 (85.1) 76 (14.9) 
 IDDM 434 (85.1) 76 (14.9) 

Hypertension  434 (85.1) 76 (14.9) 
Hyperlipidemia  434 (85.1) 76 (14.9) 

Cellultis  434 (85.1) 76 (14.9) 
Asthma  434 (85.1) 76 (14.9) 

Joint pain  434 (85.1) 76 (14.9) 
Sleep apnea  434 (85.1) 76 (14.9) 

Stress/anxiety  434 (85.1) 76 (14.9) 
Depression  434 (85.1) 76 (14.9) 
Smoking   434 (85.1) 76 (14.9) 

Addictive behavior  434 (85.1) 76 (14.9) 
 
Table 3.ii Crosstabs with the number of patients indicating physical improvement two-year 
post-op across rows, and the number of patients indicating physical improvement five-years 
post-op across columns.  Only two patients improved from two years to five years, while four 
patients regressed.  

 
Physical 

Improvement5yr Total 

  0 1   
Physical 
Improvement 

0 1 2 3 

  1 4 20 24 
Total 5 22 27 
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Table 3.iii Crosstabs with the number of patients indicating emotional improvement two-year 
post-op across rows, and the number of patients indicating emotional improvement five-years 
post-op across columns.  One patient improved while six patients regressed. 

Emotional 
Improvement 5 yr 

 0 1 Total 
0 2 1 3 Emotional 

Improvement 1 6 18 24 
Total 8 19 27 
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Appendix B 

4.3 Hierarchical Loglinear Models 

(Page 29) 

Interpretations of loglinear model parameters are taken from Agresti’s 

Categorical Data Analysis (page 143).  Agresti defines the saturated model 

slightly differently than Bishop, Fienberg and Holland (1975), setting the 

equation equal to the logarithm of the expected cell frequency rather than the 

logarithm of the cell probability.  The two are closely related, and I will 

describe the relationship after defining model parameters for the Agresti model. 

Let , the natural logarithm of the expected cell frequency.  

As before, a plus sign in the subscript indicates summing over that index.  For 

example,  denotes the sum of and .  Agresti defines the saturated 

model as follows: , with the 

following model parameters:  

ln( )ijk ijkl e=

00l + 000l 001l

3 2 3 1 31 2 1 2Y Y Y Y Y Y YY Y Y Y
ijk i j k ij jk ik ijkl λ λ λ λ λ λ λ λ= + + + + + + + 1 2 3Y

λ  = grand average = the overall mean of the log of the expected frequencies    

    ( )
8 ijk

i j k

l l+++= = ∑∑∑ / 8  

1Y
iλ  = the main effect of Y1 = (average over Y1 – grand average)     

      
4 4

i il l lλ++ ++

8
+++= − = −  
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The main effects of Y2 ( 2Y
jλ ) and Y3 ( 3Y

kλ ) have analogous equations.  Since 

the main effects are deviations from the mean, 31 2 0YY Y
i j k

i j k
λ λ λ= = =∑ ∑ ∑ .  In 

other words,  and the same is true for Y1 1
0 1 0Y Yλ λ+ = 2 and Y3.      

The two-factor interaction terms take on the form: 

1 2 1 2

2 2 4
ij ij jY Y Y Y i

ij i j

l l ll lλ λ λ λ+ + +++

4 8
+ +++= − − + = − − +  

1 3Y Y
ikλ and 2 3Y Y

jkλ have analogous equations. 

Lastly, the three-factor interaction term: 

1 2 3 2 3 1 3 31 2 1 2Y Y Y Y Y Y Y YY Y Y Y
ijk ijk ij jk ik i j klλ λ λ λ λ λ λ= − − − + + + −λ  

 33 3 7
2 2 2 4 4 4 8
ij jk ji k i k

ijk

l l ll l l ll + + + ++ ++ ++ +++= − − − + + + − . 

  

 Now we need to relate ln  (Agresti’s model) to lnijke ijkπ  (Bishop, 

Fienberg and Holland’s model).  We know that ijk
ijk

e
e

π
+++

= .  Therefore, 

ln ln( ) ln( ) ln( )ijk
ijk ijk

e
e e

e
π +++

+++

= = − .  The two models differ by the logarithm 

of the overall mean of the expected values. 

 

 

 

 



 

Next, we decompose the data according to Agresti’s model.
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ijk i j k

(Page 36) 

Let us take the variables depression, NIDDM and stress to illustrate the 

relationship between the equation π π π π++ + + ++= and the equation of the 

hierarchical loglinear model of independence ( ln 31 2 YY Y
ijk i j kπ λ λ λ λ= + + + ).  

Fitting the independence model to the data yields the following expected 

values (taken from Table 4b): 

  NIDDM     NIDDM 
Depression   0 1   Depression   0 1 
  0 25.11 4.89     0 66.95 13.05
  1 60.95 11.74    1 160.68 31.32

         Stress = 0             Stress = 1 
 

Taking the natural logarithm of the expected values yields: 

  NIDDM     NIDDM 
Depression   0 1   Depression   0 1 
  0 3.22 1.59     0 4.2 2.57
  1 4.11 2.46    1 2.81 3.44

         Stress = 0             Stress = 1 
 



 

Let us look at one specific cell to see how the equations ijk i j kπ π π π++ + + ++= and 31 2ln YY Y
ijk i j kπ λ λ λ λ= + + + relate to each other.  

We can see from the decomposition that 000 3.05 ( .155) .535 ( .205) 3.22l = + − + + − = .  Furthermore, 000 000ln ln( )l eπ +++= +  .  To 

check this statement, we first can find 000lnπ .  According to the independence model, 000 0 0 0π π π π++ + + + += .  Thus we have: 

000 0 0 0
110 314 103ln ln ln ln ln( ) ln( ) ln( ) ( 1.22) ( .176) ( 1.29) 2.7
374 374 374

π π π π++ + + ++= + + = + + = − + − + − = −    

76

Now, 000 000ln ln( ) ( 2.7) ln(374) ( 2.7) 5.9 3.22e lπ ++++ = − + = − + = = . 
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5.1 Overview 

(Page 54) 

The 2 x 2 contingency table with a partially classified margin for the 

hypothetical example can be seen below: 

  Post     Post  
Pre   0 1   Pre   0 1  
  0 17 11 28   0 ? ? 42
  1 22 50 72   1 ? ? 58
  39 61 100   ? ? 100

 Miss = 0   Miss = 1 

 From the observed data, we have 39 patients who are asthma-free post-

operatively and 61 patients who have asthma two years after the operation.  

Given that patients without asthma lost 100 pounds on average and that 

patients with asthma lost 200 pounds on average, we find that the unadjusted 

weight loss estimate is 161 pounds ([(39)(100)+(61)(200)]/100).   

 However, assuming the model {PrePost,PostMiss}, we impute missing 

values, resulting in the following table:  

  Post     Post  
Pre   0 1   Pre   0 1  
  0 17 11 28   0 40.9 1.1 42
  1 22 50 72   1 52.9 5.1 58
  39 61 100   93.8 6.2 100

 Miss = 0   Miss = 1 

 The adjusted weight loss estimate is now 134 pounds 

([(39+93.8)(100)+(61+6.2)(200)]/200). 
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5.3 Imputing Values 

(Page 59)  

Proof: 
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R Computer Code26

5.6  Models Involving Two Predictor Variables 

The EM algorithm used to impute missing values for the 4 x 4 x 2 

contingency table: 

 
# Notation (follows Baker & Laird, 1988) 
################################## 
#        Z = cell counts and expected cell counts, given M 
#        M = mles for cell counts, given the model and expected 
cell counts Z 
#        x = 1, 2, ..., I:  pre-op categories; I = number of 
categories 
#        y = 1, 2, ..., J:  post-op categories; J = number of 
categories 
#        r = 1, 2:                 Response:  1 = Yes, 2 = No 
#     Z[x,y,1] are observed (pre/po, for those who respond) 
#        Z[x,+,2] are observed (pre-op totals, for those who 
don't return) 
# 
# Data 
###############################################################
##### 
I <- 4 
J <- 4 
Z <- array(0,dim=c(I,J,2),dimnames=c("Pre","Post","Return")) 
# 
# Pre-op counts for those who return 
# 
Z[1,,1] <- c(37,0,0,0)         
Z[2,,1] <- c(46,89,0,0) 
Z[3,,1] <- c(2,1,2,0) 
Z[4,,1] <- c(3,6,1,4) 
# 
# Pre-op totals for those who don't return 
# 
Z2 <- c(102,246,8,18)                # Pre-op totals for all 
Zx_2 <- Z2 - rowSums(Z[,,1])        # Pre-op totals for those 
who don't return 
# 
# M Step:  Function to update mles Mxyr for cell counts 
################### 
MStep <- function(Z){ 
   Zxy <- apply(Z,c(1,2),sum) 
   Zyr <- apply(Z,c(2,3),sum) 
   Zy <- apply(Z,2,sum) 
   Zxy_ <- outer(Zxy,rep(1,2)) 

____________________________________________________________________________ 
26 Much thanks to George Cobb for writing this R code! 
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   Z_yr <- outer(rep(1,J),Zyr) 
   Z_y_ <- outer(outer(rep(1,J),Zy),rep(1,2)) 
   Mxyr <- Zxy_*Z_yr/Z_y_ 
   return(Mxyr) 
   } 
# 
# E Step:  Function to update expected missing values 
##################### 
EStep <- function(M,Z){ 
   Zx2 <- apply(Z[,,2],1,sum) 
   Zx_2 <- outer(Zx2,rep(1,J)) 
   Mx2 <- apply(M[,,2],1,sum) 
   Mx_2 <- outer(Mx2,rep(1,J)) 
   Z[,,2] <- Zx_2*M[,,2]/Mx_2 
   return(Z) 
   } 
# 
# Starting values 
######################################################### 
ZNew <- array(0,dim=c(I,J,2),dimnames=c("Pre","Post","Return")) 
ZNew[,,1] <- Z[,,1] 
ZNew[,,2] <- outer(Zx_2,rep(1,J))/J 
diff <- 1                        # Starting value for change in 
expected counts 
Steps <- 0                        # Number of steps 
eps <- .001                        # Convergence criterion 
# 
# Iterate M and E steps 
################################################### 
while(diff > eps){ 
   Steps <- Steps + 1 
   ZOld <- ZNew 
   MNew <- MStep(ZOld) 
   ZNew <- EStep(MNew,ZOld) 
   diff <- sum(abs(ZOld-ZNew)) 
   } 
# Summarize results 
####################################################### 
Steps 
diff 
round(MNew/sum(MNew),digits=2) 
round(ZNew,digits=2) 
round(MNew,digits=2) 
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