
Abstract

In the field of ultrasound imaging, it has been theorized that imaging noise, known as

speckle, is the product of microscopic scatterers and abnormalities within the imaged tissue.

This would result in certain speckling patterns revealing themselves over large datasets,

which could be utilized to identify minuscule lesions within tissues, potentially creating a

method to predict the early formation of tumors. Such a dataset would be difficult to analyze

by hand, but machine learning algorithms could be used to recognize patterns in a effective

manner. As of now, few attempts have been made to utilize machine learning in order to

predict scatterer placement from ultrasound scans.

In order to initiate machine learning, first a computational simulation must be con-

structed to consistently and accurately reproduce experimental data. Using Field II, a

MATLAB-based program for ultrasound modelling, simulations were created to replicate

data produced from experimental phantoms made from glass beads and agarose gel. These

simulations were designed to account for bead placement and size, as well as experimental

conditions. Comparisons between simulations and experimental data using statistical analy-

sis show that ultrasound images can accurately be predicted using computational methods.

With these software programs, it becomes possible to train a machine learning algorithm

to recognize speckling pattern, which may allow for the resolution of previously unresovable

scatterers.
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Chapter 1

Introduction

The concept of ultrasound and its use in identifying the location of objects was first proposed

in the 1790s by Lazzaro Spallanzani, who observed the way in which bats moved while

blindfolded. While he was correct in his theory that they used noises that were inaudible to

the human ear to navigate, his findings were largely ignored until early 20th century. It was

at this time, during the start of WWI, that the Allies began to investigate the use of these

high-frequency sounds as a source of detection for enemy submarines. It wasn’t until 1942

that ultrasound was first used in medical imaging by Karl Dussik in an attempt to identify

brain tumors [1].

Following Dussik’s work, the medical community began to see an insurgence in applied

ultrasound in a clinical setting. Throughout the 1940s and 1950s, other scientists exper-

imented to find the best methods for ultrasound imaging. These techniques began with

submerging the subject in a water bath, with the ultrasound transducer situated some dis-

tance away in the water, but soon moved towards having transducer to skin contact, with

oils and gels as the intermediary between the surfaces. By 1960, the first contact scanners
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were made available for purchase, and ultrasound soon replaced the more hazardous x-rays

as the primary prenatal imaging tool. Since then, researchers have continued to optimize

ultrasound equipment and processing, moving towards small, light, transducers and screens,

as well as increasing the resolution and diagnostic capabilities of ultrasound imaging. [2]

Currently, ultrasound has dozens of use in modern medicine, from imaging blood flow for

potential clots or aneurysms, to diagnosing and breaking up kidney stones. Ultrasound fills

an important niche in clinical settings as a versatile, safe, yet relatively inexpensive, imaging

technology, making diagnostic imaging readily available to the majority of the population.

However, there are still some needs that remain unmet by ultrasound imaging, and the

scientific community continues to develop new methods to fill these gaps [2].

One emerging focus in the field of ultrasound imaging is its potential applications in

the early diagnosis and treatment of various cancers. While ultrasound has historically

held a place in the identification of cancerous tumors, it functions best when visualizing

tumors past a certain size, which is generally limited by the wavelength of the emitted pulse

(described further in Section 1.1). In addition, small structures in ultrasound images tend

to be obscured by a grainy interference pattern across the image. This presents a significant

flaw in ultrasound as a diagnostic tool, as cancer treatments are most successful at the earlier

stages of tumorigenesis [2, 3].

However, the aforementioned interference patterns, while often treated as troublesome

noise, may hold the key to resolving microscopic scatterers within tissue. This patterning,

known as speckle, is due to unresolved scatterers in an imaged tissue, and will be discussed

in more depth in Section 1.2. It is theorized that, since speckle holds structural information

on the size and position of microscopic scatterers, a machine learning algorithm could be
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used to identify features within speckling patterns and predict the location of said scatterers.

The Herd Lab group has been working with this hypothesis for some time, and in 2015,

Huma Yusuf produced a thesis investigating the theory behind speckle and its proposed

models [4]. In 2016, Colbie Chinowsky continued Yusuf’s work by performing experimental

ultrasound scans and building the foundation to create accurate simulations of experimental

phantoms [5].

The purpose of this study will be to take the next logical step in the research presented

by Yusuf and Chinowsky. This thesis will provide an introduction to ultrasound imaging,

speckle, and computational ultrasound. It will then identify a potential method of locating

unresolved scatterers in ultrasound images using speckle, by training a machine learning

algorithm on simulated ultrasound traces. Finally, the thesis will discuss the experimental

methods, results, and conclusions in designing the simulations, before ending with a analysis

of available machine learning algorithms.

1.1 Ultrasound RF and B-Mode Imaging

In ultrasound imaging using pulser-reciever transducers, a pulsed wave-packet is released

from the transducer and hits the tissue, causing the waves to scatter and reflect back. The

amplitudes of these reflections are primarily dictated by the amplitude reflection factor, R,

which is the ratio of the reflected wave relative to the incident wave and can be found using:

R =
Z2 − Z1

Z2 + Z1

(1.1)

Where Z1 and Z2 are the characteristic acoustic impedances of the two media, described
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by

Z = ρc (1.2)

With ρ denoting the density of the medium, and c denoting the speed of sound within

the medium. As such, the amplitude of the reflected wave is largely dependent on charac-

teristics of both media. This allows for a wide variety of biological tissues to be identified

by ultrasound, as the amplitude reflection factor varies from tissue to tissue [2].

Once the wavepackets are attenuated and reflected at the interface of the media, they are

sent back to hit the transducer, causing the piezoelectric within the transducer to vibrate.

The piezoelectric translates the amplitude of these vibrations into voltages, which is recorded

and processed. The non-processed version of each voltage trace is called a radio-frequency

(RF) trace [2].

Brightness mode, or b-mode, is a form of ultrasound imaging, commonly used for the

visualization of fetuses or internal organs. B-mode images are characterized as two dimen-

sional figures, typically in gray-scale, which display a cross-section of the targeted tissue [Fig.

1.1]. Since the pulsed wave packets are sent out in discrete lines, the two-dimensionality of

B-mode images is achieved by concatenating many RF signals together. The voltages of the

signals are then weighted on a logarithmic scale, before being assigned brightness values,

with higher amplitudes correlating to brighter points [2].

While b-mode imaging produces a fairly accurate representation of larger tissues and

organs, small scatterers are frequently non-resolvable. In general, there are two sources of

this limitation. The first is speckle, which will be discussed in Section 1.2. The second is the
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Figure 1.1: An example of a prenatal b-mode ultrasound image of a human fetus. The
scattering of ultrasound is denoted by shades of gray, with the highest intensity response
shown as white and the lowest as black [6].

pulse length of the ultrasound wave. This pulse length is defined as the product of the number

of cycles within the wave packet and its associated wavelength. Transducers producing high

frequency wavepackets, and therefore short pulse lengths, tend to result in higher resolution

images. However, a balance must be struck, as while high frequency transducers may resolve

scatterers more accurately, they are attenuated quickly in soft tissue, resulting in a short

distance of penetration [3]. As such, much work has been done towards perfecting this

balance, or searching for new methods to resolve microscale scatterers [7].

1.2 Acoustic Speckle

Acoustic speckle, the sound-based counterpart to laser speckle, refers to a certain form of

granule patterning that occurs on b-mode ultrasound images [Fig. 1.2] [8, 9]. In imaging
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science, speckle is often treated as interference similar to electrical noise, resulting in re-

searchers pursuing the development of algorithms to minimize its effects [9]. However, while

this approach towards speckle mimics that of electrical noise, speckle’s characteristics proves

the two to be incomparable.

Electrical noise is generally considered to be a random baseline signal, which has little to

no structural meaning and only results in obfuscating low-amplitude signals. The randomness

of noise means that multiple datasets of the same experiment taken under the same conditions

will exhibit differences in its baseline [8]. Ultrasound, on the other hand, demonstrates

similar speckling behavior throughout various scans. This suggests that while speckle may

have certain stochastic aspects, it is not purely randomized noise. Instead, it has been

theorized to be the result of constructive and destructive scattering patterns due to structural

differences and unresolvable scatters in the imaged tissue [8, 9].

Figure 1.2: A pair of images demonstrating the obscuring effect of speckle on ultrasound
imaging. A theoretical tissue sample is shown on the left, with a series of high and low
scattering areas. This same tissue is replicated on the right, with an overlaid speckling
pattern.

This distinction, while seemingly minute, forms the basis for a novel approach to the
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identification of small scatterers. Since speckle is not random, speckling patterns include

information on the position and density of scatterers that may not be resolvable by usual

ultrasound imaging methods. As such, it is reasonable to look towards using these patterns

as an alternative method of identifying microscale structures.

While this approach towards counteracting the limitations of ultrasound resolution may

be somewhat recent, it is not unprecedented. In 1995, Chen et. al. [10] demonstrated

speckle’s potential for tissue analysis by using it to track the movement of tissue across

a number of ultrasound scans. They showed that speckle can reliably be used to track

tissue movement across a variety of tissue samples, proving that the information stored in

speckling patterns can be used to identify structural changes and movement. More recently,

in 2015, Aalamifal et. al. [11] used speckle to classify liver and kidney tissue samples. The

group found that this method allows for high accuracy classification, further indicating the

potential of speckle in identifying tissue differences that may not be observable in b-mode

imaging.

1.3 Computational Ultrasound

Abbott and Thurstone (1979) and later Wagner et. al. (1983) performed derivations using

Rayleigh distributions to model speckle as high order probability distributions. However, as

described later in Section 2.1, stochastic models of speckle become increasingly complex as

they reach higher order statistics, to the point at which it becomes impractical to solve such

equations by hand [9, 12].

Therefore, it is appropriate to use computational methods in order to fully model ultra-
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sound scattering and speckle. A variety of programs have been developed to create simulated

ultrasound data. These algorithms are able to efficiently solve high order statistical functions

given the inputs of the experimental setup and phantom, allowing them to produce accurate

models of ultrasound data.

In 1983, only five years after the term "acoustic speckle," was coined, a research team

led by D. R. Foster developed one of the first programs to computationally simulate speckle.

Their model was designed to take the three dimensional geometry of both the phantom and

the transducer into account, a method that is now commonplace in ultrasound simulations.

Similarly, they designed microscopic scattering structures within computational phantom as

an assortment of randomly placed point scatterers, which is similar to our phantom design

discussed later, in Section 3.3.2. Although other aspects of the model were a simplified

version of what can be achieved today, the group demonstrated the capability of accurately

simulating ultrasound traces with speckle [13].

In general, many of the more recent algorithms have been used to remove speckling pat-

terns from experimental data, in order to achieve higher resolution b-mode images. However,

with the advancements of machine learning and neural networks, it has recently become much

more feasible to use computational methods to draw structural information from speckling

patterns. Machine learning programs have proved to be capable of pattern recognition, often

finding regularities in datasets that are overlooked by researchers. In terms of ultrasound,

machine learning has the potential to identify indiscernible patterns within speckle, and use

these patterns to pinpoint unresolved scatterers.

The research performed by Aalamifal et. al. [11] represents a successful attempt at

using machine learning and speckle for the classification of ultrasound data, establishing
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the capability of such methods in ultrasound. However, the research group had access to

the large experimental datasets necessary for training a machine learning algorithm. For

the purposes of this study, such datasets are inaccessible, further necessitating the use of

simulated ultrasound.

If b-mode ultrasound scans can be consistently and accurately simulated using computa-

tional methods, it would be possible to create large sets of ultrasound data without using the

resources to experimentally produce the same amount of data.Therefore, provided that the

simulations are precise, computational ultrasound could be used to train machine learning al-

gorithms as efficiently as experimental ultrasound. As such, this research will investigate the

potential of using machine learning to recognize speckling patterns in simulated ultrasound

data, in order to locate scatterers that are unresolvable by conventional methods.
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Chapter 2

Theory

2.1 Gaussian Distribution of Speckle

In 2008, Daba et. al. [14] identified two forms of speckling behavior in ultrasound, known

as developed and partially developed speckle. This distinction is made depending on the

number of scatterers within the focus of the ultrasound beam. When there are a large

number of structural differences that cause scattering within the range of the focus, the

speckling patterns are developed, and generally can be modeled as a Gaussian distribution

of amplitudes across the ultrasound image. However, more complex stochastic methods of

modeling are needed when there are fewer than 20 scatterers, resulting in partially developed

scattering.

For the purposes of this research, and the resources at our disposal, we will assume fully

developed scattering in both imaged and simulated ultrasound. This assumption is appropri-

ate for our purposes, as the simulations were set to have significantly more than 20 general

scatterers (on the order of 106 scatterers), and the agarose-based experimental phantoms
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naturally have large numbers of unresolvable scatterers, due to the protein structure within

the gel [14].

As such, it becomes reasonably straightforward to derive the first order probability density

function for the intensity of speckle, as demonstrated by Wagner et. al. [12]. Gaussian

distribution functions take the general form of

P (x) =
1√

2πσ2
exp

{
−(x− a)2

2σ2

}
(2.1)

in which σ is the standard deviation and a is the mean of the function. For this to be

used to describe a wave, which can be described by Euler’s equation to have both real and

imaginary terms, the probability distribution can be defined as the product of two Gaussian

functions, one for each term. In the following equation, we will let φr represent the real

valued components and φi represent the imaginary components. Additionally, in this case,

the mean can be set to zero, since positive and negative intensities are equally likely.

P (φr, φi) =
1

2πσ2
exp

{
−(φ2

r + φ2
i )

2σ2

}
(2.2)

Equation 2.2 is known as a circular Gaussian probability distribution function, and is

demonstrated in terms of the two components. However, due to the nature of b-mode imag-

ining in ultrasound, it becomes more useful to consider this equation in terms of amplitude,

V , in which V = (φ2
r + φ2

i )
1/2, giving us

P (V ) =
V

σ2
exp

{
−V 2

2σ2

}
(2.3)
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Since negative probability is impossible, this equation is then reformed into a piece-wise

function such that

P (V ) =


V
σ2 exp

{
−V 2

2σ2

}
, V > 0

0, V < 0

(2.4)

This equation takes the form of a Rayleigh distribution function, and demonstrates the

basic probability distribution of speckle.

It should be noted that this derivation followed only the first order probability distribu-

tion, and therefore is limited as a model. Higher order statistics can be applied to define

speckle in a more realistic way. However, derivations of these probability distributions re-

quires significantly more complex calculations. This serves to further illustrate the necessity

of using rigorous computational methods, both to calculate complex scattering patterns, and

to identify overlooked patterning with machine learning.
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Chapter 3

Materials and Methods

3.1 Experimental Phantom Design

Figure 3.1: A photograph of the experimental phantom with a ruler for scale. The bead to
the left is 0.5mm in diameter, the middle is 1.3mm, and the bead to the right is between
2.9mm.
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Experimental phantoms were created at room temperature using 0.7% agarose gel, glass

beads of varying sizes, and petri dishes. The petri dishes were 35mm in diameter and 10 mm

in height. Agarose gel was microwaved until it became liquid, and then was used to fill the

dishes about halfway (about 5mm). After allowing the gel to cool for about 2 minutes, beads

were placed in a line along the diameter of the dish, with one bead of 0.5mm in diameter,

one bead with diameter 1.3mm, and one bead between 2.9mm (Fig. 3.1). Each bead was

placed with approximately 10mm of spacing between their centers, with the centers of the

0.5mm and 2.9mm each 7.5mm away from the edge of the dish (Fig. 3.1). Agarose gel was

placed over the beads, filling the petri dish with 8mm total of gel. The phantom was allowed

to cool and harden for 5 hours before use.

3.2 Experimental Ultrasound

Pulse-echo ultrasounds were performed using an Olympus 5 MHz center frequency, single

element, immersion transducer with a focal length of 52.172mm. A series of three stepping

motors, one for each axis, were used in conjunction with Computer Optimized Stepper

Motor Operating System (COSMOS) software to accurately move the transducer (Fig. 3.2).

Both the phantom and transducer were lowered into a 23°C bath of 18 Mohm water, and

the transducer was connected to a Olympus 5073 Pulser/Reciever, which was connected to a

Tektronix TDS 3014C Digital Phospohor Oscilloscope (Fig. 3.2). The phantom was oriented

such that the largest scatterer (2.9mm) was at the top and the smallest (0.5mm) was at the

bottom.

The transducer was intended to be positioned at 49.672mm away from the phantom, to

14



account for the focal length and the depth of the beads (Fig. 3.2). This distance was deter-

mined by setting the focus (52.172mm) of the scope to the back surface of the phantom and

subtracting the depth of the beads (2.5mm). However, a mistake in the experimental setup

resulted in the focus being set at the front of the phantom instead, placing the front surface

54.172mm away from the transducer. This likely resulted in some accidental amplification

of the phantom surface, but should not have severely affected the rest of the results.

The center of the oscilloscope was set at the time corresponding with this distance, at

73.3µs. Times were found using the motion equation:

x =
1

2
vt (3.1)

which can be rewritten as

d =
1

2
cst (3.2)

Where d is the distance between the transducer, cs is the speed of sound in water, and t

is time. Solving for t results in the approximate time for the pulse to reach the front surface

of the phantom and return to the receiver.

The transducer was moved across the width and height of the phantom, which was used to

both center the transducer with the phantom, and to determine any possible misalignment

between the face of the transducer and the surface of the phantom. By observing time

changes of the echo from surface scattering of the phantom, we determined that there was

a permanent gradient between 0.7-1.4mm horizontally and a gradient between 2.2-2.9mm

vertically. These variations were due to imperfections in the phantom surface, likely from
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human error while pouring the agarose gel into the dish, resulting in a slight curvature of the

phantom surface. While these gradients were not ideal, they were not solvable by realigning

the transducer or phantom, and therefore remained.

To center the transducer relative to the phantom, it was moved horizontally until the

scattering due to the phantom’s surface began to attenuate on the oscilloscope, which is

indicative of the edges of the phantom. The stepping motor positions at each edge were

recorded from COSMOS. The mean of these values was taken, and the stepping motor was

placed at the central position. This procedure was repeated to find the center vertically.

Once the transducer was centered, data was taken from the oscilloscope with a vertical

scale of 200mV and a horizontal scale of 4.0µs centered at 73.3µs, in order to obtain adequate

visuals of both surface scattering and the 1.3mm bead scattering (Fig. 3.3). It was taken

again at the same position with a horizontal scale of 1.0µs and a center at 77.45µs for a

better visual of the bead scattering. Seven more scans were taken, each moving vertically

down from the center at steps matching the size of the focal width. Focal width was found

using the equation for diffraction limited angular resolution:

θ =
1.22λ

D
(3.3)

Where θ is the angular resolution, λ is wavelength, andD is the diameter of the transducer

aperture. By substituting in the identities θ = w
d
, with w as focal width and d as focal

distance, and λ = cs
f
, where f is frequency, the following equation can be derived:

w =
1.22cs
Df

d (3.4)
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Using 1491m/s for the speed of sound in water, 0.0127m (0.5in) for the diameter of the

transducer, 5ê-6Hz for the frequency, and the previously given .052172m focal distance, it

was found that the focal width was about 1.4mm. Therefore, the transducer was moved

1.4mm vertically for each scan.

The transducer was then centered once more, and 8 scans were taken as it was moved

vertically up, each at the same step size as before. The centering of the scans was changed

to account for the gradient of the surface, in order to keep the surface scattering at approxi-

mately the same position relative to the oscilloscope data. The center was moved to 76.5µs,

then 75.97µs. One final set of data was taken, since the largest bead (2.9mm) had not been

visible, likely because the scatterers were not aligned perfectly vertically. The transducer

was moved until this scatterer was found, and data was taken.

3.3 Simulated Ultrasound

3.3.1 Field-II

Field-II is a MATLAB-based software package first developed in 1996 by Jørgen Arendt

Jensen [15, 16]. This package uses spacial-impulse response modeling, as rigorously derived

by Colbie Chinowsky [5], to replicate the response signal for a variety of ultrasound trans-

ducer geometries and apodization, or differential vibration intensities across the face of the

transducer [17].

This range of geometries and apodization is achieved by simulating the transducer surface

as a summation of small rectangles, each with their own average response signal. By break-
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ing up the surface in such a way, it’s possible to reasonably approximate not only square

transducers, but triangular and circular ones as well. Since each section has an associated

response, apodization patterns can also be mimicked, as the rectangles towards the edges

can receive lower signals than those in the center [18].

These approximations are most accurate when the size of the rectangles is much smaller

than the distance between the transducer and the focal point, which occurs when

l� w2

4λ
(3.5)

where l is the focal distance, w is the length of the longest side of the rectangle, and λ is

the associated wavelength [18]. This places the focal point in the far-field ultrasound range,

which is appropriate for evaluating tissue differences in medical ultrasound.

3.3.2 Computational Phantom Design

In Field II, computation phantoms were constructed in a separate file and called upon by

the main simulating program (see Appendices B and C). The phantoms were designed

by inputting the approximate dimensions of the experimental phantom. It should be noted

that the experimental phantoms were roughly cylindrical, while the computational phantoms

were rectangular prisms. This should have no effect on the similarity of the traces, as no

experimental traces were taken at the edge of the phantom.

After inputting the dimensions, 100,000 small, general scatterers were uniformly ran-

domly placed within the confines of the phantom. The scatterers’ amplitudes were gener-

ated using MATLAB’s randn function, which creates arrays of values that fall within the
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standard normal distribution, as given by the probability distribution function:

P (x) =
1√
2π
e−x

2/2 (3.6)

The scattering patterns due to these small scatterers can be used to mimic the expected

patterns of speckle [19]. The size and placement of the glass beads were then input into the

phantom program, assuming the beads were perfectly spherical. Due to the homogenous

makeup of the bead, it was modeled by setting the amplitudes of the randomized scatterers

that fell within its perimeter to a constant value. The general scatters, alternatively, were

amplified by a variable amount, and thus maintained their Gaussian distribution of ampli-

tudes. The values for both the bead amplitudes and the speckle amplitudes were found by

comparing the responses from the experimental data to those from the simulations. As such,

the bead amplitudes were set to a value of 2.945*1022 and general scatterers were amplified

by a factor of 0.4*1022, values which were found to give the most similar results.

For the focus of this research, scattering due to the water/phantom interface was not a

central concern. As such, this scattering was modeled by a highly-scattering point, which had

an amplitude of 75*1022, to match the amplitudes of the similar region in the experimental

data.

3.4 Analysis

Comparisons between experimental and simulated ultrasound traces were performed using

both qualitative and quantitative techniques. Qualitatively, the simulated and experimental

data were observed alongside one another, to observe if the basic characteristics of the exper-
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imental trace were appearing within the simulated version. These characteristics included

bead position, size, and scattering amplitudes, as well as the general amplitude variations

due to speckle (Fig 3.3).

In order to perform point-by-point quantitative comparisons, both datasets were required

to be the same length. However, the experimental sets contained 10,000 data points, due

to the sampling rate of the oscilloscope, whereas the simulated sets, by nature of the Field

II program, tended to be on the order of around 2,000 points. Therefore, the squared value

of dataset was cut to have the exact same start and endpoints, starting at 0.0540m and

ending at 0.0615m. The datasets were then sorted into 500 bins with identical edges, with

the contents of each bin averaged, resulting in the experimental and simulated datasets

matching for every point.

After binning and averaging each trace, quantitative analysis was achieved using a variety

of methods. In general, the comparisons were centered on the approximate position of the

bead, to ensure that both the scattering amplitude due to the bead and the position and

size of the bead were similar. The approximate placement and width of the bead was

defined by estimating the starting and ending depths of the amplified scattering due to the

bead. For the experimental trace, these points were defined at X=56.42mm to X=56.87mm,

demonstrating a width of 0.45mm. It should be noted this width is significantly smaller than

the given 1mm diameter of the bead. This discrepancy is likely due to errors in the centering

of the transducer in relation to the bead, causing it to only display the edge of the bead.

The simulation was changed accordingly to represent the smaller width (Fig. 3.4).

To observe the potential accuracy of the simulations, 20 simulated traces were produced

and overlaid with the experimental trace, and the area below each curve between 56.4mm
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and 56.85mm was calculated. The simulations were then performed 20 more times, with

the beads offset by one another by 0.59mm. In both cases, the differences between the

experimental and simulated areas were taken and averaged across each sample set, as given

in Section 4.1.

In addition to measuring the potential precision of the simulated traces, the consistent

accuracy was also taken into account. As mentioned before in Section 3.3.2, the simulated

phantoms were created with a randomized set of general scatterers, and as such demon-

strated a level of randomness in the scattering due to the glass beads. To understand how

consistently the simulations were replicating the experimental data, ten simulations of the

same experimental setup were executed and overlaid with one another. The range of depths

in which the peaks occurred from the bead was then calculated to determine the consistency

of the simulated bead width and placement.
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Figure 3.2: A diagram of the ultrasound experimental setup. The transducer and phantom
have been labeled, and can be viewed as 54.8mm apart within the 18 MΩ water bath.
The wire leaving the transducer is visible, and would be attached to an Olympus 5073
Pulser/Reciever, which is not in frame. The stepping motors have been labeled with their
respective axes, as defined in the simulations.
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Figure 3.3: A plot of response time versus response of experimental ultrasound data of a
1mm bead suspended in 0.7% agarose gel. The response is measured in arbitrary units
(a.u.). Scattering due to the surface of the phantom and due to the bead have been labeled.
The small variations in the amplitude of the trace are due to ultrasound scattering off of
microscopic structure within the agarose gel (speckle).
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Figure 3.4: The averaged experimental RF ultrasound trace centered on a 1mm bead. The
marked X values ( X=0.05642m (56.42mm), X=0.05687m (56.78mm)) indicate the approxi-
mate starting and ending depth of the bead.
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Chapter 4

Results

4.1 Comparisons of Experimental and Simulated Traces

Experimental traces of a 1mm glass bead in 0.7% agarose gel demonstrated the expected

scattering patterns. As seen in Fig. 3.3, large peaks of 0.8a.u. occurred at approximately

72µs, corresponding to 54mm, which were indicative of scattering occurring due to the ul-

trasound’s wavepackets first interacting with the gel surface. Later, at about 75µs (56mm),

smaller peaks ranging from 0.05-0.1a.u. were observed, marking the placement of the glass

bead (Fig. 3.3, 4.1).

Qualitatively, the two datasets generally demonstrated similar characteristics. The scat-

tering due to the surface started at approximately the same point, 0.054m, with amplitudes

reaching about ±8a.u., though the scattering patterns themselves were disparate, for reasons

mentioned in Section 3.3.2. Scattering due to the 1mm glass bead regularly began at the

same depth with approximately the same bead radius (Fig 4.1).
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Figure 4.1: Stacked plots of an experimental ultrasound trace in relation to the depth of a
1mm glass bead in agarose gel (top) and its associated simulated trace (bottom). Scattering
due to the 1mm bead can be seen at about 0.0565m in depth for both.

26



Overlaid (n=20) Offset (n=20)
Average Simulated
Area 4.2*10−7 9.1*10−8

Simulated Area
Standard Deviation 1.2*10−7 4.6*10−8

Average Area
Difference 2.7*−7 6.0*10−7

Table 4.1: A table containing the average areas and standard deviation under overlaid and
offset simulated traces centered between 56.4mm and 56.85mm. The area differences were
taken with respect to the area under the experimental curve (6.9*10−7 a.u.*m).

These qualitative observations proved to stand up to quantitative comparisons. In di-

rectly comparing a single simulations centered on the bead’s scattering to the experimental

data, the simulated peaks due to the bead largely matched the experimental trace in both

location and amplitude (Fig. 4.2). In addition, the area below experimental trace was ap-

proximately 6.9*10−7 a.u.*m. When the simulated bead was placed at the same location

as the experimental bead, as shown in Fig.4.2, the simulation exhibited an average area of

4.2*10−7 a.u.*m, resulting in an area difference of 2.71*10−7 a.u.*m, with a standard devi-

ation of 1.2*10−7 a.u.*m. In comparison, when the beads were offset by 0.59mm from one

another, the area under the curve averaged at 9.1*10−8 a.u.*m with a standard deviation of

4.6*10−8 a.u.*m, corresponding to a difference in area of 6.0*10−7 a.u.*m (Table 4.1).

In comparing the range of bead placements and responses across multiple simulations of

the same experimental phantom, it was found that scattering due to the glass bead varied

in both position and amplitude. The simulated peaks tended to match in amplitude to

the experimental data, with some variation from simulation to simulation. The central

positioning of the glass bead remained constant across all simulations, though the exact

width of the scattering patterns differed slightly. It is worth noting, as well, that the width
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Figure 4.2: Comparisons between the averaged experimental and simulated responses cen-
tered on a 1mm glass bead. The plot includes the experimental response (red) overlaid with
a simulated response (blue). The difference in area under the curves is labeled.

Figure 4.3: Comparisons between offset averaged experimental and simulated responses of
a 1mm glass bead. The plot includes the experimental response (red) with a simulated
response (blue) offset by 0.59mm. The average difference in area under the two responses is
labeled.
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Figure 4.4: A comparison between the averaged experimental and simulated data to demon-
strate consistency between simulations. The plot contains an overlay of 10 simulated re-
sponses (blue) using the same inputs and conditions. The experimental response (red) of
the same setup is superimposed on top of the simulated responses. The marked X values
(X=0.05638, X=0.05711) indicate the approximate starting and ending depth to the simu-
lated beads.
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of the echo from the simulated bead, though defined in the simulation as 0.45mm, tended to

be larger by about 0.2-0.3mm. As such, over many simulations, the approximate width of the

simulated bead was observed to be 0.73mm, which was 0.28mm larger than the experimental

results (Fig. 4.4).
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Chapter 5

Discussion

In comparing experimental RF ultrasound traces with their associated simulations, it proved

possible to demonstrate that simulations performed using Field-II have the potential to be

both qualitatively and quantitatively precise. The simulated phantoms were able to be

manipulated to exhibit identical starting and ending points, as compared to the experimental

data, as well as similar randomized speckle and bead scattering patterns. In addition, the

amplitudes due to the surface, the glass bead, and a large set of microscopic, unresolvable

scatterers remained consistently similar to the experimental data across all simulations (Fig.

4.1).

The perpetually small difference between the area below the experimental and simulated

scattering due to the glass bead also implied that the simulations maintained significant a

level of precision. When the simulated bead overlapped with the experimental bead, the

average difference between the two traces was 2.7*10−7 a.u.*m, less than half the size of

the difference between offset beads, 6.0*10−8 a.u.*m. The variance between the overlaid

and offset average differences indicates a significant distinction between the two simulated
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phantoms, demonstrating that, when overlaid, the simulated trace is similar in amplitude and

pattern to the experimental trace. However, this method of comparison does suggest that

the amplitude of the simulated bead may need to be slightly increased, to further mitigate

the average difference.

The greatest point for concern when comparing the simulated and experimental data

stems from the variable bead width demonstrated within the phantom. This increase in

width by 0.28mm is a significant difference, especially when considering that the observed

diameter of the bead from the experimental trace was 0.45mm. This indicates at least a 50%

increase in simulated bead size (Fig. 4.4).

This particular result may have substantial consequences as this research moves towards

training machine learning on simulated datasets. The goal in using machine learning, as will

be further discussed in Section 5.1, is to train the algorithm to identify the size and position

of a bead-like scatterer within a given RF trace. However, if this algorithm is taught to

identify the size of a bead from simulations that consistently exaggerate the bead’s width,

it is possible that the program will face difficulties in accurately identifying the correct size

when presented with experimental data.

The cause of the simulation’s error, however, has not been made evident. One potential

explanation may come from a recently observed effect when simulations were performed

with significantly reduced speckle amplitudes. This response, which has been nicknamed

"ringing," refers to a large dip in the trace, followed by a slow incline back to zero, observed

after the bead’s scattering (Fig 5.1). Much of the ringing is obfuscated in the presence of

speckle, allowing the effect to remain largely unnoticed in simulations with realistic scaling

of the generalized scatterers. In addition, since most of the comparisons were performed
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Figure 5.1: A simulated ultrasound trace with attenuated speckle to demonstrate the "ring-
ing" effect. The estimated area of the trace containing the bead, as well as the area containing
ringing, has been labeled. The width of the bead (X=0.05631 to X=0.05674) and the ringing
(X=0.05674 to X=0.05717) are both approximately 0.43mm.

using the squared amplitudes, the dip would have appeared as a final positive peak due to

the bead’s scattering.

This theory holds up when estimating the true size of the bead by disregarding the section

that follows a ringing pattern. By not including the ringing section, the bead widths were

consistently estimated to be between 0.43-0.46mm, extremely close to the 0.45mm width

input into the computation phantom. Similarly, the large negative peak due to the ringing

fell between 0.15-0.25mm in width, though the smaller aftereffects of the ringing continued

for around 0.2mm. This suggests that the main depression can account for the 50% increase
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in bead width, with the small aftereffects likely being covered by the speckle in regular

simulations. However, while the ringing effect neatly explains the consistently oversized

bead width, further study is required to understand the source of the ringing.

Another possibility to examine in analyzing the discrepancies between the experimental

and simulated traces is that the makeup of the experimental phantom may be playing a larger

role than previously considered. The simulated bead’s trace scatters as if it were hitting a

slightly softer, heterogenous surface, as one would normally expect in a tissue sample. While

microscopic glass beads dispersed throughout the phantom have been noted to mimic small

structures within tissue reasonably well, large, hard scatters are often too homogenous to

create an accurate tissue substitute [20].

In addition, attempting to create a phantom to mimic hard tissue may have been contrary

to the initial objective of this research. While malignant tumors are noticeably more dense

than normal, healthy tissues, they are still soft as compared to non-organic materials. For

reference, the speed of sound within tumorous tissue has been characterized on the order of

1500m/s, whereas the speed of sound within glass is significantly larger, at 5000-6000m/s

[20, 21]. If the purpose of training a machine learning algorithm is to use it to identify small

abnormalities in tissue structure, using experimental phantoms based on glass beads may

be counterproductive. Thus, in future studies, it would be prudent to perform experiments

using other tissue substitutes, such as tapioca beads, rather than glass beads.
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5.1 Future Work with Machine Learning

While the existence of the ringing effect continues to drastically increase bead size, we have

decided to continue forward and initiate the machine learning process. It is expected that

this process will take a significant amount of time, so while the foundations are being laid

for machine learning, improvements will continue to be made on the simulations to ensure

the best possible results.

There exists a large variety of algorithms for machine learning, each with strengths and

weaknesses in regards to types of computations they can perform. In general, there are two

main classes of machine learning: classification, which is used to sort data into categories,

and thereby creating a discrete output, and regression, which is used to model continuous

functions, and thus creates a continuous output. As such, in choosing a particular method

for machine learning, the forms of both the desired the input and output data must inform

the decision.

In the case of scatterer identification and placement, ultrasound data presents a difficult

choice in algorithm selection. The desired output is currently a set of values describing the

x-position (depth) and radius of the main scatterer. This would fall under the umbrella of

a classification problem, since the desired output is discrete. However, classification works

best with either discrete datasets as an input, or images. While it is possible to construct

B-mode images from the simulated RF traces, each image would require between 50-100

traces, which would drastically increase the time and computational power needed to create

the machine learning training set. By using RF data, however, the input dataset would be

taking the form of a continuous function, which would be better suited as the input of a
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regression model.

Essentially, the input data from our simulations is in the form required for regression

machine learning, but the desired output should be in the format expected from a classifica-

tion algorithm. Therefore, it is necessary to look beyond the most basic models in machine

learning, and instead investigate more complex algorithms, such as neural networks, that

can handle differentiated input and output data formats.

Figure 5.2: A diagram illustrating the procedural differences between classical machine learn-
ing and neural networks.

Neural networks vary from classical machine learning though the way in which they

interact with and interpret data. Classical machine learning has four linear steps: input

and feature extraction, which are constructed by the user, a hidden layer for computations,

and an output. Neural networks, on the other hand, feature only one step for the user, the

input, and then multiple hidden layers constructed from interconnected nodes perform both
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feature extraction and computations, before sending the results to an output (Fig. 5.2). As

such, the user is not required to delineate the desired features from the datasets, and instead

allows the hidden layers to recognize patterns and determine the important parameters. In

addition, neural networks are generally not restricted to specifically continuous or discrete

datasets, demonstrating the flexibility required for this project.

Even within the narrowed field of neural networks, there are still a number of algorithms

to choose from, Currently, we propose that the most appropriate method for our research will

come in the form of convolutional neural networks (CNNs). CNNs are a powerful machine

learning tool, generally used in image classification. However, unlike many classification

algorithms, CNNs require very little pre-processing, and are able to take both the spacial

and temporal characteristics of images into account. The latter trait will likely prove useful

in analyzing ultrasound traces, which are intrinsically linked to time and space via the

equations for motion (Eq. 3.1, 3.2).

Having determined a promising method for machine learning, the next few steps of this

project can be outlined. First, the codes presented in Appendices B and C will be combined

with simulation and phantom programs designed by another Herd Lab undergraduate re-

searcher, Nguyen Nguyen. Her programs were designed in a similar fashion to those presented

in this paper, but rather than focus on the addition of three dimensional object within the

phantoms, her work implements the possibility of moving the simulated and transducer and

performing scans of the same computational phantom from multiple positions. By combining

both codes, the completed program will have the ability to both insert three dimensional

beads and view the beads from different positions.

With the completed simulations, the formation of the machine learning training datasets
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will begin. These datasets will be the result of repeatedly running the simulations (presum-

ably on the order of 1000 iterations), with each simulation containing a single bead scatterer

of random size between 0.5mm-3.5mm in diameter, placed at a random depth within the

phantom. The training data will be split evenly between focused and unfocused transducers,

and each dataset will include the simulated trace, along with the depth and size of the bead.

The CNN will be trained with these sets as the input, and then validated by testing it on

another collection of simulated datasets. If the algorithm performs well with the validation

set, it will then be evaluated against sets of experimental traces. The training and testing

of the algorithm, as a whole, will likely be long and iterative process, but it is heartening to

have made another significant advancement in the scheme of this research.
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Appendix A

MATLAB Program for Processing
Experimental Data

1 %Making_Bmode_images_nb.m
2 %Naomi Brandt
3 %Processes raw ultrasound data
4 %Last edited 4/2/2019
5
6
7 % Input parameters:
8 Cw = 1491; %'Enter sound speed of water (m/s):
9 Cs = 1500; %('Enter sound speed of sample (m/s): ');
10 FilePath = 'C:\Users\brand\Documents\College Files \2018 -2019\

HerdLab\'; % path to data files
11 FileNameBase = 'TEK0001 ';%filename base
12 winsize = 4; % window size in microseconds
13 numFrame = 7; % number of raster scan points
14 stepSize = 235; % number of steps between scans .00025 inch per

step
15
16 % Load the data
17 rawData1=csvread('TEK00001.CSV');
18
19
20 k=char (50);
21 l=1;
22 FileName = strcat(FileNameBase ,k,'.CSV');
23 firstdata = [];
24 fullFile=strcat(FilePath ,FileName);
25 firstdata = csvread(fullFile);
26 amountdata = double(length(firstdata));
27
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28 sampleData = zeros(amountdata ,2,numFrame);% 'int32 ');
29 sampleData (:,:,l) = sampleData (:,:,l) + firstdata (:,:);
30
31 VectorArray = zeros(amountdata ,numFrame);% define vector array.
32 BmodeArray = zeros(amountdata ,numFrame);% define Bmode Array.
33
34 %Loads multiple datasets at once
35 for i = 1: numFrame
36 j = char (49+i);
37 FileName = strcat(FileNameBase ,j,'.CSV');
38 fullFile=strcat(FilePath ,FileName);
39 sampleData (:,:,i) = sampleData (:,:,i)+ csvread(fullFile);
40 end
41
42 VectorArray = squeeze(sampleData (:,2,:));
43
44 BmodeArray = URIlogenv(VectorArray);
45 %Bmode vector away is log scale conversion of vector array
46
47 XStep = stepSize *.0025*2.54; % step between scan in mm
48 %XDistance = zeros(numFrame);
49 for i = 1: numFrame
50 XDistance(i) = XStep*i;
51 end
52
53 %Calculate depth into sample
54 YDepth = (winsize *.000001)* Cs *100/2*1/100;
55 YDepth=rawData1 (:,1)*Cw/2;
56
57
58 % Plot amplitude vs depth
59 figure
60 plot(YDepth , rawData1 (:,2))
61 title('Experimental Trace of ~1mm Bead')
62 ylabel('Response (a.u.)')
63 xlabel('Depth (m)')
64 axis ([.054 ,.06 , -1 ,.8])
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Appendix B

MATLAB Program for Designing
Computational Phantom

1 %bead_phantom_nb.m
2 %Naomi Brandt
3 %Creates ultrasound phantom
4 %Last Edited 4/5/2019
5
6 function [ positions , amp ] = bead_phantom_nb( N )
7
8 %Creating phantom base
9 x_size = 35/1000; % Width of phantom [m]
10 y_size = 35/1000; % Transverse width of phantom [m] - produces

transverse movement
11 z_size = 10/1000; % Height of phantom [m]
12 z_start = 54/1000; % Start of phantom surface [m];
13
14
15 %Create the random general scatterers
16 x = (rand (N,1) -0.5)*x_size;
17 y = (rand (N,1) -0.5)*y_size;
18 z = rand (N,1)*z_size + z_start;
19
20 % Generate the amplitudes with a Gaussian distribution
21 ampStart =randn(N,1);
22
23
24 % Make scatterer and set the amplitudes
25
26 r=(.45/2) /1000; % Radius of cyst [m]
27 xc =0/1000; % Place of cyst [m]
28 zc =4.01/1000+ z_start;
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29
30 %Define inside the bead and amplify amplitudes
31 inside = ( ((x-xc).^2 + (z-zc).^2 ) < r^2);
32 amp = ampStart .*.4.*10^22.*(1 - inside)+ 2.945.*10^22.* inside;
33
34 % Place the inital point scatterers (surface) in the phantom
35 x(1) = 0/1000;
36 y(1) = 0;
37 z(1) = z_start;
38 amp (1) = 0;
39
40 x(2) = 0/1000;
41 y(2) = 0;
42 z(2) = z_start +1.6/1000;
43 amp (2) = 75*10^22;
44
45 % Place 0 amp scatterers to make simulation have no scattering

before surface and make all scatters before then actually
start at the surface

46 for n=1:N
47 if z(n)<z_start +1.6/1000
48 z(n)=z_start +1.6/1000;
49 amp(n)=0;
50 end
51 end
52
53
54 % Return the variables
55 positions =[x y z];
56
57 pos_amp_inside =[x y z amp inside ];
58
59 end
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Appendix C

MATLAB Program for Performing
Simulations

1 %bead_sim_nb.m
2 %Naomi Brandt
3 %Runs field -ii simulation
4 %Last edited 4/2/2019
5
6 field_init
7
8 % Set initial parameters
9 f0=5e6; % Transducer center frequency [Hz]
10 fs=100e6; % Sampling frequency [Hz]
11 c=1491.23; % Speed of sound [m/s]
12 cs =1500; %speed of sound in sample (m/s)
13
14 lambda=c/f0; % Wavelength [m]
15 R=3/1000; % Radius of transducer in m
16 Rfocal =52.2/1000; % Focal radius of transducer in m
17 ele_size =3/1000; % Size of mathematical elements in m
18
19 kerf= 1/1000;
20 focus = [.05*50/1000 ,.05*50/1000 ,.05*50/1000 + 15/1000];
21
22 % Define the transducer
23 Th = xdc_concave(R, Rfocal , ele_size);
24
25 %Import phantom scatters
26 %Increase N to increase random general scatterers
27 [phantom_positions , phantom_amplitudes] = bead_phantom_nb

(100000);
28
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29 % Set the impulse response and excitation of the emit aperture
30 impulse_response=sin(2*pi*f0 *(0:1/ fs:2/f0));
31 impulse_response=shiftdim(impulse_response ,1);
32 windowHanning = hanning(max(size(impulse_response)));
33 %size(windowHanning)
34 %size(impulse_response)
35
36 impulse_response_windowed=impulse_response .* windowHanning;
37 excitation=sin (2*pi*f0 *(0:1/ fs:2/f0));
38 xdc_excitation (Th, excitation);
39
40 % Do the calculation
41 %Procedure for calculating the received signal from a

collection of scatterers and for each of the elements in the
receiving aperture

42 [v,t]= calc_scat_multi (Th, Th , phantom_positions ,
phantom_amplitudes);

43
44 % Proccess the individual response , change time array to depth

array
45 N=length(v());
46 Ts = 1/fs;
47 Ds=(Ts*cs/2); %define distance in m
48 d_start = (t*cs/2); %define start distance in m
49 d_array = zeros(N,1);
50 for i = 1:N
51 d_array(i) = d_start + Ds*(i-1);
52 end
53
54 sim_size=size(v);
55
56 %Plot the trace as amplitude verus depth
57 figure
58 plot(d_array ,v)
59 title(" Simulated Trace")
60 ylabel('Response (a.u.)')
61 xlabel('Depth (m)')
62 axis ([.054 ,.06 , -1 ,.8])
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Appendix D

MATLAB Program for Comparing
Datasets

1 % sim_exp_comparison.m
2 %Naomi Brandt
3 %Comparing simulated and experimental data
4 %Last edited 4/5/2019
5
6
7 %Making simPoint and expPoint , which are just focused around

the simulated and experimental bead
8 simPoint =[];
9 expPoint =[];
10 diffAvg =[];
11 iter =10; %number of iterations to run through
12
13 %Run experimental trace processing
14 run Making_Bmode_images_nb.m
15
16 for i=1: iter
17 run bead_sim_nb.m
18
19 %squaring simulated and experimental signals
20 sim_vsqr=v.^2;
21 exp_vsqr=rawData1 (:,2) .^2;
22
23 %making matrices of simulated and experimental data
24 simDat =[sim_vsqr ,-d_array ];
25 expDat =[exp_vsqr ,-YDepth ];
26 eS=size(expDat (:,1));
27 sS=size(simDat (:,1));
28
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29 %Determining min and max of the simulation and experimental
depths

30 simMinMax =[min(simDat (:,2)),max(simDat (:,2))];
31 expMinMax =[min(expDat (:,2)),max(expDat (:,2))];
32
33 %Deleting all simulation points that are out of

experimental range
34 simCut =[];
35 for i =1:sS(1,1)
36 sim = simDat(i,2);
37 if sim >= expMinMax (1,1) && sim <= expMinMax (1,2)
38 row = find(simDat (:,2) == sim);
39 simCut =[ simCut;simDat(row ,:)];
40 end
41 end
42
43 cutS=size(simCut (:,1));
44 expRange=expMinMax (1,2)-expMinMax (1,1);
45
46 %Binning exp and sim data and adding bins to data matrices
47 %Note: increase bin size for more of a point by point

comparison , decrease for more of a general shape
comparison

48 [simN , simEdges , simBins ]= histcounts(simCut (:,2) ,500);
49 simCut =[simCut ,simBins ];
50 [expN , expEdges , expBins ]= histcounts(expDat (:,2) ,500);
51 expDat =[expDat ,expBins ];
52
53 %Averaging values within each bin
54 simAvg = accumarray(simCut (:,3),simCut (:,1))./ accumarray(

simCut (:,3) ,1);
55 expAvg = accumarray(expDat (:,3),expDat (:,1))./ accumarray(

expDat (:,3) ,1);
56
57 comp=( expAvg+simAvg)/2;
58 depthMid =(( expEdges (1:end -1)+expEdges (2:end))/2).';
59
60 expAvg =[expAvg ,depthMid ];
61 simAvg =[simAvg ,depthMid ];
62
63 % Centering sim and experimental data on the bead
64 for i=1: size(simAvg (:,1))
65 cut=simAvg(i,2);
66 if cut <= -.0555 && cut >= -.0585
67 simPoint =[ simPoint;simAvg(i,:)];
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68 end
69 end
70
71 for i=1: size(expAvg (:,1))
72 dat=expAvg(i,2);
73 if dat <= -.0555 && dat >= -.0585
74 expPoint =[ expPoint;expAvg(i,:)];
75 end
76 end
77
78 %Finding the difference between the two averaged traces
79 diffAvg =[diffAvg ,( expAvg (:,1)-simAvg (:,1))];
80
81 end
82
83 %Find the mean difference
84 av=[]
85 for i=1: iter
86 av=[av,mean(diffAvg(:,i))]
87 end
88
89 %lines 103 -112: plot all iterations
90 figure
91 xlabel('Depth (m)')
92 ylabel('Response (a.u.)')
93 axis ([.0555 ,.0585 ,0 ,.01])
94 hold on
95
96 for i=1:201:(i*201)
97 plot(-simPoint(i:i+200 ,2),simPoint(i:i+200 ,1),'c')
98 end
99
100 plot(-expPoint (1:201 ,2),expPoint (1:201 ,1),'r')
101
102 %Find overall average difference around bead
103 TdiffAvg=sum(abs(diffAvg (202:403 ,1)))/(403 -202)
104
105 %Plot single comparison and the average
106 figure
107 plot(-expAvg (:,2),expAvg (:,1),'r',-simAvg (:,2),simAvg (:,1),'b'

,-depthMid (:,1),comp (:,1),'m')
108 axis ([.056 ,.0575 ,0 ,.009])
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Appendix E

Table of Overlaid and Offset Simulated
Areas and Differences

Overlaid Area Overlaid Area
Difference Offset Area Offset Area

Difference
6.85E-07 9.19E-09 2.10E-07 4.84E-07
6.12E-07 8.16E-08 1.47E-07 5.47E-07
5.53E-07 1.41E-07 1.29E-07 5.65E-07
5.42E-07 1.52E-07 1.26E-07 5.68E-07
5.23E-07 1.71E-07 1.21E-07 5.73E-07
5.13E-07 1.81E-07 1.20E-07 5.74E-07
5.06E-07 1.88E-07 1.19E-07 5.75E-07
4.61E-07 2.33E-07 1.13E-07 5.81E-07
4.34E-07 2.60E-07 1.03E-07 5.90E-07
4.32E-07 2.62E-07 9.61E-08 5.98E-07
4.01E-07 2.93E-07 8.85E-08 6.05E-07
3.72E-07 3.22E-07 7.59E-08 6.18E-07
3.64E-07 3.29E-07 6.43E-08 6.30E-07
3.39E-07 3.55E-07 6.13E-08 6.33E-07
3.06E-07 3.88E-07 5.81E-08 6.36E-07
2.99E-07 3.95E-07 5.79E-08 6.36E-07
2.98E-07 3.95E-07 4.53E-08 6.49E-07
2.91E-07 4.03E-07 4.18E-08 6.52E-07
2.78E-07 4.16E-07 1.86E-08 6.75E-07
2.48E-07 4.46E-07 1.73E-08 6.77E-07
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