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ABSTRACT 

  
Increasing atmospheric carbon dioxide (CO2) levels are a leading cause of climate 
change (Malhi et al. 2002).  At least half of the Earth’s terrestrial carbon is stored 
in forest biomass (Gower et al. 1996) by the photosynthetic conversion of 
atmospheric CO2.  Therefore, estimating forest carbon stocks helps us quantify 
carbon concentrations and potential sources and sinks for CO2.  One way that 
ecologists calculate biomass is with empirical allometric equations that use 
species and diameter at breast height (DBH) and divide by two to estimate carbon 
(Brown and Schroeder 1999, Jenkins et al. 2004).  
 
I hypothesized that I could estimate stand-level biomass using the Airborne 
Imaging Multispectral Sensor’s (AIMS) high-resolution imagery and lidar height 
measurements.  To test this notion, I selected a study area on Mount Holyoke 
College property, in South Hadley, Massachusetts and systematically sampled 
366 trees for species, height, DBH, and canopy data.  I obtained lidar-derived 
canopy height and high resolution imagery with the AIMS system.  For the 
ground validation of biomass, I created ten 900m2 subplots, where I identified 
species, measured DBH for all live stems >12.4cm, and recorded place in the 
canopy.  I calculated biomass using the corresponding biomass equations, 
summed the results, and scaled to hectare.  I also calculated biomass using only 
dominant and co-dominant trees.   
 
I averaged the lidar values and the ground-sampled trees’ heights within each plot 
to obtain plot average height for each method.  By dividing the area into 20 plots, 
a linear regression indicated that the lidar average height was a significant 
predictor of dominant ground-sampled tree average height (p<0.001, R2=0.658).   
 
To remotely estimate biomass, I identified species and stem density in 
georeferenced AIMS images of each subplot.  From ground data, I created linear 
regression models to estimate DBH from height.  I used lidar height to estimate 
DBH values in the species-specific allometric biomass equations found in Jenkins 
et al. (2004).  I multiplied these biomass values by the number of stems of each 
species in the plot, scaled the value to hectare, and summed the results.  I 
compared these results with the ground biomass data.  The linear regression 
indicated that the remote method was a significant predictor of dominant tree 
ground biomass (p=0.022, R2=0.499).  These results suggest that this technique 
has the potential to adequately predict stand-level biomass in a southern New 
England forest. The next step will be to expand the dataset to determine the 
robustness of the method. 
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INTRODUCTION 

 The world’s forests are dynamic ecosystems that store 861±66Pg of 

carbon, according to some estimates (Pan et al. 2011).  In addition to the 

uncertainty by 66 billion metric tons, the sizes and conditions of forested areas are 

continually changing.  This suggests that the storage capacity of forests is also in 

constant flux.  As the largest terrestrial carbon storage receptacle, decreasing 

forest stores are a factor in increasing atmospheric carbon dioxide levels (CO2) 

(Malhi et al. 2002).  Conversely, maintaining and increasing the sequestration 

capacity of the Earth’s forests help slow the rate of atmospheric CO2 increase.  

Because forests are important in biogeochemical cycling, researchers attempt to 

quantify this stored carbon.  Since the only way to measure aboveground forest 

carbon accurately is to destroy the tree, it is necessary to find feasible, non-

destructive methods to estimate terrestrial carbon stocks.  My research examines a 

method of estimating biomass using profiling lidar to estimate average forest 

height, coupled with high-resolution imagery to determine forest composition.   
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Biomass and carbon   

 Approximately half of a tree’s biomass (living or biological material of an 

organism) consists of carbon (Birdsey 1992, R. Houghton 2005) obtained by 

fixing atmospheric carbon dioxide (CO2) during photosynthesis (H2O+energy+ 

CO2↔CH2O+O2).  The carbon accumulates as living and dead biomass in the 

environment, and animals, plants, and decomposing bacteria release the fixed 

carbon as CO2, during respiration (Berg 2008).     

 

Role of forests and ecological relevance of my research 

Some researchers estimate that at least half of the Earth’s terrestrial carbon 

is stored in forests (Gower et al. 1996), which currently cover approximately 30% 

of the Earth’s surface (FAO 2010).  The growing world population and increasing 

development are intensifying the pressure to shift land use from forest to urban or 

cropland.  Taken together, global forest conversion and destruction are the second 

largest source of increased atmospheric carbon dioxide, from the release of stored 

carbon through respiration and combustion, and the loss of forests as a carbon 

storage reservoir (Schlesinger 1997, J. Houghton 2005, R. Houghton 2005).    

Intact forests sequester carbon and generally contain more carbon than 

degraded forests and agricultural land (Malhi et al. 2002).  Furthermore, selective 

harvesting may, and deforestation will, shift a forest from carbon sink to source. 

Because of the connection between forests and atmospheric CO2, it is critical to 

quantify current carbon stocks as a basis for carbon accounting.  In addition, the 



 
3 

 

quantification of carbon stocks is an essential part of documenting changes, 

measuring offsets, and pricing carbon emissions (McKinley et al. 2011).  An 

improvement in our terrestrial carbon estimation abilities will facilitate the 

evaluation of carbon sequestration strategies and will better position us to respond 

to forest management practices and deforestation as participants in global climate 

change.   

 

Atmospheric carbon dioxide increases  

Since the advent of the industrial age, fossil fuel combustion and land use 

conversion from forests have been the predominant causes of increasing 

atmospheric CO2 levels (Keeling 1973, IPCC 2007).  Scientists expect that 

atmospheric carbon dioxide levels will continue to rise as a function of increasing 

worldwide fossil fuel consumption and rising populations (Archer 2005).  

Denman and colleagues (2007) state that although approximately 50% of  an 

atmospheric CO2 increase can be removed within 30 years, it will take a few 

hundred years to remove the next 30%, and thousands of years to remove the last 

20%.  Currently, CO2 is the greenhouse gas with the largest effect on temperature, 

because of its relative abundance and atmospheric lifespan (Malhi et al. 2002).  

The increase in atmospheric CO2 closely follows the increase in global average 

temperatures (J. Houghton 2005).  Current climate data show that global average 

air and water temperatures have risen, sea level has increased, and northern 

hemisphere snow cover has decreased (IPCC 2007).  Although change is 
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inevitable, the pace is such that many natural systems will not be able to adapt or 

evolve, and this will likely lead to decreased biodiversity and decreased native 

species populations (Hughes 2000, Groom et al. 2006).  Species that have specific 

niches will adapt, move, or go extinct in response to the changing climate 

(Hughes 2000).   

 

Calculation of forest carbon 

The potential effects of climate change require substantial efforts to limit 

CO2 emissions.  At this time in history, much of the American public ignores the 

implications of a warming planet, and even concerned citizens continue 

consuming fossil fuels because alternatives are not readily available or are 

prohibitively expensive.  Although there are efforts to transition from fossil fuel 

dependence, this process is slow and politically-charged.  Because forests have 

the ability to sequester carbon, preventing deforestation, improving harvesting 

procedures, and restoring forests are practical, quantifiable mitigation strategies.  

Quantification includes calculating biomass, but because it is not possible or 

practical to directly measure every tree, ecologists have developed a number of 

surrogate methods.   
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From empirical data 

The IPCC (2000) suggests that the preferred method to estimate forest 

biomass is through a dimensional analysis approach via the use of allometric 

equations.  These are empirical, species-specific and generalized regression 

equations that calculate biomass based on a tree’s diameter at breast height (DBH) 

(Brown and Schroeder 1999, Jenkins et al. 2004).  This form of dimensional 

analysis relates the biomass of a tree to its DBH by use of empirical data 

(Whittaker and Woodwell 1967, Jenkins et al. 2003).  Researchers obtain the 

species-specific algorithms by measuring the DBH, measuring the biomass via 

destructive sampling techniques, and then calculating the corresponding 

regression equations (Jenkins et al. 2003).  These equations calculate biomass on 

a per-tree basis, and researchers determine plot-level biomass by either measuring 

every tree, or creating sample plots and scaling up (Jenkins et al. 2001).  This 

field-based approach is time-consuming and expensive.   

Most algorithms require only DBH because tree height is more difficult to 

measure in the field, leading to less available height data (Brown 2002).  Earlier 

research also suggested that the addition of height did not improve the equations 

enough to warrant the extra effort (Brown 2002, Jenkins et al. 2003).  Differences 

in growth rates due to environmental conditions suggest that researchers should 

use allometric equations from the same locality or region as the study site 

(Andersson et al. 2009).  For this reason, the IPCC (2000) suggests testing the fit 

of biome-level equations by conducting a small direct measurement (destructive) 
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sampling of biomass for the area species.   An additional limitation is an upward 

bias, or biomass overestimation, in large diameter trees, if the sample tree DBH 

measurements are larger than the DBH measurements used to create the equations 

(Jenkins et al. 2003).  Because researchers expect the rate of biomass 

accumulation to decrease after a tree obtains some diameter, it is important for the 

equations to reflect all DBH measurements of the target trees (Jenkins et al. 

2001).   

Another common way to measure biomass is by expanding trunk-volume 

tree data (obtained from closed-canopy forests) with biomass expansion factors 

(BEF) (Brown and Schroeder 1999).  The United States Department of 

Agriculture (USDA) Forest Service’s Forest Inventory and Analysis (FIA) follow 

protocols to determine tree bole (trunk) volume by species.  FIA provides data-

generating volume tables where a user can input a set of tree metric data, choose 

output parameters such as volume equation and volume type, and receive 

estimated bole volume for their data (USDA 2010).  A biomass expansion factor 

then scales tree bole volume to total aboveground biomass (Jenkins et al. 2001).  

Both of these methods rely on empirical data.  However, remote areas 

have a dearth of forest inventory information, and the inconsistency of 

methodologies limits large-scale biomass estimations (Boudreau et al. 2008).   
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From remote sensing 

Because ground-based measurements are difficult and time-consuming, 

researchers also estimate biomass through modeling and by various remote 

sensing methods (Andersson et al. 2009, Tang et al. 2010).  Remote sensing 

sensor systems have varying resolutions and can operate from satellites or 

airplanes.  Generally, instruments operated from satellites have coarser resolution 

than those operated from airborne platforms (Andersson et al. 2009).  Active 

sensors supply their own illumination sources and passive sensors measure 

reflected solar radiation (Andersson et al. 2009).    

Andersson et al. (2009) describe two basic approaches to using remotely 

gathered data.  The first approach is by classifying land cover and estimating 

biomass from known properties.  This method is dependent upon the resolution of 

the raw images and known biomass estimations for the particular land cover 

classes.  The second approach inputs remotely-gathered, forest variable 

information such as leaf area index (LAI), canopy height and shape, and/or tree 

part measurements, such as DBH, into allometric equations (Andersson et al. 

2009).  I am using the second approach by predicting DBH from lidar-derived 

canopy height and inputting the variable into the appropriate biomass equations. 

Studies show lidar (light detection and ranging) to be an effective 

measurement device (Lefsky et al. 2002, Nelson et al. 2003, Popescu et al. 2004, 

Patenaude et al. 2004, Popescu 2007).  Lidar uses lasers to measure distance by 

recording the amount of time that elapses between transmission and reception of a 
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laser pulse.  A transmitter sends a pulse, which strikes an object and reflects back 

to a receiver (Fig. 1).  There are two types of lidar projections, profiling and 

scanning.  Profiling lidar is unidirectional, and the transmitter emits pulses in a 

single, fixed direction, whereas scanning lidar collects data points across a 

transect, as well as along it.  The scan pattern provides data for a canopy surface 

model and the ability to define parameters such as height, crown diameter, and 

stand density (Popescu et al. 2011).  In addition to scanning ability, lidar 

technologies vary from discrete return to full waveform.  Full waveform lidar 

records the intensity of the laser pulse as a function of time, whereas discrete lidar 

records peaks in intensity (Harding et al. 2000).  Discrete lidar measures one or 

more of these peak returns for each pulse.  An additional characterization of a 

lidar system is its footprint, or diameter of the pulse on the ground, which is a 

function of distance from the lidar transmitter to the target object.  Airborne, 

small footprint (~1.0m) scanning lidar can be very accurate for determining 

elevation ranges and vegetation heights (Zhao et al. 2011) although it is generally 

restricted to small-scale or regional areas because of associated costs.  Preliminary 

research using large footprint (~64m), full waveform,scanning, satellite lidar 

shows promise in estimating vegetation parameters at both small and large scales 

(Popescu et al. 2011).   

Scanning lidar provides a wider swath of data than profiling lidar, and full 

waveform lidar relays more information than discrete lidar.  In general, the initial 

expenses, processing costs, and yearly maintenance for both scanning lidar and 
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full waveform systems are considerably higher than for a discrete return profiling 

lidar system (Thomas Millette, personal communication, June 2010). 

 

 
Figure 1.  Representation of lidar data acquisition process.  Image adapted 
from Harding (2000). 

 

Popescu et al. (2004) used first and last return scanning lidar to estimate 

plot-level biomass in Virginia, USA.  They developed linear regression equations 

to relate the lidar-derived canopy parameters with the field-based data and 

biomass estimates obtained using the generalized Jenkins et al. (2003) biomass 

equations for pines(R2=0.82 and mixed hardwoods (R2=0.39).  Popescu (2007) 

also conducted a study in Texas, USA, to determine the feasibility of using dual 

return scanning lidar to estimate biomass at the individual tree level for loblolly 

pines (Pinus taeda).  This survey used scanning lidar to estimate DBH through a 

lidar-derived height relationship and calculate biomass from known algorithms.  

This survey also estimated the biomass through direct non-linear regression of 
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lidar height and crown diameter measurements.  In this study, the researcher was 

able to match 28% of the ground-measured trees with the trees visible in the lidar 

canopy-surface model.  The lidar data from these 43 matched trees were used to 

predict field-measured DBH (R2=0.87), and the lidar-derived DBH measurements 

were used to predict field-measured biomass (R2=0.88).  Lefsky et al. (2002) 

obtained promising results with a single model, using full waveform scanning 

lidar to estimate biomass in three temperate forest biomes (R2=0.84).  Nelson et 

al. (2003) obtained biomass estimates, using profiling lidar, that were within 20% 

of FIA database estimates in Delaware, USA. 
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Method limitations 

  All biomass estimation methods have limitations.  Local direct 

measurement inventories lack broad scale spatial analysis without scaling and 

associated errors (Tang et al. 2010).  Satellite technologies provide broad-scale 

information, but the resolution is usually coarse and may induce error at regional 

or smaller scales (R. Houghton 2005).  Tang et al. (2010) consider that most 

large-scale models are too coarse for accurate regional accounting.  Airborne 

scanning lidar systems and processing are expensive and generally suited for local 

or regional usage (Popescu et al. 2004, Boudreau et al. 2008), and airborne 

profiling systems can only measure a narrow strip along the transect.  Therefore, 

climate scientists and others are researching many different types of technologies 

for this purpose, and it is likely that different technologies will be suited to 

different situations. 

 

AIMS system 

The technology that I am testing, the Airborne Imaging Multispectral 

Sensor (AIMS), provides fine spatial resolution data using an airplane platform, 

and includes an active sensor, profiling lidar, and a passive sensor, the natural 

color camera.  The Mount Holyoke College Geoprocessing Laboratory (GPL) 

developed AIMS as a method for obtaining stand-level forest metrics to use for 

forest management or research (Millette and Hayward 2005).  This technology 

uses a specially modified computer to integrate sub-meter precision GPS location 
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data and airplane orientation with lidar height measurements and high-resolution 

imagery.  The system’s profiling lidar component measures immediate distance of 

the aircraft from the ground and intermediate objects.  The lidar component 

transmits low-intensity, near-infrared (905nm) laser pulses at 240Hz and 

measures the amount of time it takes for the reflected pulse to return to the 

receiver [(speed of light*time)/2=distance].  It measures the first and last return of 

each pulse, so that if the pulse hits a soft target, like the tree canopy, part of the 

pulse reflects back to the sensor (first return) and part of the pulse continues 

deeper into the canopy or to the ground before being reflected back (last return) 

(NCFMP 2003).  A Trimble Ag 132, 12-channel differential GPS receiver with 

Omnistar satellite link is capable of locating the exact position of the airplane to 

sub-meter accuracy at 1.0Hz (Millette and Haward 2005).  The attitude heading 

reference system (AHRS) records the orientation of the airplane (pitch φ, roll ω, 

yaw κ) at 10-50Hz.  The data collected by the GPS and AHRS, which show 

aircraft location coupled with its pointing angle, provide ground coordinates of 

the lidar pulses.  A full explanation of the AIMS system is available in Millette 

and Hayward (2005).  

The AIMS system is similar to the PALS technology Nelson et al. (2003) 

and Boudreau et al. (2008) used to estimate biomass, although PALS has no 

mechanism for correcting for airplane orientation and uses video imagery in place 

of still images.  The objective of Nelson and colleagues’ (2003) methodology was 

to develop biomass regression equations from forest height and canopy density, 
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for various landcover classes, and compare their biomass values with those 

reported in the FIA databases.  Their estimates were less than 20% different from 

the USDA Forest Service’s Forest Inventory and Analysis (FIA) estimates.   

 

Objectives 

I looked for a significant relationship between tree height and DBH, so 

that I would be able to use lidar-derived stand height measurements to estimate 

DBH.  I could then use the lidar-derived DBH values in conjunction with 

imagery-derived stand density and species ratios to estimate biomass using 

published equations.  Such a method should offer biomass estimates more cheaply 

and rapidly than ground-sampling measurements.  Since my remote methodology 

measures trees in the dominant canopy, I expected that the lidar would be able to 

predict average canopy height due to spatial autocorrelation (Zhang et al. 2003).  I 

anticipated that the AIMS profiling lidar height averages would be effective, for 

estimating height, DBH, and hence biomass, at the right sampling density, in spite 

of the narrow (~1.0m wide) trace.  My research is unique in that I am identifying 

species from aerial imagery so that I am able to estimate biomass with species-

specific allometric equations.  Because I also conducted a ground-sampled field 

study of the target area, I can compare my lidar-derived biomass estimates to 

ground-measured biomass. 

  



 
14 

 

 

 

METHODS 

Study area 

The study area is located on Mount Holyoke College property, in 

Massachusetts, on the South Hadley-Granby line (72º 30’ W: 42º 16’ N) (Fig. 2).  

Undeveloped land surrounds the area, except on the western edge, where it abuts 

the Orchards Golf Course.  This area is located in the Connecticut River Valley 

ecoregion (US EPA 2012).  Swain and Kearsley (2001) characterize the region, 

which receives approximately 100cm of precipitation annually, as having fertile 

soils, a mild climate, and rolling hills.  In my study area, the elevation ranges 

from about 80-140m above mean sea level (USGS 1979), and the soils are 

generally fine sandy loams on 3-15% slopes, with the largest proportion being a 

Charlton fine sandy loam on 8-15% slopes (MAGIS 2010).  The forest varies 

from predominantly conifer to predominantly deciduous on a west-to-east 

gradient.  Red and white pines are the most abundant conifers.  The red pine stand 

has the appearance of being a single-aged plantation, with little or no 

regeneration.  The deciduous forest is central hardwood forest type (oak-hickory) 

(MFLA no date), and, like most of the northeast, the forest is second growth 

because of widespread deforestation in the 1800-1900s (Foster et al. 1998).  



 
15 

 

 

 Figure 2.  Location of Mount Holyoke College (MHC) study area. 

 

Aerial site sampling parameters 

In the summer of 2010 I participated in a summer research project to 

compare forest stand height using ground and remote sensing methods.  For 

ground data collection we used geographic information system (GIS) software to 

create five 30m wide transects on the site that had conifer, deciduous, and mixed 

forest stands (Fig. 3).  For aerial data collection, we created flightlines that were 

centered within the transects and oriented in a north-south direction.  This led to 

an east-west flightline spacing of approximately 100-110m.  Property boundaries 

and the Orchards Golf Course constrained the transect lengths, except for the 

short deciduous transect which was limited by time.  The completed 30m wide 

transects cover approximately 10ha.  On June 2, 2010, we flew the AIMS sensor, 

in a Cessna 172 airplane, over the flightlines, at an above ground elevation of 
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approximately 305m, to obtain georeferenced lidar height data and high-

resolution color images.   

  

Figure 3.  Flightlines for remote data acquisition.  We used each flightline 
as the center of each transect.  The areas cover conifer (black and white 
lines), mixed (railroad symbol), and deciduous (solid lines) forest areas.  
The white line designates the Mount Holyoke property boundary. 
 

Ground data sampling methodology 

Transect level systematic sampling  

Between May 26-July 12, 2010, we conducted a systematic sampling of 

trees in these transects using a 20m spacing in the north-south direction and a 10m 

spacing in the east-west direction.  We sampled the closest live tree (with DBH 

>12.4cm) to each target location and identified species and recorded height, DBH, 
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and place in the canopy (dominant, co-dominant, intermediate, suppressed) for 

344 trees.  If I was uncertain of the species, I used the Peterson Field Guide to 

Trees and Shrubs, by George A. Petrides and The Tree Identification Book, by 

George W. D. Symonds.  Because I had difficulty distinguishing red, black, 

scarlet, and pin oaks, I classified them by genus, as Quercus spp.  I also classified 

the six sampled hickories to the genus, Carya spp., but identified all other trees at 

the species level.  We used an Opti-Logic 1000LH hypsometer to determine tree 

heights.  We measured the height of each sample tree three times if the results 

were within 1.0m, five times if the first three results were within 3m, and seven 

times if the variation in the first three measurements was greater than 3m.  We 

also used a Suunto optical reading clinometer PM-5, occasionally as a height 

verification tool.  We used a Forestry Suppliers Inc. 5m diameter tape to measure 

DBH at a height of 1.37m from the base of the high side of the tree.  We nailed a 

uniquely numbered, 7cm x 2.54cm aluminum tree tag on the north side of each 

sample tree at a height of approximately 1.5m.  In addition to sampling trees, we 

referenced their positions within the plots by beginning at one corner and taking 

distance and azimuth from one tree to the next using the transmitter and target of 

a Sonin Combo Pro electronic distance measurer (EDM) and a Suunto A-10 

compass.  To geographically locate each transect we collected coordinate data for 

one corner point, for 30 minutes, with a Trimble Juno ST GPS.  We used GPS 

Pathfinder Office software (v. 4.10) to convert the GPS data into features and 

entered them into ArcGIS, a geographic information system (GIS) software.  We 
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used GIS distance and azimuth tools to reference the sample trees to these 

features and joined our metric data (species, height, DBH, and place in canopy) as 

attributes. 

I expanded this research independently in 2011 with the goal of estimating 

biomass.  I supplemented the data by creating a new deciduous plot (using the 

sampling method previously described) and extending the mixed forest transect 

south by approximately 30m.  This increased my total number of sample trees to 

366.  Since five transects are insufficient for a statistical analysis, I increased my 

sampling number by splitting the transects into smaller plots.  To do this it was 

necessary to verify and/or improve the precision of the sample tree coordinates.  I 

used a Trimble Pro XRS GPS and a 12m carbon fiber telescopic antenna, to get 

high enough into the tree canopy to get a carrier-phase satellite signal for the 

required 10 minutes.  I obtained 27 sub-meter precision coordinate data points, in 

locations proximate to at least two- tagged sample trees.  I took distance and 

azimuth from each GPS location to my sample trees and plotted both the GPS 

position data and the “new” sample tree locations in the GIS, where I used the 

spatial adjust editing tool to reference the original tree locations to the improved 

locations and update the coordinates of the sample tree data (Appendix 1).   

When data are spatially autocorrelated, attributes are more similar between 

closer locations than further locations (Mitchell 2005).  The variation in available 

resources within a forest creates a tendency toward spatial autocorrelation, 

although interspecies competition may also exhibit a negative spatial 
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autocorrelation where small trees neighbor large trees and vice versa (Zhang et al. 

2003).  However, we would not see this negative autocorrelation as the lidar only 

captures the height of the canopy trees.  Since linear regression analysis assumes a 

random distribution, I split the transects into plots that were not spatially 

autocorrelated (Crone and Gehring 1997), by using the GIS to group lidar height 

data into four classes according to natural breaks in the data (Fig 4).  I created 

plots that contained a predominance of a single height class data in an effort to 

avoid spatial autocorrelation between plots.  This grouping method enabled me to 

create 20 variously-sized, non-spatially autocorrelated plots that included both 

lidar and sample tree data (Appendix 2).  I excluded areas where the trees and the 

remote data did not coincide.  Although the initial protocol was to measure the 

closest tree (DBH>12.4cm) to the target location, I filtered out suppressed and 

intermediate trees from plot-level height averages, since the lidar processing 

output calculates height by the tallest measurements.  My height dataset contained 

236 dominant and co-dominant samples (dominant canopy).   

I classified the forest type of each plot with percent conifer.  According to 

sample trees, plots with <33.33% conifer = deciduous, plots with 33.34-66.67% 

conifer = mixed, and plots with >66.68% conifer = coniferous plots.  Although 

the original intent was to create an equal number of plots in each forest type, this 

methodology generated four conifer, twelve deciduous, and four mixed forest 

plots.  
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Figure 4.  Dominant canopy trees and lidar location and heights in non-
spatially autocorrelated plots.   

 
 

Subplot level population data 

I created ten 900m2 subplots in mixed, conifer, and deciduous stands, on a 

varying stem density gradient, over the range of tree heights (Fig. 5).  Within each 

plot, I counted all live stemmed trees, recorded species, place in canopy, and 
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measured DBH for all trees with a DBH >12.4cm.  I scaled the results of the 

individual subplots to represent stem-density per hectare.   

 

Figure 5.  Labeled subplot locations and lidar trace (dotted yellow lines) 
on the corresponding MassGIS 2009 orthofoto.  The orthophoto provides 
an indication of the forest type in each subplot.   

 

Remote data 

I processed the lidar and image data with GPL-developed software that 

matches the time of each measurement (GPS, AHRS, lidar, image) and created 

GIS layers of the lidar measurements’ ground locations and the locations of the 
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centers of the images.  I processed the lidar data with a MatLab script, also 

developed at the GPL.  This program uses the first and last return lidar points to 

calculate ground line and canopy height by splitting the data into small time-

segments and using the center value for the ground elevation and the minimum 

(the tallest point) for the canopy.  I chose 0.1 second intervals to obtain the best 

canopy representation.   

A careful analysis of the lidar data showed false ground lines in areas of 

dense forest canopy (Fig. 6).  It was necessary to correct these ground lines to 

accurately assess this technology.  In order to accomplish this, I compared the 

script output with a MassGIS, 5.0m digital elevation model (DEM) of the laser 

trace and corrected any false peaks, and then recalculated canopy height (Fig. 7). 

 

 

Figure 6.  MatLab script output that shows a false change in elevation.  
The x axis is time in seconds and the y axis is elevation in meters.  The 
points are lidar height data.  The bottom line shows the estimated ground 
elevation and the top line shows the estimated canopy.  The output shows 
a 25m ground elevation change because no lidar points were able to reach 
the ground within that sampling interval. 
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Figure 7.   Corrected and raw ground lines.  The x axis is distance from origin and the y axis is elevation.  The 
corrected ground line is the smoothed line and the raw ground line has the series of false peaks.  
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Stand height analysis 

To determine if I could substitute the lidar-derived plot average height for 

the ground-measured plot average height, I used GIS to obtain plot average 

heights for both the ground and lidar measurements using the 20 non-correlated 

plots.   

 I calculated a regression analysis to determine the relationship between 

measurement methods.  To check for normality, I created histograms and a scatter 

plot of the residuals and created a series of dot plots to see how individual plot 

height measurements varied. 

 

Height-DBH analysis 

In order to be able to use the lidar-derived height measurement in the 

allometric biomass equations, I needed to be able to predict DBH from height.  

Previous researchers have documented species-specific relationships between a 

tree’s height and its DBH (Denny and Siccama 2001, Sharma and Parton 2007).  

Therefore, I expected DBH and height to be related and created the set of height-

to-ln(DBH) regression equations from my sample tree data.  I separated the entire 

366 tree dataset by species, created histograms and ran regression equations, 

using height to natural log(DBH) for red oak (Quercus spp.), white pine (Pinus 

strobus), black birch (Betula lenta), red maple (Acer rubrum), white oak (Quercus 

alba), red pine (Pinus resinosa), and hemlock (Tsuga canadensis).  I used the 

natural log (ln) in order to have a linear relationship between height and DBH and 
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random variance in the residuals (Fig. 8a and b and Fig. 9a and b).  I back-

transformed ln(DBH) to DBH for input into the biomass equations.  I pooled the 

other hardwoods, basswood (Tilia americana), beech (Fagus grandifolia), sugar 

maple (Acer saccharum), Norway maple (Acer platanoides), eastern cottonwood 

(Populus deltoides), big tooth aspen (Populus grandidentata), sassafras (Sassafras 

albidum), and white birch (Betula papyrifera) (<10% total), to obtain a generic 

“mixed hardwood” height-to-ln(DBH) regression equation.  The five hemlocks I 

measured in my study area did not produce a significant regression model, 

therefore I supplemented the hemlock data by measuring height and DBH from 

nine additional hemlock trees in a mixed forested woodland in Wales, MA (72º 

19’ W: 42º 5’ N).  
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a.        b.        
Figure 8a and b.  Height to DBH regression (on left) and height to natural 
log regression (on right).  N=327. 

 
 

a.         b.  
 

Figure 9a and b.  Residual plots for height to DBH (on left) and height to 
ln(DBH) (on right). 

 

 

Estimating biomass  

Biomass equations 

 For both ground and remote data, I used allometric equations found in 

Jenkins et al. (2004).  These published equations predict oven-dry biomass of the 

entire aboveground portion of a tree.  I chose the most appropriate species-

specific equations that encompassed my sample trees’ DBH (Appendix 3).  I used 

the bigtooth maple (Acer grandidentatum) equation for the Norway maples 
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because both species have the same specific gravity and bark volume (Miles and 

Smith 2009).  I also included the mixed hardwood regression equation found in 

Jenkins et al. (2003) for all deciduous species I could not identify in imagery 

(Appendix 3). 

 

Subplot-level ground measurements using actual DBH 

 For each of the ten biomass plots, I input the DBH measurements (for all 

live stems >12.4cm DBH) into the appropriate species’ biomass regression 

equations, summed the results, and scaled to hectare.  I also completed this 

analysis using only dominant and co-dominant trees in each plot.  

 

Subplot-level remote estimates using lidar-estimated DBH and imagery   

In the GIS, I georeferenced the high-resolution images and delineated the 

biomass plots using identifiable, tagged-sample trees as locators (Appendix 2).  I 

then used the high-resolution imagery to determine which species were present, 

their ratios, and the plot-level stem density.  To determine the species, I used a 

photointerpretation key that Linnea Johnson (’13) and I developed in the fall of 

2010.  Our guide has color and texture comparisons for common species in the 

area.  I also used Hershey and Befort (1995) and Sayn-Wittgenstein (1978) for 

additional information.  I used a range of scales on the images, from 1:240 to 

1:1000, to observe and compare color and texture of the trees.  If I could not 

determine the species, I considered it a mixed hardwood and used the Jenkins et 
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al. (2003) equation for mixed hardwoods.  I placed a color-coded mark (by 

species) on what I believed to be each tree.  The identification of individual trees 

was clear-cut when adjacent trees were dissimilar species, or when there were 

spaces between the crowns.  I also changed the image display to a standard 

deviation stretch to increase the variation in the crown coloration.  For 

questionable trees, I relied on knowledge of a species’ branching geometry and its 

minimum crown dimension at DBH > 12.4cm (Lamson 1987).  Published DBH-

to-crown relationships suggested minimum diameters of 6m for hardwood 

crowns, 3.5m for red pines, and 4m for white pines (Bonner 1964, Lamson 1987, 

Meyer 2011). 

I input these data into a spreadsheet that scaled the number of trees per 

species to number per hectare, calculated the estimated DBH for the identified 

species from the plot-average lidar height, calculated biomass per tree per species, 

and then multiplied trees per species/ha by the biomass value to obtain biomass 

per hectare per species (Appendix 4).  I summed the results of all species in the 

plot to obtain total biomass.  To check for normality, I created histograms and a 

scatter plot of the residuals, and then conducted a regression using plot-level 

remote biomass as the independent variable and dominant tree ground biomass as 

the dependent variable.   

The remote methodology (abbreviated as remote throughout the paper) 

consists of lidar-derived height averages, and species and stem density from 

images. 
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Spatial and statistical analysis  

I used Microsoft Excel for all data entry and simple calculations, ESRI’s 

ArcGIS Geospatial Analyst tool to determine spatial autocorrelation, ESRI’s 

ArcGIS 10 for all GIS analysis except plotting tree locations, where I used the 

distance and azimuth tools in ESRI’s Arcview 3.3.  I used IBM’s SPSS software 

for all other statistical analysis.   
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RESULTS  

Spatial Autocorrelation 

 The 20-plot division along the four natural breaks in lidar height values 

produced average plots heights that were not significantly different from random, 

according to the spatial autocorrelation Moran’s I tool in ArcGIS (z score=0.538, 

p=0.591).  The results of the Moran’s I analysis on the residuals also suggest that 

the residuals were not spatially autocorrelated (z-score=0.2035, p=0.8395).   

 

Stand Height 

Preliminary analysis 

 I conducted the formal analysis at the plot level, with one average height 

measurement, per plot, for each method (ground, lidar).  However, I also looked 

at the overall height distributions.  Here, the height data for both methods show a 

fairly normal distribution.  The histogram of the lidar height data indicates a 

positive kurtosis, due to the  abundance of lidar points in the 25m height range, 

and a left skew, due to the patch of young trees in plot 18 (Figs. 4 and 10).  The 

wider spread of the ground data minimized the skew caused by the short plot, 

although it is visible (Fig. 10).  Dot plots of data separated by plot show that 

height variation tends to be slightly larger in the ground data (Fig. 11).   
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At the plot-level, the residuals do not show a trend, and the outlier is due 

to the anomalous short plot (18) (Fig. 12).  The x=y graph indicates the general 

trend for lidar to under-predict canopy height (Fig. 13).  The differences between 

plot-average lidar height and plot-average ground height, varied from almost 9m 

shorter to 1.41m taller, although only two plots exhibited a positive difference. 

 

Figure 10.  Histograms of lidar and ground plot height measurements.  The 
solid lines represent a normal distribution.  Ground mean 26.14m (s.d. 
6.73 n=235).  Lidar mean 23.56m (s.d. 4.15 n=442). 
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Figure 11.  Dot plots of individual data points in each plot.  1=lidar  
2=ground    

 

 
Figure 12.  Scatterplot of the plot-level (labeled by plot number) 
standardized residuals. 
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Figure 13.  x=y line showing lidar’s general underprediction when 
comparing ground-measured dominant and co-dominant tree plot height 
averages with the lidar plot height averages.  Data points are labeled by 
plot number.   
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Stand height significance   

 Regression analysis using mean lidar plot height as the independent 

variable and mean ground plot height as the dependent variable yielded an 

R2=0.658 with p<0.001 (Fig. 14).  The positive constant and slope value >1 

[y=0.511+(1.096*height)] indicate that lidar-derived height averages are shorter 

than ground-sampled height averages.  

 

Figure 14.  Regression line [y=0.511+(1.096*height)] using plot-level data 
with mean lidar height as the independent variable and mean ground 
height as the dependent variable. 
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Height to DBH Regression  

 Histograms of the DBH measurements for individual species indicated 

fairly normal distributions although the patch of young trees in plot 18 creates a 

bimodal distribution for white pine, and the presence of two large red maple trees 

widen the range for this species (Fig. 15).  The scatterplot regression matrix 

illustrates the strength of the height-to-ln(DBH) relationships for the most 

common species in my study area (Fig. 16).  The height-to-ln(DBH) regression 

equations show that height is a reasonable estimator of DBH for all of the species 

except red pine (Table 1).  All of the equations are significant, but the red pine 

model does not explain the relationship between its height and its ln(DBH) 

(R2=0.08), whereas the height-to-ln(DBH) models for the other measured conifers 

(hemlock and white pine) are more predictive.  Although the red oak sample had 

124 trees, the inherent variability that I found in the species’ growth patterns 

precluded a strong R2. 
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Figure 15.  Histograms of DBH measurements for individual species and a 
mixed hardwood category.   
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Figure 16.  Height-to-ln(DBH) scatterplots of the most common species in 
the Mount Holyoke study area. 

 
 

Table 1.  Height to natural log (DBH) regression equations.           
*significant (p>0.05)  **highly significant (p>0.01) 

 

Species 
Ln(DBH) regression 

equation R2 sample size 
Black birch =2.11+(0.042*height) 0.60** 34 
Red maple =1.919+(0.053*height) 0.51** 24 
White oak =2.686+(0.032*height) 0.57** 14 
Red oak =2.839+(0.031*height) 0.32** 124 
White pine =2.192+(0.055*height) 0.79** 77 
Red pine =3.099+(.012*height) 0.08* 54 
Mixed hardwood =2.115+(0.049*height) 0.64** 26 
Hemlock =2.354+(0.064*height) 0.70** 10 
Hickory spp =1.8997+(0.0578*height) 0.81* 6 
White birch =1.7373+(.0786*height) 0.62* 13 
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Subplot Biomass 

 The plot level histograms highlight the difference in biomass distribution 

between both estimation methods (Fig. 17).  With only 10 data points, it is 

difficult to get a sense of how the methods will compare on a larger scale.  The 

regression analysis using the remote method biomass as predictor for the 

dominant canopy shows a significant regression for predicting the biomass of all 

dominant and co-dominant trees within a plot (p=0.012, R2=0.563) (Fig. 18).  The 

standardized residual scatterplot does not show any clear pattern (Fig. 19).  Using 

the remote biomass estimation to predict total ground biomass was slightly less 

effective than for predicting dominant canopy biomass but still yielded a 

significant regression (p=0.022, R2=0.499) (Fig. 20).  The residuals do not seem 

to follow a pattern (Fig. 21).  
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Figure 17.  Histograms of ground and lidar biomass data for the 10 
subplots scaled to the hectare level.  The top histogram shows the remote 
method data distribution and the bottom histogram shows the total ground 
biomass data distribution. 

 
 

 
 

Figure 18.  Scatterplot of the labeled plots for dominant canopy biomass 
using the remote method as the independent variable and the ground-
measured biomass as the dependent variable.  Ground dominant tree 
biomass in megagrams (Mg)=89.333+(0.526*remote biomass 
estimation(Mg)).  Dashed line y=x. 



 
40 

 

 
 

Figure 19.  Scatterplot of the plot residuals of remote biomass as predictor 
of dominant canopy biomass.  Standardized predicted values are on the x 
axis and the standardized residuals are on the y axis.  All values are within 
two standard deviations. 

 

 

Figure 20.  Scatterplot regressing total ground biomass against the 
remotely estimated biomass.  Total ground biomass (for all trees with 
DBH>12.4cm) =125.492+(0.499*remote biomass estimation).  Dashed 
line, y=x.   
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Figure 21.  Scatterplot of the residuals of remote biomass as predictor of 
total biomass (all trees DBH>12.4cm).  Standardized predicted values are 
on the x axis and the standardized residuals are on the y axis.  All values 
are within two standard deviations. 

 

 Because the remote methodology only measures trees in the dominant 

canopy, I expected a general underestimation of biomass when comparing 

remotely-calculated biomass with total ground-measured biomass.  This was not 

always the case, although there was more underestimation than overestimation 

(Fig. 20, Table 2). 
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Table 2.  Comparison of remotely calculated biomass with ground 
biomass.   

Plot 

Remote 
biomass 
(Mg/ha) 

Ground 
biomass all 
trees 
(Mg/ha) 

Difference 
remote-ground 
(Mg/ha) 

Remote 
error = 
Difference/ 
ground 
biomass  

Lidar 
plot 
height 
average 
(m) 

2.2 259.27 224.66 34.61 0.15 30.14 
3 168.69 205.48 -36.79 -0.18 24.05 
5 274.47 283.25 -8.78 -0.03 28.03 

230 225.15 289.72 -64.57 -0.22 27.24 
236 314.95 290.94 24.01 0.08 29.88 
272 70.62 125.34 -54.72 -0.44 14.22 
388 137.90 243.24 -105.34 -0.43 24.98 
428 254.70 164.92 89.78 0.54 27.77 
486 162.60 205.32 -42.72 -0.21 26.13 
499 344.90 293.26 51.64 0.18 31.22 

Sum 2213.25 2326.13 -112.88   
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DISCUSSION 

Estimation of tree heights using lidar 

Sampling design 

The initial expense of flying the AIMS system is considerable, so for 

profiling lidar to be a cost-effective technology, researchers need to obtain data 

over large areas.  However, ground sampling is time-intensive, so foresters often 

estimate metrics by collecting population-level data as subplots within a sample 

area and scaling the results; or by conducting a systematic sampling of the target 

area (Avery and Burkhart 1993).  We chose to conduct a systematic sampling, 

using a ground-sampling scheme that would allow us to obtain height data over 

long transects.  Our 10m*20m rectangular grid pattern provided an adequate 

representation of the forest canopy for my study, although I would have obtained 

better ground representation if all of the trees I measured within the grid pattern 

were canopy trees (Fig. 22).  After I removed the suppressed and intermediate 

trees, there were areas without adequate ground data.  Where data were sparse but 

existent I retained the plot area; where it was nonexistent, I eliminated that area of 

the transect from the data (Fig. 4).   
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Figure 22.  Sampling scheme (10*20m) grid pattern over ~20-30m tall tree 
canopy.  Used to verify sampling density.  Dominant canopy stem density 
~240 trees/ha. 

 

Height analysis 

 The regression analysis indicated that stand height averages were lower 

when using lidar measurements.  The histograms and dot plots of the full data set 

corroborate the lower value with the lidar averages (Fig. 10 & 11).  This under-

prediction of canopy height agrees with published research (Patenaude et al. 

2004) and may be a result of each laser pulse’s penetration into the deciduous 

canopy before reaching enough vegetative mass to reflect a return pulse (Gaveau 

and Hill 2003).  Nelson et al. (1997) cited earlier researchers who found that the 
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conical nature of conifers created a negative bias in lidar height measurements 

and that lidar tended to under-predict pine forest average canopy heights by 8-

10%.  My conifer plots show conflicting data with an over-prediction of 7% in 

plot 1, an under-prediction of nearly 20% in plot 2, and nearly equivalent values 

in plots 3 and 5.  Plot 1 has very limited datapoints (3 lidar and 3 ground), and 

therefore cannot reliably be used as an indicator for over-prediction of height. 

The significant results (R2=0.658) of the regression model suggest that a 

profiling lidar trace can predict average forest stand height.  However, the under-

prediction meant that the regression model was necessary to convert the average 

lidar height values to the average ground height.   

 

Estimating DBH 

Allometric equations use DBH because it is easy to measure accurately, as 

opposed to height, which is much more difficult and time consuming to collect in 

the field.  This particular analysis benefitted from my measurement of trees over a 

large DBH and height range (Appendix 1).  Since I based my hypothesis on plot-

level height and biomass values, the variation around the regression line seemed 

to be acceptable.   

Results indicate a significant relationship between a tree’s height and its 

DBH, for all of my measured species, except red pine (Fig. 16 and Table 1).  

Although red pine showed no quantifiable relationship between height and DBH, 

these specimens may have reached their maximum height (Sharma and Parton 
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2007) and continue grow in diameter according to their ability to capture 

resources.  Since we need more research before using height to estimate red pine 

DBH, I chose subplots without red pine.  Another consideration is the red oak 

regression, which is highly significant but has a fairly weak predictive capability.  

The R2 improved when I ran a regression on the small subset of the red oaks that 

were single-stemmed trees from the forest interior.  However, I chose to use the 

full dataset regression model because of its much larger sample size and the 

notion that the equation would produce a reasonable average DBH from height, 

with overestimations and underestimations balancing each other in the model.  

My data indicate a great deal of inherent variation in growth patterns within the 

species.  It is possible that my consolidation of oaks (black, red, scarlet, pin), into 

a single category, contributed to the wide range in values.   

As a final consideration, the effectiveness of these models may be limited 

to this study area because I did not take resource availability or stem density into 

consideration when creating these models (Sharma and Parton 2007). 

 

Biomass 

Biomass range and scaling 

Ecologists have found that old growth is the type of forest that contains 

the largest values of aboveground biomass density (AGBD) (Brown et al. 1997).  

Brown and Schroder (1999) found that old-growth forests in the eastern United 

States had an average AGBD range of 220-260Mg/ha.  They compared this to the 
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FIA database’s values of 50-150Mg/ha and 75-175Mg/ha for conifer and 

hardwood forests, respectively (Brown et al. 1997).  Since my study area is not an 

old growth forest, I expected the values to fall below those published by Brown 

and Schroder, but four of my ten biomass plots had scaled biomass values over 

260Mg/ha, for both the ground and remote calculations (Table 2).  However, 

Jenkins et al. (2001) cite research with published hardwood biomass values from 

31.9-431Mg/ha.  My data are well within this range.  July 2009 data from 15 

1.0ha plots in Harvard Forest, in central Massachusetts, have biomass values that 

range from 119-268Mg/ha (Cook et al. 2011).  In addition to the direct calculation 

of biomass, Cook et al. (2011) also subdivided the 1.0ha plots into 16 subplots 

and calculated biomass in each, and then scaled to the hectare.  These biomass 

data range from 51-515Mg/ha (with the scaling) over all of the subplots, with an 

overall average biomass of 140.68Mg/ha.  This range indicates a high level of 

variability within and between the 1.0ha plots, but the overall average remains 

within FIA expectations.  The variation introduced by the scaling should be noted 

because I obtained my results by scaling each 900m2 plot to the hectare level 

[(10,000m2/ha)/900m2=11.1111].  Since a common measurement unit for forest 

biomass is Mg/ha, future research using this methodology should aim to estimate 

biomass in 1.0ha plots to avoid errors caused by scaling to the measurement level, 

as evidenced in the Cook et al. (2011) data.  However, the forest variation 

ultimately must determine plot size.  Although averages are useful parameters, it 

is the calculation of plot-level variation that will enable us to improve upon 
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current large-scale biomass estimates.  For example, in my subplots, the average 

ground-data biomass is 232Mg/ha and the average remote-data biomass is 

221Mg/ha.  These very similar results mask plot-level variation and errors. 

 



 
49 

 

Within plot height variation   

In addition to scaling-induced errors, future research must consider the 

within-plot lidar height variation.  In one of my preliminary analyses, I divided 

the area into 1.0ha plots and used my remote methodology to estimate biomass.  

What I found was that one of the 1.0ha plots had both a mature, tall forest section 

and a young, short forest section (Fig. 23).  Using the average height of the entire 

plot gave me a total estimated biomass value of 96.63Mg/ha, but separating the 

plot and calculating the two sections separately gave me a total estimated biomass 

value of 167.90 for the area (Table 3).  I obtained a lower value in the full plot 

because height predicts DBH and the DBH increase-to-biomass increase for small 

trees is not linear (Jenkins et al. 2001); so the lower average height suppresses the 

overall plot-level biomass.  Brown et al. (1997) found that a small proportion of 

large diameter trees (DBH>70cm) could comprise up to 30-40% of a forest’s 

biomass.  Depressing the height subsequently constricts the DBH and therefore 

the biomass.  In order to use height to estimate biomass, researchers need to 

determine how much within-plot height variation can occur while maintaining 

effective estimations.  This area is an example of forest variation that requires an 

alteration of the target 1.0ha plot size. 
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Figure 23.  Lidar height values indicating relative plot height in meters.  
This 1.0ha plot (plot7) is 200m*50m. 

  

 Table 3.  Biomass underestimation due to lowered average height. 

 

Red oak biomass consideration 

In addition to concerns about scaling and plot height variation, I noticed 

the large effect red oaks have on the total biomass.  Published specific gravity 

Plot 
Average lidar 
height (m) 

Estimated 
biomass 
(Mg/0.5ha) 

Estimated 
biomass 
(Mg/1.0ha) 

7 N + S 19.49 na 96.63 
7 N 25.77 103.11 206.22 
7 S 14.74 64.79 129.59 

Sum of 7N + 7S biomass 169.90 
 

7N 

7S 
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values indicate that red oak is among the densest species in this study area 

(Jenkins et al. 2003).  I generally underestimated the number of canopy-height red 

oak in each deciduous plot (Fig. 24).  When I could not positively identify a 

species, I used the mixed hardwood regression height to DBH regression and the 

generic mixed hardwood allometric biomass equation, which calculate a lower 

biomass value than the red oak equation.  Additional photointerpretation 

experience should help to minimize the underestimation.  I ran some analyses to 

determine the disproportionate influence red oaks have on biomass in these plots 

(Fig. 25).  The contribution of red oaks to the total biomass was always larger 

than their proportion in the canopy.  The density and abundance of this species 

highlight the importance of accurately identifying red oaks in the images.  

 

Figure 24.  Comparison of percentage of red oaks I identified in the 
imagery with the percentage of red oak canopy trees in each plot. 

 

 

0
10
20
30
40
50
60
70
80
90

100

428 5 3 230 486 236 388 499

Pe
rc

en
t r

ed
 o

ak
 

Plot number 

canopy red oak
(remote data)

canopy red oak
(ground data)



 
52 

 

 
 
Figure 25.  Relationship between red oak canopy cover and red oak 
biomass.  Triangles are ground data and squares are remote data.  The x=y 
line highlights the influence of red oak. The trendlines show the strength 
of these relationships.  Red oak ground biomass=61.28+(0.3965*% 
canopy red oaks).  Red oak lidar biomass= 32.692+(0.7253*% red oak 
identified). 
 

 

Species identification 

The final methodology consideration is the photointerpretation analysis, 

where I identified species and counted stems in the GIS.  I found that it was 

crucial to have spent some time learning how to identify species in the high-

resolution imagery and I believe that with some training examples and a good 

photointerpretation key, this method can produce satisfactory results.  I frequently 

referred to the identification key and used ground-identified species that were 

locatable in the imagery for comparisons.  It will be important for researchers to 

have some knowledge of potential forest species. 
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Stem density   

To count individual trees, it was necessary to make them as distinct as 

possible.  Switching from natural color to a standard deviation histogram stretch, 

in the GIS, enhanced the color variation and increased image contrast.  This 

helped to delineate crowns (Figs. 26a and b).  In order to determine individual 

trees in a two-dimensional image, it is necessary to be able to identify full and 

partial crowns.  This is somewhat challenging because trees with segmented 

crowns can have the appearance of being multiple trees.  Using minimum crown 

diameters helped me avoid some of the error, although large branches likely 

produced some misleading results.  Although I expected that my minimum crown 

diameter criterion would underestimate what is visible in imagery due to the 

crown overlap that occurs in a natural forest stand, I generally over-counted stems 

(Fig. 27).  This may be the result of seeing and counting trees that I classified as 

intermediate on the ground or more likely, of classifying dominant branches as 

trees.  These results suggest that I introduced a level of inconsistency by counting 

trees with segmented crowns as multiple trees.  The two plots where I under-

estimated the dominant canopy had the highest overall stem densities and the 

highest proportions of conifers where it would have been more difficult to 

overestimate stem density.  In addition, pines generally do not have multiple 

crowns and therefore researchers would be less likely to overestimate stem 

density.   
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Figure 26a and b.  Natural color (top) and standard deviation stretch 
(bottom) of an area within my study site.  The stretch is one technique to 
help distinguish individual trees.  
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Figure 27.  Scatterplot illustrating over-estimation of dominant canopy 
trees.  [Percent of dominant canopy visible in image=(image stem 
density/actual ground stem density)*100] as the predictor for [percent of 
trees in the dominant canopy=(actual dominant canopy stem density/actual 
ground stem density)*100].  

 
Biomass comparison 

I chose sample plots that would encompass a range of forest types and 

ages.  Neither the ground nor remote method histograms indicate a normal 

distribution, but this may simply be an effect of the small sample size (n).  Even 

with the small n, the regression model (remote biomass as a predictor of total 

biomass) suggests that the remote method is a significant predictor of ground 

biomass, and the R2 indicates that the model explains about half of the variation in 

calculation methods.  Predicting dominant canopy biomass from the remote 

biomass improves the R2 (0.562).  This model has the advantage that I am 
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comparing the same data, the dominant canopy that is visible in the imagery.  

However, I do not focus on that regression, since the goal was to estimate total 

biomass.   

We must use caution in analyzing these results because of the small 

sample size (10), but some of the sources of variation in the remote measurement 

are identifiable.  I examined the three plots with a greater than 30% difference in 

biomass calculations (Table 3).  Plot 272 seems to be a primary succession forest, 

with an average tree height of approximately 14m.  This plot has a very high 

actual stem density of over 1500 trees/ha (1189 canopy trees), but I was only able 

to see 855 trees/ha in the image.  Here the biomass underestimation is a direct 

result of the stem density underestimation.  In plot 388, I underestimated the 

number of canopy-height red oaks and overestimated the number of mixed 

hardwoods, which underestimated the remote biomass values (Fig. 24).  In a test 

analysis, where I substituted the number of red oaks and mixed hardwoods to 

reflect the actual stem count proportion while maintaining the lidar height data, I 

obtained biomass results that compared very favorably to the ground-measured 

data (Table 4).  In plot 428 however, I also underestimated the percentage of 

canopy height red oaks, but in this plot, the remote estimation method 

overestimated the biomass.  I counted the correct number of stems in the plot (28), 

but this is actually an overestimation, since I should have only been able to see 

~12 canopy trees in the image, instead of 28, according to my ground data.  To 

examine this relationship, I used a test similar to the proportion of red oak in plot 
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388, except that I scaled the total number of trees visible in the image to reflect 

what I should have seen, and again obtained very favorable results (Table 5).  

Possibly, the proportion of species types and relatively sparse nature of the plot 

allowed me to count the intermediate trees as well as the dominant trees in the 

image, which would affect the estimation, since I use one lidar height to obtain 

DBH measurements.  Further experience determining stem density should 

minimize this source of error.  One additional consideration for the biomass 

discrepancy in this plot is the location of the lidar points.  Although the lidar trace 

does not pass directly over this plot, over half of the plot is within 25m of the lidar 

trace and there is no obvious difference in crown diameter or forest stage, so I 

expect that the lidar height source location is of small consequence (Fig. 5).   

 
Table 4.   Red oak tree count comparison for plot 388.  Biomass is a 
function of average lidar plot height converted to DBH and input into the 
appropriate regression equation. 

 

 

 

 

 

 
Original tree count 
as seen in images 

Original 
remote 
biomass 

 
Substituted 
tree count  

Substituted 
biomass 

 
Ground 
Biomass 

8 red oaks 82Mg 16 red oaks 165Mg  
9 mixed hardwood 34Mg 1 mixed 

hardwood 
4Mg 

Sum 139Mg  191Mg 210Mg 
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Table 5.  Total tree count comparison for plot 428.  Biomass is a function 
of average lidar plot height converted to DBH and input into the 
appropriate regression equation. 

  

As the data show, the remote methodology may overestimate biomass 

(Table 3).  I expect that improving the quantification of dense species such as red 

oak and consistently determining stem density would minimize the difference; but 

additional research would help to test this potential.  Except for plot 5, the plots 

with the highest average heights are the ones that overestimate biomass (Table 2).  

There is also the possibility that the height regression model is not linear.   

Furthermore, in my preliminary analysis, I conducted a backwards 

multiple regression using remote biomass, lidar height, and percentage red oak as 

the independent variables, and ground biomass as the dependent variable.  The 

first variable excluded was remote biomass.  This suggests that my methodology, 

in its current form, weakens the predictive power of lidar-derived heights to 

estimate biomass.  Using only lidar plot average height as the predictor and 

ground biomass as the dependent variable yielded an R2=0.54 with p=0.16.  

However, an improvement in the remote methodology results may change this 

Original tree count 
=28 trees 

Original 
remote 
biomass 

Altered tree count 
=12 trees 

Altered 
remote 
biomass 

Ground 
Biomass 

1 white pine 4Mg 1 white pine 4Mg  
 3 black birch 14Mg 1 black birch 5Mg 

15 red oak 186Mg 9 red oak 112Mg 
3 red maple 16Mg 0 red maple 0 
6 mixed hardwood 34Mg 1 mixed 

hardwood 
6Mg 

Sum 255Mg Total altered 126Mg 165Mg 
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relationship.  This is evident because even more favorable results occurred using 

lidar height and actual percent red oak (R2=0.69, p=0.16).  These analyses suggest 

that we may be able to obtain good results with height and red oak data or height 

data alone.  We need to conduct more research to determine which variables are 

important and under what conditions. 

My methodology is a series of estimations; I use lidar to estimate plot 

height, then use plot height to estimate each species’ average DBH, then use the 

average DBH in the appropriate biomass equation, scale that biomass to the 

hectare level, and sum the results.  Although each individual step introduces some 

level of error, I expect that we can minimize these errors by refining the methods 

(Figure 28).  Currently, the mean error is less than 25% for plot level biomass 

(Table 2).  Any improvements should make this a feasible method for estimating 

stand-level biomass.   

 

Figure 28.  Biomass per hectare adjusted to reflect actual values for plots 272, 
428, and 388.  The red bars represent data that reflects actual stem density (plots 
272, 428) or percent red oak (388).  I did not alter the data for any of the other 
plots.  These changes improve the predictive ability of the remote methodology 
(R2=0.74).  
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RECOMMENDATIONS 

My ground transects were an average of 30m wide, but for future studies 

comparing average stand height, I would increase the width to 50m in order to 

estimate average lidar height using 50m*200m, 1.0hectare plots, assuming normal 

homogeneity in the canopy.  This sampling scheme, at 20m*10m density, obtains 

data for an average of 60 trees per hectare.  In addition, I would establish a goal of 

two consecutive 100m long plots per area (30 trees per 50m*100m plot).  This 

will provide the ability to determine average height at both the hectare and half-

hectare level and enable researchers to determine the maximum effective plot 

length for obtaining average height measurements for use in estimating biomass.  

Because the goal is to obtain plot-average heights, researchers may need to 

increase the sampling density if the stem density is high, or the canopy height and 

crown diameter are highly variable.  

The predicted canopy height from lidar regression model is sufficient for 

my study, but is too limited for use as a generic equation.  Therefore, the next step 

is to conduct more research, over multiple areas, to create a robust regression 

equation so that further ground verification is not required.  Since using ground 

measurements to obtain tree heights is time intensive, I recommend delineating 

plots with defined edges and at roadway borders, and obtaining the remote (lidar 
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and image) data before conducting any actual ground measurements to avoid 

measuring ground areas with no lidar data due to variation of the airplane path. 

I also recommend creating a series of images as training exercises to 

improve red oak identification and stem density delineation.  This should improve 

the biomass regression equation. 
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CONCLUSION 

Having accurate forest height data is a key parameter for remote biomass 

estimation.  This study adds to the collection of lidar research, and further 

documents the potential value of using remote sensing technologies to obtain 

forest metric data.  My results suggest the possibility of using lidar for estimating 

forest stand height.  I expect that further research, if conducted measuring only 

canopy height trees within the remotely sampled area, will show lidar to have a 

better predicting ability of average plot height than my results indicated.  The 

methodology holds promise for estimating forest biomass; however, the ability to 

identify species and consistently count stems is crucial for accurate biomass 

estimation.   

This study also provides a framework for designing future height and 

biomass estimation lidar studies.  The stand height prediction results warrant 

additional research, with a goal of obtaining a useable (average lidar-to-average 

ground) regression equation for the northeastern United States.   

Since the results of my small dataset show a significant relationship 

between ground- and remotely-measured plot biomass, it would be worthwhile to 

collect the additional data required to clarify both the potential applications and 

limitations of using lidar height and imagery to estimate biomass.  
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The benefit of using lidar and high-resolution imagery is its relative 

affordability and its adaptability.  Although flight time is expensive, the flight to 

obtain my data took just over an hour and covered approximately 10 ha.  These 

results suggests that my methodology, if developed, may allow scientists to obtain 

approximate biomass estimates in varied forest applications effectively and at a 

lower cost than with traditional ground-based and stereoscopic remote sensing 

methods. 
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APPENDICES 

Appendix 1.  Sample tree data for the Mount Holyoke Study Area.  Canopy 
(1=dominant, 2=co-dominant, 3=intermediate, 4=suppressed).  Forest type 
(<33.33% conifer = deciduous, plots with 33.34-66.67% conifer = mixed, and 
plots with >66.68% conifer = coniferous).  Coordinates are Massachusetts State 
Plane Coordinate System, mainland NAD 1983.  Plot and forest type data with 
NA are tree data that I excluded from the dataset because of lack of lidar data or 
because it was an intermediate or suppressed tree.  I included these trees in this 
appendix since I used them in the height to dbh regression equations.  
 
Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

421 Pinus strobus 3 16.0 24.7 20 Mixed 112920 891478 
422 Quercus sp. 2 21.1 47.5 20 Mixed 112909 891476 

423 
Tsuga 
canadensis 3 20.7 33.6 20 Mixed 112900 891477 

424 Pinus strobus 2 35.8 54.3 20 Mixed 112875 891477 
425 Quercus sp. 2 20.6 43.8 20 Mixed 112877 891491 
426 Pinus strobus 1 38.4 63.2 20 Mixed 112882 891489 
427 Quercus sp. 2 36.5 31.1 20 Mixed 112891 891492 
428 Pinus strobus 2 29.3 30.2 20 Mixed 112918 891498 
429 Quercus sp. 2 24.8 44.7 20 Mixed 112907 891496 

430 
Acer 
platanoides 4 12.5 13.3 20 Mixed 112896 891498 

431 Pinus strobus 4 23.0 16.9 20 Mixed 112920 891520 
432 Pinus strobus 4 12.9 20.3 20 Mixed 112908 891518 

433 
Acer 
platanoides 3 21.1 23.4 20 Mixed 112900 891521 

434 Acer rubrum 3 15.3 12.7 20 Mixed 112878 891513 
435 Pinus strobus 4 12.0 14.5 20 Mixed 112880 891533 
436 Acer rubrum 4 14.7 14.4 20 Mixed 112888 891531 

437 
Acer 
platanoides 3 19.2 19.6 20 Mixed 112901 891532 

487 Quercus sp. 1 33.3 49.3 19 Decid. 112991 891692 
488 Quercus sp. 1 27.1 43.5 19 Decid. 113001 891693 
489 Quercus alba 1 35.7 45.7 19 Decid. 113011 891689 
490 Quercus sp. 2 24.5 36.1 19 Decid. 113020 891690 
491 Quercus sp. 2 26.3 34.0 19 Decid. 113017 891671 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

492 Quercus sp. 2 30.6 41.9 19 Decid. 113003 891673 
493 Quercus sp. 2 27.4 43.1 19 Decid. 112996 891674 
494 Quercus sp. 2 27.8 32.7 19 Decid. 112988 891675 
495 Quercus sp. 2 26.2 50.7 19 Decid. 112982 891675 
496 Pinus strobus 4 12.0 12.8 19 Decid. 112964 891674 
497 Quercus sp. 2 24.0 50.0 19 Decid. 112966 891656 
498 Quercus sp. 3 28.4 24.2 19 Decid. 112971 891647 
499 Quercus sp. 2 28.9 50.2 19 Decid. 112985 891637 
500 Quercus sp. 2 34.7 34.2 19 Decid. 112993 891639 
709 Quercus sp. 1 34.9 49.4 19 Decid. 112965 891634 
710 Quercus sp. 3 14.9 20.2 19 Decid. 112979 891637 
711 Acer rubrum 2 29.9 25.9 19 Decid. 112998 891656 
712 Quercus sp. 1 33.5 53.4 19 Decid. 112991 891655 
713 Acer rubrum 3 16.4 14.2 19 Decid. 112982 891693 
714 Acer rubrum 4 12.4 12.1 19 Decid. 112973 891691 
269 Betula lenta 2 14.9 15.6 18 Mixed 113117 891398 
270 Pinus strobus 4 8.8 10.2 18 Mixed 113109 891398 
271 Pinus strobus 2 10.5 21.0 18 Mixed 113098 891393 
272 Betula lenta 2 12.4 18.9 18 Mixed 113088 891395 
273 Pinus strobus 4 10.6 16.5 18 Mixed 113087 891373 
274 Pinus strobus 2 10.9 18.8 18 Mixed 113099 891372 
275 Betula lenta 2 12.5 16.3 18 Mixed 113109 891382 
276 Pinus strobus 2 14.0 24.7 18 Mixed 113119 891382 
277 Betula lenta 2 10.7 17.2 18 Mixed 113122 891361 
278 Pinus strobus 4 10.0 12.2 18 Mixed 113113 891360 
279 Betula lenta 2 16.2 19.4 18 Mixed 113098 891349 
280 Pinus strobus 2 11.2 19.0 18 Mixed 113091 891354 
281 Betula lenta 2 17.4 19.5 18 Mixed 113091 891336 

282 
Betula 
papyrifera 2 10.1 15.2 18 Mixed 113098 891333 

283 Betula lenta 2 11.9 14.9 18 Mixed 113112 891342 
284 Pinus strobus 2 13.8 22.3 18 Mixed 113122 891343 
285 Pinus strobus 2 13.0 26.8 18 Mixed 113121 891325 
286 Pinus strobus 2 12.6 25.2 18 Mixed 113111 891322 
287 Betula lenta 2 11.9 13.0 18 Mixed 113099 891312 

288 
Betula 
papyrifera 2 16.7 16.4 18 Mixed 113090 891313 

289 
Betula 
papyrifera 2 16.2 23.5 18 Mixed 113093 891294 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

290 
Betula 
papyrifera 2 14.3 13.0 18 Mixed 113099 891293 

291 Pinus strobus 4 6.1 13.8 18 Mixed 113114 891300 
292 Pinus strobus 2 12.8 27.2 18 Mixed 113123 891298 

832 
Acer 
saccharum 2 24.8 38.3 17 Decid. 113153 891648 

833 Quercus sp. 2 29.7 34.7 17 Decid. 113152 891630 
834 Quercus sp. 2 33.3 64.3 17 Decid. 113152 891610 
835 Quercus sp. 2 25.9 27.4 17 Decid. 113156 891616 
836 Quercus sp. 2 35.7 77.3 17 Decid. 113160 891611 
837 Quercus sp. 2 25.7 49.6 17 Decid. 113166 891605 
838 Betula lenta 2 27.1 30.1 17 Decid. 113167 891630 
839 Quercus sp. 2 27.2 42.5 17 Decid. 113167 891645 
840 Quercus sp. 1 32.9 51.3 17 Decid. 113161 891652 

841 
Tilia 
americana 2 28.4 39.4 17 Decid. 113160 891627 

842 Quercus sp. 2 21.8 33.6 17 Decid. 113165 891634 
241 Pinus strobus 4 20.6 25.8 16 Decid. 113070 891535 
242 Pinus strobus 4 9.7 16.9 16 Decid. 113079 891534 
243 Quercus sp. 4 13.2 13.1 16 Decid. 113092 891533 
244 Carya sp. 1 35.0 75.1 16 Decid. 113101 891532 
245 Betula lenta 2 28.7 30.4 16 Decid. 113099 891513 
246 Betula lenta 4 17.7 22.5 16 Decid. 113092 891511 
247 Quercus sp. 4 24.3 38.3 16 Decid. 113079 891514 
248 Betula lenta 4 12.6 12.6 16 Decid. 113068 891515 
249 Carya sp. 4 11.2 11.7 16 Decid. 113068 891497 
250 Acer rubrum 4 13.8 14.4 16 Decid. 113080 891499 

251 
Acer 
saccharum 4 11.6 11.6 16 Decid. 113094 891497 

252 Quercus sp. 2 17.9 37.6 16 Decid. 113103 891498 
253 Betula lenta 2 33.3 41.6 15 Decid. 113103 891481 
254 Acer rubrum 4 13.0 13.6 15 Decid. 113097 891479 
255 Betula lenta 4 9.4 12.6 15 Decid. 113083 891473 
256 Quercus sp. 2 26.3 33.1 15 Decid. 113074 891475 
257 Acer rubrum 4 7.4 13.2 15 Decid. 113072 891458 
258 Quercus sp. 2 24.5 29.0 15 Decid. 113083 891461 
259 Pinus strobus 4 13.8 17.7 15 Decid. 113096 891464 

260 
Populus 
grandidentata 1 30.9 37.2 15 Decid. 113107 891461 

262 Quercus sp. 2 24.2 44.1 15 Decid. 113108 891445 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

209 Quercus sp. 2 34.5 40.7 14 Decid. 113078 891702 
210 Quercus sp. 1 42.4 62.8 14 Decid. 113084 891701 
211 Betula lenta 4 18.0 14.0 14 Decid. 113090 891699 
212 Betula lenta 4 26.4 20.9 14 Decid. 113103 891699 
213 Betula lenta 2 22.5 23.7 14 Decid. 113101 891680 
214 Betula lenta 4 21.5 17.6 14 Decid. 113092 891681 
215 Betula lenta 4 19.2 14.3 14 Decid. 113085 891680 
216 Quercus sp. 1 38.6 45.0 14 Decid. 113073 891681 
217 Quercus sp. 1 31.2 40.2 14 Decid. 113076 891663 
218 Quercus sp. 1 30.6 54.6 14 Decid. 113083 891655 
219 Quercus sp. 1 29.6 52.9 14 Decid. 113093 891662 
220 Betula lenta 4 18.4 20.2 14 Decid. 113098 891661 
221 Betula lenta 2 19.5 19.5 14 Decid. 113101 891642 
222 Quercus sp. 1 30.7 50.4 14 Decid. 113094 891642 
223 Betula lenta 4 17.3 13.9 14 Decid. 113086 891639 
224 Quercus sp. 2 28.8 32.9 14 Decid. 113080 891636 
225 Quercus sp. 2 33.9 40.0 14 Decid. 113079 891616 
226 Quercus sp. 2 34.2 33.4 14 Decid. 113090 891617 
227 Quercus sp. 1 36.6 49.0 14 Decid. 113092 891620 
228 Quercus sp. 2 23.1 38.4 14 Decid. 113098 891618 
229 Quercus sp. 1 37.5 62.3 14 Decid. 113097 891597 
230 Quercus sp. 3 23.1 23.7 14 Decid. 113092 891598 
231 Quercus sp. 2 31.0 43.0 14 Decid. 113085 891594 
232 Quercus sp. 1 34.4 63.3 14 Decid. 113074 891596 
478 Quercus sp. 2 28.1 49.2 13 Decid. 112997 891734 
479 Pinus strobus 4 8.8 12.3 13 Decid. 113006 891734 

480 
Acer 
platanoides 3 19.6 19.1 13 Decid. 113016 891737 

484 Pinus strobus 3 12.3 16.5 13 Decid. 113012 891711 
485 Quercus alba 2 19.8 24.9 13 Decid. 113001 891711 

486 
Populus 
deltoides 2 28.3 28.7 13 Decid. 112999 891715 

715 Quercus sp. 2 32.5 30.2 13 Decid. 112977 891714 
716 Quercus alba 2 19.4 27.9 13 Decid. 112988 891714 
717 Quercus alba 3 22.0 26.2 13 Decid. 112988 891730 
718 Acer rubrum 4 10.0 15.0 13 Decid. 112978 891731 

701 
Populus 
deltoides 2 29.3 27.0 12 Decid. 112992 891615 

702 Quercus sp. 1 32.9 49.5 12 Decid. 112981 891615 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

703 Quercus sp. 2 21.5 26.8 12 Decid. 112973 891613 
704 Quercus alba 2 28.5 30.8 12 Decid. 112962 891614 
705 Quercus sp. 2 25.8 36.9 12 Decid. 112959 891595 
706 Quercus sp. 2 30.3 54.8 12 Decid. 112972 891595 
707 Quercus sp. 2 25.7 43.1 12 Decid. 112982 891590 
708 Pinus strobus 3 19.8 29.6 12 Decid. 112990 891590 
843 Quercus sp. 2 26.2 47.8 12 Decid. 112990 891574 
844 Quercus sp. 2 21.0 35.1 12 Decid. 112982 891571 
845 Quercus sp. 2 26.0 41.1 12 Decid. 112974 891572 

201 
Fagus 
grandifolia 2 16.0 26.0 11 Decid. 113082 891745 

202 Quercus sp. 2 31.5 36.2 11 Decid. 113090 891744 
203 Quercus sp. 2 29.3 45.7 11 Decid. 113100 891741 
204 Betula lenta 4 17.6 19.5 11 Decid. 113108 891738 
205 Acer rubrum 4 20.4 11.5 11 Decid. 113105 891722 
206 Quercus sp. 4 15.6 13.9 11 Decid. 113099 891725 
207 Quercus sp. 1 28.5 40.7 11 Decid. 113094 891722 
208 Quercus sp. 2 18.6 25.4 11 Decid. 113081 891720 
233 Quercus sp. 2 24.1 31.9 10 Decid. 113075 891577 
234 Pinus strobus 4 14.5 12.5 10 Decid. 113084 891573 
235 Carya sp. 4 26.1 16.8 10 Decid. 113090 891576 
236 Betula lenta 2 29.7 27.5 10 Decid. 113096 891576 
237 Quercus sp. 2 33.2 28.7 10 Decid. 113100 891556 
238 Quercus sp. 1 35.2 42.0 10 Decid. 113093 891555 
239 Quercus sp. 2 32.4 49.6 10 Decid. 113079 891558 
240 Pinus strobus 4 16.4 20.1 10 Decid. 113072 891556 
465 Quercus alba 2 26.6 33.3 9 Mixed 112922 891667 
466 Quercus sp. 1 25.9 64.4 9 Mixed 112922 891688 
467 Quercus sp. 1 27.5 49.5 9 Mixed 112912 891683 
468 Pinus strobus 1 31.1 43.8 9 Mixed 112905 891685 
469 Pinus resinosa 1 26.6 29.8 9 Mixed 112880 891674 

470 
Tsuga 
canadensis 2 27.4 55.6 9 Mixed 112883 891690 

471 Pinus strobus 1 35.1 79.6 9 Mixed 112891 891689 
472 Quercus sp. 2 17.8 22.0 9 Mixed 112902 891693 
473 Acer rubrum 2 23.8 31.8 9 Mixed 112922 891703 
474 Pinus strobus 4 20.5 20.2 9 Mixed 112920 891723 
475 Pinus strobus 3 13.2 39.9 9 Mixed 112912 891722 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

476 Pinus strobus 1 30.8 66.5 9 Mixed 112903 891719 
477 Pinus strobus 1 33.4 63.5 9 Mixed 112884 891711 

12 Quercus sp. 2 21.8 13.1 8 Decid. 112910 891601 
438 Quercus sp. 2 31.1 35.5 8 Decid. 112921 891542 
439 Betula lenta 4 14.4 11.7 8 Decid. 112912 891538 
440 Quercus sp. 2 33.3 70.0 8 Decid. 112900 891545 
441 Quercus sp. 2 29.9 51.0 8 Decid. 112920 891563 
442 Acer rubrum 3 20.6 19.3 8 Decid. 112914 891563 
443 Pinus strobus 4 16.9 17.1 8 Decid. 112900 891563 
444 Quercus sp. 2 23.3 35.1 8 Decid. 112880 891552 
445 Quercus alba 2 21.5 41.5 8 Decid. 112877 891573 

446 
Acer 
platanoides 3 24.1 23.9 8 Decid. 112886 891571 

447 Quercus sp. 2 37.0 55.0 8 Decid. 112897 891572 
448 Pinus strobus 1 38.7 60.2 8 Decid. 112923 891583 
449 Quercus sp. 3 16.7 19.2 8 Decid. 112923 891600 
450 Betula lenta 2 19.9 26.6 8 Decid. 112922 891610 

451 
Populus 
grandidentata 2 29.5 41.8 8 Decid. 112913 891610 

452 Quercus alba 4 14.4 19.5 8 Decid. 112879 891592 
453 Betula lenta 4 9.4 11.9 8 Decid. 112870 891592 
454 Betula lenta 3 16.6 14.5 8 Decid. 112878 891611 
455 Quercus alba 2 24.9 31.5 8 Decid. 112891 891614 

456 
Populus 
grandidentata 2 21.2 31.3 8 Decid. 112902 891613 

457 Quercus sp. 2 29.0 39.1 8 Decid. 112923 891618 
459 Acer rubrum 3 14.7 16.3 8 Decid. 112910 891640 
460 Quercus sp. 2 25.1 31.2 8 Decid. 112900 891639 
461 Quercus alba 1 28.0 40.1 8 Decid. 112880 891634 
462 Acer rubrum 4 11.3 13.6 8 Decid. 112881 891650 
463 Quercus sp. 2 27.7 46.2 8 Decid. 112888 891652 
464 Pinus strobus 4 9.0 14.0 8 Decid. 112897 891654 
401 Quercus sp. 2 26.9 50.2 7 Decid. 112887 891376 
402 Caryasp. 3 25.0 20.9 7 Decid. 112906 891379 
403 Pinus strobus 1 39.3 66.2 7 Decid. 112918 891380 
404 Quercus sp. 2 29.4 34.5 7 Decid. 112922 891397 
405 Pinus strobus 1 35.2 45.8 7 Decid. 112914 891396 
406 Pinus strobus 4 12.9 19.3 7 Decid. 112900 891400 
407 Betula lenta 2 18.5 28.9 7 Decid. 112891 891395 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

408 Pinus strobus 3 18.3 23.7 7 Decid. 112879 891414 
409 Pinus strobus 2 31.8 57.1 7 Decid. 112891 891417 
410 Quercus sp. 1 38.2 63.8 7 Decid. 112910 891419 
411 Pinus strobus 3 15.6 27.0 7 Decid. 112922 891418 
412 Quercus sp. 2 35.2 35.6 7 Decid. 112924 891431 
413 Quercus sp. 2 31.8 34.2 7 Decid. 112916 891436 
414 Quercus sp. 1 32.4 62.0 7 Decid. 112907 891436 
415 Betula lenta 4 16.3 11.9 7 Decid. 112894 891435 
416 Quercus sp. 2 30.2 29.1 7 Decid. 112869 891429 
417 Quercus sp. 2 22.5 23.5 7 Decid. 112874 891449 
418 Quercus sp. 3 19.7 19.6 7 Decid. 112884 891449 
419 Pinus strobus 4 11.9 17.1 7 Decid. 112896 891446 
420 Quercus sp. 2 26.3 36.8 7 Decid. 112915 891457 
361 Carya sp. 4 9.0 16.0 6 Decid. 112861 891176 
362 Pinus strobus 4 15.8 16.6 6 Decid. 112870 891173 
363 Pinus strobus 1 30.8 61.1 6 Decid. 112882 891171 
364 Quercus sp. 2 22.3 38.4 6 Decid. 112883 891194 
365 Pinus strobus 4 19.4 25.6 6 Decid. 112873 891193 
366 Pinus strobus 4 18.6 26.2 6 Decid. 112865 891193 
369 Pinus strobus 2 26.8 35.5 6 Decid. 112862 891211 

370 
Tsuga 
canadensis 4 12.9 43.5 6 Decid. 112870 891215 

371 Pinus strobus 1 33.4 32.2 6 Decid. 112884 891218 

372 
Tsuga 
canadensis 4 6.8 10.1 6 Decid. 112884 891237 

373 Quercus sp. 1 27.5 58.0 6 Decid. 112874 891236 
374 Quercus alba 3 13.5 21.1 6 Decid. 112867 891236 
377 Pinus strobus 4 11.9 12.7 6 Decid. 112868 891248 
378 Quercus sp. 3 27.1 21.8 6 Decid. 112875 891250 
379 Quercus sp. 2 21.0 36.4 6 Decid. 112892 891260 
380 Pinus strobus 4 11.2 13.8 6 Decid. 112891 891281 
381 Pinus strobus 3 16.4 19.3 6 Decid. 112883 891280 
382 Quercus sp. 1 22.3 56.3 6 Decid. 112877 891283 
383 Quercus sp. 1 21.2 57.3 6 Decid. 112860 891278 
384 Quercus sp. 2 10.5 23.5 6 Decid. 112863 891296 
385 Betula lenta 3 20.0 16.8 6 Decid. 112872 891293 
386 Pinus strobus 4 13.2 11.8 6 Decid. 112880 891295 
387 Quercus sp. 2 24.0 30.5 6 Decid. 112899 891302 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

388 Acer rubrum 2 25.9 17.4 6 Decid. 112901 891321 
389 Pinus strobus 1 28.5 51.4 6 Decid. 112892 891318 
390 Quercus sp. 2 24.0 35.0 6 Decid. 112884 891319 
391 Quercus sp. 2 25.4 42.5 6 Decid. 112863 891315 
392 Quercus sp. 2 17.5 29.7 6 Decid. 112868 891334 
393 Quercus sp. 1 27.0 53.3 6 Decid. 112879 891335 
394 Pinus strobus 1 34.1 44.3 6 Decid. 112889 891332 
829 Quercus sp. 2 20.8 34.6 6 Decid. 112878 891160 
830 Quercus sp. 2 18.8 43.7 6 Decid. 112870 891166 
831 Quercus sp. 2 17.2 27.1 6 Decid. 112861 891162 
100 Pinus rigida 2 18.2 44.4 5 Conifer 112770 891289 
305 Quercus rubra 1 26.5 42.8 5 Conifer 112793 891305 
306 Quercus rubra 2 14.2 23.0 5 Conifer 112785 891305 
307 Pinus resinosa 2 25.5 25.7 5 Conifer 112776 891304 
308 Pinus resinosa 2 20.0 23.0 5 Conifer 112768 891308 
309 Pinus strobus 1 25.4 60.3 5 Conifer 112765 891339 
310 Pinus resinosa 2 26.5 36.3 5 Conifer 112778 891332 
311 Pinus resinosa 2 21.6 22.6 5 Conifer 112788 891331 
312 Pinus resinosa 2 19.3 35.4 5 Conifer 112799 891322 
313 Pinus resinosa 2 34.7 33.8 5 Conifer 112794 891342 
314 Betula lenta 4 14.0 11.8 5 Conifer 112784 891342 
315 Pinus resinosa 2 22.0 27.5 5 Conifer 112775 891342 
316 Pinus strobus 1 30.3 62.0 5 Conifer 112768 891352 
317 Pinus strobus 2 26.5 50.6 5 Conifer 112768 891370 
318 Pinus strobus 2 33.1 62.8 5 Conifer 112779 891371 
319 Pinus resinosa 2 34.2 39.0 5 Conifer 112787 891372 
320 Pinus resinosa 2 23.7 21.7 5 Conifer 112795 891361 
321 Pinus resinosa 2 31.4 30.5 5 Conifer 112797 891381 
322 Pinus resinosa 2 28.5 31.4 5 Conifer 112787 891383 
323 Pinus resinosa 2 23.5 28.0 5 Conifer 112778 891382 
293 Pinus resinosa 2 20.5 21.5 4 Mixed 112768 891231 
294 Quercus rubra 2 16.0 31.2 4 Mixed 112779 891231 
295 Pinus resinosa 2 20.3 31.2 4 Mixed 112787 891231 
296 Quercus rubra 2 20.9 37.6 4 Mixed 112795 891237 
297 Pinus strobus 2 21.9 49.5 4 Mixed 112794 891259 
298 Pinus rigida 2 19.7 31.0 4 Mixed 112783 891258 
299 Quercus rubra 2 20.7 46.1 4 Mixed 112771 891258 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

300 Pinus resinosa 2 21.3 27.4 4 Mixed 112766 891247 
301 Quercus rubra 2 31.0 48.3 4 Mixed 112762 891267 
302 Quercus rubra 1 29.0 57.2 4 Mixed 112776 891270 
303 Quercus rubra 2 19.0 23.3 4 Mixed 112785 891271 
154 Pinus resinosa 2 32.5 40.3 3 Conifer 112796 891609 
155 Pinus resinosa 2 26.7 32.0 3 Conifer 112784 891610 
156 Pinus resinosa 2 22.8 32.7 3 Conifer 112775 891608 
157 Pinus resinosa 2 25.1 31.2 3 Conifer 112762 891609 
158 Pinus resinosa 2 33.8 36.1 3 Conifer 112799 891627 
159 Pinus resinosa 2 22.0 26.9 3 Conifer 112787 891627 
160 Pinus resinosa 2 24.6 24.9 3 Conifer 112775 891627 
161 Pinus resinosa 0 30.0 22.1 3 Conifer 112766 891630 
337 Pinus strobus 2 28.4 41.4 3 Conifer 112799 891464 
338 Pinus resinosa 2 23.4 31.3 3 Conifer 112789 891465 
339 Pinus strobus 2 32.8 70.8 3 Conifer 112778 891473 
340 Pinus strobus 2 26.0 53.9 3 Conifer 112768 891481 
341 Quercus rubra 4 13.9 36.1 3 Conifer 112770 891505 
342 Pinus strobus 2 31.0 55.9 3 Conifer 112776 891507 
343 Pinus strobus 2 30.5 36.3 3 Conifer 112788 891504 
344 Pinus resinosa 2 20.8 20.4 3 Conifer 112797 891490 
345 Pinus strobus 2 29.2 44.6 3 Conifer 112793 891511 
346 Pinus strobus 2 30.0 46.2 3 Conifer 112784 891513 
347 Pinus resinosa 2 21.8 19.1 3 Conifer 112770 891510 

348 
Tsuga 
canadensis 4 15.4 35.0 3 Conifer 112770 891534 

349 
Acer 
platanoides 4 14.4 10.1 3 Conifer 112768 891557 

350 Pinus resinosa 2 26.8 29.7 3 Conifer 112778 891563 
351 Pinus strobus 1 29.6 82.9 3 Conifer 112790 891557 
352 Pinus strobus 2 30.4 43.3 3 Conifer 112788 891527 
353 Pinus strobus 4 18.8 21.0 3 Conifer 112793 891553 
354 Pinus strobus 2 30.3 67.6 3 Conifer 112782 891548 
355 Pinus resinosa 2 28.2 41.4 3 Conifer 112770 891549 
356 Pinus resinosa 2 27.3 35.2 3 Conifer 112769 891587 
357 Pinus resinosa 2 25.8 22.9 3 Conifer 112777 891585 
358 Acer rubrum 2 24.9 55.2 3 Conifer 112795 891579 
359 Pinus resinosa 2 23.6 28.2 3 Conifer 112786 891595 
324 Pinus resinosa 2 27.5 21.5 2 Conifer 112769 891393 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

325 Pinus strobus 2 32.8 55.8 2 Conifer 112772 891413 
326 Pinus resinosa 2 29.2 33.2 2 Conifer 112782 891415 
327 Pinus resinosa 2 33.0 31.5 2 Conifer 112793 891411 
328 Pinus resinosa 2 32.6 27.0 2 Conifer 112804 891405 
329 Pinus strobus 1 54.0 92.1 2 Conifer 112798 891423 
330 Pinus resinosa 2 21.9 33.3 2 Conifer 112782 891423 
331 Pinus strobus 1 38.0 68.9 2 Conifer 112781 891429 
332 Pinus resinosa 2 33.2 32.2 2 Conifer 112768 891435 
333 Pinus resinosa 2 29.7 37.4 2 Conifer 112765 891459 
334 Pinus resinosa 2 16.4 25.9 2 Conifer 112780 891457 
335 Pinus resinosa 2 20.7 37.7 2 Conifer 112791 891456 
336 Pinus resinosa 2 23.4 36.9 2 Conifer 112799 891446 

162 
Acer 
platanoides 3 16.3 12.5 1 Conifer 112802 891652 

163 Pinus resinosa 2 19.4 30.8 1 Conifer 112785 891655 

164 
Acer 
platanoides 2 18.1 39.1 1 Conifer 112780 891654 

165 Pinus resinosa 2 21.0 37.2 1 Conifer 112773 891658 
166 Pinus resinosa 0 19.5 25.9 1 Conifer 112803 891669 
167 Betula lenta 0 10.4 10.4 1 Conifer 112792 891671 
168 Pinus resinosa 0 27.3 32.3 1 Conifer 112781 891671 

169 
Acer 
platanoides 0 15.5 12.1 1 Conifer 112771 891674 

170 Pinus resinosa 0 19.2 33.1 NA NA 112805 891689 
171 Pinus resinosa 0 23.2 22.5 NA NA 112796 891689 
172 Pinus resinosa 0 27.0 37.8 NA NA 112785 891691 
173 Pinus resinosa 0 24.3 27.4 NA NA 112773 891697 
174 Pinus resinosa 0 25.4 35.7 NA NA 112808 891719 
175 Pinus resinosa 0 20.5 36.8 NA NA 112797 891718 
176 Pinus resinosa 0 25.0 37.5 NA NA 112788 891717 
177 Pinus resinosa 0 18.5 35.9 NA NA 112778 891715 
261 Acer rubrum 1 31.0 65.3 NA NA 113116 891439 
263 Quercus sp. 1 27.3 70.4 NA NA 113098 891434 
264 Acer rubrum 4 19.9 20.6 NA NA 113086 891434 
265 Carya sp. 1 31.6 35.9 NA NA 113088 891416 
266 Quercus sp. 1 26.3 40.9 NA NA 113096 891416 
267 Acer rubrum 4 17.0 25.4 NA NA 113109 891420 

268 
Sassafras 
albidum 4 16.3 27.0 NA NA 113113 891420 
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Tag
# Species Canopy 

Height 
(m) 

DBH 
(cm) Plot 

Forest 
type 

Easting 
(m) 

Northing 
(m) 

304 Pinus rigida 2 17.8 26.1 NA NA 112793 891284 
360 Quercus alba 4 29.2 32.8 NA NA 112854 891173 
367 Quercus alba 2 21.9 29.5 NA NA 112850 891194 
368 Quercus alba 1 21.1 40.1 NA NA 112851 891210 
375 Quercus sp. 2 32.4 45.5 NA NA 112854 891233 
376 Carya sp. 4 18.2 15.5 NA NA 112857 891252 
395 Acer rubrum 4 20.0 17.3 NA NA 112904 891340 
396 Pinus strobus 4 18.6 19.6 NA NA 112915 891359 
397 Acer rubrum 3 18.6 14.3 NA NA 112904 891358 
398 Acer rubrum 4 19.8 12.9 NA NA 112893 891358 

399 
Acer 
platanoides 3 22.5 15.4 NA NA 112888 891360 

400 Acer rubrum 3 23.1 17.8 NA NA 112881 891371 
458 Acer rubrum 3 13.3 12.7 NA NA 112924 891639 
481 Quercus sp. 3 12.0 16.6 NA NA 113025 891738 
482 Pinus strobus 3 20.1 24.5 NA NA 113029 891736 
483 Pinus strobus 4 16.6 16.8 NA NA 113022 891713 
824 Quercus sp. 2 21.1 47.8 NA NA 112852 891160 
825 Quercus sp. 1 16.5 47.8 NA NA 112845 891148 
826 Quercus sp. 2 23.6 61.0 NA NA 112862 891143 
827 Quercus sp. 2 21.6 37.3 NA NA 112872 891149 
828 Quercus sp. 2 18.8 36.9 NA NA 112877 891143 
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Appendix 2.  Coordinates of the Southeast corner of each plot (height 
analysis) and subplot (biomass analysis).  Coordinates are Massachusetts 
State Plane Coordinate System, mainland NAD 1983. 

 
Plot 
number 

Subplot 
number 

Easting 
(m) 

Northing 
(m) 

1 

 

112749 891650 
2 112749 891388 
3 112751 891464 
4 112740 891228 
5 112748 891289 
6 112858 891158 
7 112861 891372 
8 112862 891537 
9 112860 891665 

10 113063 891551 
11 113057 891714 
12 112955 891562 
13 112962 891701 
14 113060 891592 
15 113063 891440 
16 113063 891483 
17 113143 891604 
18 113070 891292 
19 112961 891626 
20 112860 891470 

 

2.2 112769 891521 
3.0 112860 891146 
5.0 113079 891708 

230.0 113062 891597 
236.0 113067 891547 
272.0 113087 891365 
311.0 112759 891302 
388.0 112871 891292 
428.0 112888 891498 
486.0 112968 891685 
499.0 112956 891636 
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Appendix 3.  Species-specific biomass equations from Jenkins et al. 2004 and a mixed hardwood equation from 
Jenkins et al. 2003.  
 

Species 
 

Max 
DBH 
(cm) 

Study 
sample 

size 
Biomass equation Study location 

Aspen, Big Tooth 33.8 30 =(((EXP(-2.32+0*DBH+2.377*(LN(DBH^1))))*0.001*1.01)  Nova Scotia 
Beech, American 63.0 14 =(10^(2.111+2.462*(LOG((DBH^1),10))))*0.000001 Hubbard Brook, NH 
Birch, Black 39.6 10 =((10^(-1.248+2.726*(LOG((DBH^1),10))))*0.001)*1.016 Southern Appalachian 
Birch, Paper 32.8 45 =((EXP(-2.231+0*DBH+2.431*(LN(DBH^1))))*0.001)*1.01 Nova Scotia 
Hemlock, Eastern 55.0 31 =(EXP(0.68+0*DBH+2.362*(LN(DBH^1))))*0.00045359237 Maine 
Hickory, spp. 52.3 10 =((10^(-1.326+2.762*(LOG(DBH^1))))*0.001)*1.005 Southern Appalachian 

Maple, Norway  42.0 x =(EXP(-1.51+0*DBH+2.1*(LN(DBH^1))))*0.001 
Refit from UT FIA data-
bigtooth maple 

Maple, Red 52.2 150 =((EXP(-1.721+0*DBH+2.334*(LN(DBH^1))))*0.001)*1.007 x 
Maple, Sugar 69.5 18 =((EXP(-2.192+0.011*DBH+2.67*(LN(DBH^1))))*0.001)*1.059 Wisconsin 
Oak, Red 69.5 16 =((EXP(-2.972+0.017*DBH+2.873*(LN(DBH^1))))*0.001)*1.05 Wisconsin 
Oak, White 63.0 10 =((10^(-1.266+2.613*(LOG((DBH^1),10))))*0.001)*1.024 Southern Appalachian 
Pine, Red 34.3 47 =((EXP(-2.468+0*DBH+2.35*(LN(DBH^1))))*0.001)*1.01 Nova Scotia 
Pine, White 55.0 x =(EXP(5.283+0*DBH+2.037*(LN(DBH^1))))*0.000001 Northeast 
Pine, Pitch 31.0 15 =(10^2.017+2.337*(LOG((DBH^1),10)))*0.000001 New York 
Mixed Hardwood unknown 289 =(EXP(-2.48+2.4835*LN(DBH)))*0.001 United States 
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Appendix 4.  Data and methodology for estimation of biomass using remote data.  Line 2 shows the equations used to 
calculate the first line in the spreadsheet.  Letters correspond to column, with the first column, plot, being column A.  The 
methodology remains constant but the regression equations change to reflect species present.  
 

plot 

lidar 
height 
(actual) 

height 
(predicted 
from 
lidar) 

spec
ies 

# 
trees/ 
spp 

total 
stems/ 
30x30 

image 
stems/ha 

trees/ spp/ 
ha reg lnDBH DBH biomass 

spp. total 
biomass 

total 
plot 
biomass 

    
=0.511+(1.
096*lidar)     

=SUM(E$
4:E$9) 

=10000*(F2
/900) 

=10000*(E2
/900) 

=2.192+(0.055
*C2) =EXP(I2) 

=(EXP(5.283+0*J2+
2.037*(LN(J2^1))))*
0.000001 =H2*K2   

428 24.868 27.766 wp 1 27.0 300.0 11.1 3.719118 41.22801 0.384171045 4.268567   

428 24.868 27.766 bb 3 27.0 300.0 33.3 3.276163 26.47399 0.43400968 14.46699   

428 24.868 27.766 ro 15 27.0 300.0 166.7 3.699739 40.43676 1.117350986 186.2252   

428 24.868 27.766 rm 3 27.0 300.0 33.3 3.390586 29.68335 0.483023918 16.1008   

428 24.868 27.766 mh 6 27.0 300.0 66.7 3.504649 33.26978 0.504615591 33.64104   

428 24.868 27.766 wo 0 27.0 300.0 0.0 3.574505 35.67695 0.631959468 0 254.7 

                          

2.2 26.953 30.051 wp 31 35.0 388.9 344.4 3.844802 46.74941 0.496262879 170.935   

2.2 26.953 30.051 hem 3 35.0 388.9 33.3 4.27726 72.04278 2.417672527 80.58908   

2.2 26.953 30.051 mh 1 35.0 388.9 11.1 3.634904 37.8982 0.697346935 7.748299 259.3 

            388.9             

486 23.379 26.134 bb 2 24.0 266.7 22.2 3.20763 24.72044 0.360051617 8.001147   

486 23.379 26.134 ro 7 24.0 266.7 77.8 3.649156 38.4422 0.999542016 77.74216   

486 23.379 26.134 sm 1 24.0 266.7 11.1 3.395569 29.83161 0.737558756 8.195097   

486 23.379 26.134 mh 0 24.0 266.7 0.0 3.411641 30.31495 0.400538859 0   
486 23.379 26.134 wo 1 24.0 266.7 11.1 3.52229 33.86188 0.551359451 6.126216   
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plot 

lidar 
height 
(actual) 

height 
(predicted 
from 
lidar) 

spec
ies 

# 
trees/ 
spp 

total 
stems/ 
30x30 

image 
stems/ha 

trees/ spp/ 
ha reg lnDBH DBH biomass 

spp. total 
biomass 

total 
plot 
biomass 

486 23.379 26.134 hi 3 24.0 266.7 33.3 3.410248 30.27276 0.584563703 19.48546  

486 23.379 26.134 bta 10 24.0 266.7 111.1 3.395569 29.83161 0.317734822 35.30387 162.6 

                          

5 25.106 28.028 bb 4 27.0 300.0 44.4 3.287155 26.76661 0.447211766 19.87608   

5 25.106 28.028 ro 18 27.0 300.0 200.0 3.707853 40.76617 1.137315432 227.4631   

5 25.106 28.028 rm 2 27.0 300.0 22.2 3.404458 30.09797 0.498890468 11.08645   

5 25.106 28.028 mh 2 27.0 300.0 22.2 3.519568 33.76983 0.523662067 11.63693   

5 25.110 28.032 bta 1 27.0 300.0 11.1 3.488546 32.73833 0.396321289 4.40357 274.5 

            300.0             

230 24.389 27.241 wp 1 25.0 277.8 11.1 3.690256 40.05509 0.362235973 4.024844   

230 24.389 27.241 ro 14 25.0 277.8 155.6 3.683471 39.78426 1.078224735 167.7238   

230 24.389 27.241 mh 4 25.0 277.8 44.4 3.474738 32.28936 0.46848847 20.82171   

230 24.389 27.241 wo 2 25.0 277.8 22.2 3.557712 35.08285 0.604829455 13.44065   

230 24.389 27.241 rm 2 25.0 277.8 22.2 3.362774 28.86916 0.452715081 10.06034   

230 24.389 27.241 bb 2 25.0 277.8 22.2 3.254123 25.89688 0.408701665 9.082259 225.2 

                          

3 21.479 24.052 wp 0 25.0 277.8 0.0 3.514844 33.61068 0.25340322 0   

3 21.479 24.052 ro 13 25.0 277.8 144.4 3.584603 36.03905 0.864966478 124.9396   

3 21.479 24.052 rm 4 25.0 277.8 44.4 3.193741 24.37945 0.305336847 13.57053   

3 21.479 24.052 mh 6 25.0 277.8 66.7 3.292947 26.9221 0.298280687 19.88538   
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# 
trees/ 
spp 

total 
stems/ 
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image 
stems/ha 

trees/ spp/ 
ha reg lnDBH Dbh biomass 

spp. total 
biomass 

total 
plot 
biomass 

3 21.479 24.052 wo 2 25.0 277.8 22.2 3.455655 31.67902 0.463251232 10.29447 168.7 

                          

272 12.510 14.222 wp 48 77.0 855.6 533.3 2.974208 19.57411 0.084243045 44.92962   

272 12.510 14.222 ro 0 77.0 855.6 0.0 3.279881 26.5726 0.423330552 0   

272 12.510 14.222 mh 20 77.0 855.6 222.2 2.732652 15.3736 0.07418341 16.4852   

272 12.510 14.222 wo 0 77.0 855.6 0.0 3.141103 23.12936 0.203638264 0   

272 12.510 14.222 rm 0 77.0 855.6 0.0 2.672764 14.47993 0.090698411 0   

272 12.510 14.222 bb 9 77.0 855.6 100.0 2.707322 14.98909 0.092056986 9.205699 70.62 

                          

236 26.797 29.880 wp 0 24.0 266.7 0.0 3.83541 46.31242 0.48685924 0   

236 26.797 29.880 ro 20 24.0 266.7 222.2 3.765286 43.17604 1.287507251 286.1127   

236 26.797 29.880 mh 3 24.0 266.7 33.3 3.62517 37.53112 0.680692589 22.68975   

236 26.797 29.880 wo 0 24.0 266.7 0.0 3.642166 38.17443 0.754174065 0   

236 26.797 29.880 rm 0 24.0 266.7 0.0 3.50265 33.20331 0.627142522 0   

236 26.797 29.880 bb 1 24.0 266.7 11.1 3.364968 28.93256 0.552884483 6.143161 314.9 

                          

499 28.017 31.218 wp 0 24.0 266.7 0.0 3.90897 49.84757 0.565559848 0   

499 28.017 31.218 ro 20 24.0 266.7 222.2 3.806747 45.00378 1.406006622 312.4459   

499 28.017 31.218 mh 1 24.0 266.7 11.1 3.701405 40.50417 0.822574764 9.13972   

499 28.017 31.218 wo 0 24.0 266.7 0.0 3.684964 39.8437 0.843411787 0   

499 28.017 31.218 rm 1 24.0 266.7 11.1 3.573534 35.64235 0.739767077 8.219634   
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plot 
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499 28.017 31.218 bb 2 24.0 266.7 22.2 3.421141 30.6043 0.64437205 14.31938 344.1 

                          

388 22.324 24.979 wp 7 24.0 266.7 77.8 3.56582 35.36844 0.281130709 21.86572   

388 22.324 24.979 ro 8 24.0 266.7 88.9 3.613335 37.08953 0.922769077 82.02392   

388 22.324 24.979 mh 9 24.0 266.7 100.0 3.345777 28.38262 0.340099075 34.00991   

388 22.324 24.979 wo 0 24.0 266.7 0.0 3.485313 32.63265 0.500580087 0   

388 22.324 24.979 rm 0 24.0 266.7 0.0 3.242863 25.60692 0.342362529 0   

388 22.324 24.979 bb 0 24.0 266.7 0.0 3.159099 23.54936 0.315434303 0 137.9 



 
81 

 

 

 

WORKS CITED 

 
Andersson, K., T.P. Evans, and K.R. Richards.  2009.  Methods and approaches to 

national forest carbon inventories. Online supplement to: National forest 
carbon inventories:  policy needs and assessment capacity.  Climatic 
Change 93:69-101. Available from 
www.sobek.colorado.edu/~anderssk/KA_TE_KR_CC_supplement.pdf  
(accessed July 2011).   

 
Archer D.  2005.  Fate of fossil fuel CO2 in geologic time.  Journal of 

Geophysical Research 110:C09S05. 
 
Avery, T.E. and H.E. Burkart.  1993.  Forest Measurements 4th Ed.  McGraw-Hill, 

Boston, MA. 
 
Berg, L.  2008.  Introductory botany:  plants, people, and the environment.  

Thomson Brooks/Cole US.  
 
Birdsey, R.A. 1992.  Carbon storage and accumulation in the United States forest 

ecosystems.  USDA (United States Department of Agriculture) Forest 
Service GenTech Report WO-59. 

 
Bonner, G.M.  1964.  A tree volume table for red pine by crown width and height.  

The Forestry Chronicle 40(3):339-346. 
 
Boudreau, J., R.F. Nelson, H.A. Margolis.  2008.  Regional aboveground forest 

biomass using airborne and spaceborne LiDAR in Quebec.  Remote 
Sensing of Environment 112(10):3876-3890. 

 
Brown, S. 2002.  Measuring carbon in forests:  current status and future 

challenges.  Environmental Pollution 116:363-372. 
 
Brown, S.L. and P.E. Schroeder. 1999.  Spatial patterns of aboveground 

production and mortality of woody biomass for Eastern U.S. forests.  
Ecological Applications 9(3):968-980.  

 



 
82 

 

Brown, S., P. Schroeder, and R. Birdsey.  1997.  Aboveground biomass 
distribution of US eastern hardwood forests and the use of large trees as an 
indicator of forest development.  Forest Ecology and Management 96:37-
47.   

 
Cook B., R. Dubayah, F. Hall, R. Nelson, J. Ranson, A. Strahler, P. Siqueira, M. 

Simard, and P. Griffith. 2011. NACP New England and Sierra National 
Forests Biophysical Measurements: 2008-2010. Oak Ridge National 
Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, 
U.S.A.  Available from http://dx.doi.org/10.3334/ORNLDAAC/1046 
(accessed February 2012).  . 

Crone, E.E. and J. L. Gehring.  1997.  Population viability of Rorippa columbiae:  
multiple models and spatial trend data.  Conservation Biology 12(5):1054-
1065. 

 
Denny, E. and T. Siccama.  2001.  How do we quantify a forest?  Hubbard Brook 

Ecosystem Study.  NH.  Available from 
http://www.hubbardbrook.org/w6_tour/biomass-stop/how-to-
quantify.htm#fhteqn (accessed July 2011).   

 
FAO  (Food and Agricultural Organization of the United Nations).  2011.  State of 

the world’s forests.  Rome, Italy.  Available from www.fao.org  (accessed 
on March 2012). 

 
Foster, D.R., G. Motzkin, and B. Slater.  1998.  Land-use history as long-term 

broad-scale disturbance:  regional forest dynamics in central New 
England.  Ecosystems 1:96-119. 

 
Gaveau, D.L.A and R.A. Hill.  2003.  Quantifying canopy height underestimation 

by laser pulse penetration in small-footprint airborne laser scanning data.  
Canadian Journal of Remote Sensing 29(5):650-675.   

 
Gower, S.T., R.E. McMurtrie, and D. Murty.  1996.  Aboveground net primary 

production decline with stand age:  potential causes. Trends in Evolution 
and Ecology 11(9):378-382. 

 
Groom, M.J., G.K. Meffe, and C.R. Carroll. 2006.  Principles of conservation 

biology.  Sinauer Associates, Inc.  Sunderland, MA.   
 
Harding, D.J. 2000.  Principles of airborne laser altimeter terrain mapping.  

NASA’s Goddard Space Flight Center, Greenbelt, MD.  
 

http://www.fao.org/


 
83 

 

Hershey, R.R. and W.A. Befort.  1995.  Aerial photo guide to New England forest 
cover types.  United States Department of Agriculture Forest Service 
General Technical Report NE-195. 

 
Houghton, J. 2005.  Global warming.  Reports on Progress in Physics 68-1343-

1403. 
 
Houghton, R.A.  2005.  Aboveground forest biomass and the global carbon 

balance.  Global Change Biology 11:945-958. 
 
Hughes, L.H. 2000.  Biological consequences of global warming: is the signal 

already.  Trends in Ecology and Evolution 15(2):56-60. 
 
IPCC (Intergovernmental Panel Climate Change).  2000.  Good practice guidance 

and uncertainty management in national greenhouse gas inventories 
LULUCF (Land use, Land Use Change, and Forestry).  IPCC Task Force 
on National Greenhouse Gas Inventories. 

 
IPCC (Intergovernmental Panel Climate Change). 2007.  Summary for 

policymakers.  In:  Climate Change 2007:  The physical science basis.  
Contribution of working group I to the Fourth Assessment Report of the 
Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. 
Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller 
(eds.)].  Cambridge University Press, Cambridge, United Kingdom and 
New York, NY, USA. 

 
Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. 2004.  

Comprehensive database of diameter-based biomass regressions for North 
American tree species.  USDA Forest Service Northeastern Research 
Station General Technical Report NE-319. 

 
Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey.  2003.  National-

scale biomass estimators for United States tree species.  Forest Science 
49(1):12-34. 

 
Jenkins, J.C., Birdsey, R.A., and Y. Pan.  2001.  Biomass and NPP estimation for 

the mid-Atlantic region (USA) using plot-level forest inventory data.  
Ecological Applications 1(4):1174-1193. 

 
Keeling, C.D.  1973.  Industrial production of carbon dioxide from fossil fuels 

and limestone.  Tellus 25(2):174-198. 
 



 
84 

 

Lamson, N.I. 1987.  D.b.h./crown diameter relationships in mixed Appalachian 
hardwood stands.  United States Department of Agriculture Forest 
Service.  Research Paper NE-610. 

 
Leftsky, M.A., W.B. Cohen, G.G. Parker, and D.J. Harding.  2002.  Lidar remote 

sensing for ecosystem studies.  BioScience 52(1):19-30.       
 
Lu, J. and L. Zhang. 2012.  Geographically local linear mixed models for tree 

height diameter relationship.  Forest Science 58:75-84.  
 
Malhi, Y., P. Meir, S. Brown.  2002.  Forests, carbon and global climate.  The 

Royal Society 360(1797):1567-1591. 
 
MassGIS.  2010.  Soils_polygon.  NRCS (National Resources Conservation 

Service) SSURGO (Soil Survey Geographic)-Certified Soils layer.  Office 
of Geographic Information (MassGIS)/ Commonwealth of Massachusetts 
Information Technology Division.  Available from www.mass.gov/mgis 
(accessed December 2010).    

 
McKinley, D.C., M.G. Ryan, R.A. Birdsey, C.P. Giardina, M.E. Harmon, L.S. 

Heath, R.A. Houghton, B.B. Jackson, J.F. Morrison, B.C. Murray, D.E. 
Pataki, and K. E. Skog.  2011.  A synthesis of current knowledge on 
forests and carbon storage in the United States.  Ecological Applications 
21(6):1902-1924. 

 
Meyer, K.A.  2011.  Determining allometric relationships within tree species for a 

quantitative understanding of atmosphere water fluxes coupled with 
remote-sensing based methods for determining forest structure at an 
individual-tree scale.  Honors Research with Distinction Thesis.  Ohio 
State University, OH.  Available from http://hdl.handle.net/1811/48759 
(accessed December 2011). 

 
MFLA (Massachusetts Forests Landowners Association).  No date.  Common 

forest types in Massachusetts.  Available from 
http://www.massforests.org/ma-forests/common-types.htm (accessed 
11/11). 

 
Miles P.D. and W.B. Smith.  2009.  Specific gravity and other properties of wood 

and bark for 156 tree species found in North America.  United States 
Department of Agriculture Forest Service Northern Research Station PA 
Research Note NRS-38.   

 
Millette and Hayward.  2005.  Detailed forest stand metrics taken from AIMS-1 

sensor data.  ASPRS Annual Conference. Baltimore, MD. 



 
85 

 

 
Mitchell, A.  2005.  The ESRI guide to GIS analysis:  Volume 2:  spatial 

measurements and statistics.  ESRI Press, Redlands, CA. 
 
NCFMP (North Carolina Floodplain Mapping Program).  2003.  Lidar and Digital 

Elevation Data.  Available from 
http://www.ncfloodmaps.com/pubdocs/lidar_final_jan03.pdf (accessed 
12/2011). 

 
Nelson, R., R. Oderwald, and T.G. Gregoire.  1997.  Separating the ground and 

airborne laser sampling phases to estimate tropical forest basal area, 
volume, and biomass. Remote Sensing Environment 60:311-236. 

 
Nelson, R.,  M.A. Valenti, A. Short, and C. Keller.  2003.  A Multiple resource 

inventory of Delaware using airborne laser data.  BioScience 53(10):981-
991. 

 
Olson, J.S., J.A. Watts, L.J. Allison.  1985.  Major world ecosystem complexes 

ranked by carbon in live vegetation:  a database.  ORNL NDP-017. 
 
Pan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. 

Phillips, A. Shvidenko, S.L. Lewis, J.G. Canadell, P. Ciais, r.B. Jackson, 
S.W. Pacala, A.D. McGuire, S. Piao, a. Rautiainen, S. Sitch, D. Hayes.  
2011.  A large and persistent carbon sink in the world’s forests.  Science 
333:988-993. 

 
Patenaude, G., R.A. Hill, R. Milne, D.L.A. Gaveau, B.B.J. Briggs, and T.P. 

Dawson.  2004. Quantifying forest aboveground carbon content using 
lidar remote sensing.  Remote Sensing of Environment 93:368-380. 

 
Popescu, S.C. 2007.  Estimating biomass of individual pine trees using airborne 

lidar.  Biomass and Bioenergy 31:646-655. 
 
Popescu S. C., R. H. Wynne, and J. A. Scrivani.  2004.  Fusion of small-footprint 

lidar and multispectral data to estimate plot-level volume and biomass in 
deciduous and pine forests in Virginia, USA.  Forest Science 50:551-565. 

 
Popescu, S.C., K. Zhao, A. Neuenschwander, and C. Lin.  2011.  Satellite lidar vs. 

Small footprint airborne lidar:  comparing the accuracy of aboveground 
biomass estimates and forest structure metrics at footprint level.  Remote 
Sensing of Environment 115:2786-2797.   

 



 
86 

 

Sayn-Wittgenstein, L.  1978.  Recognition of tree species on aerial photographs.  
Canadian Forestry Service Division of the Environment Info Report FMR-
X-118. 

 
Schlesinger, W.H. 1997.  Biogeochemistry:  An analysis of global change.  

Academic Press, New York. 
 
Sharma, M. and J. Parton.  2007.  Height-diameter equations for boreal tree 

species in Ontario using a mixed-effects modeling approach.  Forest 
Ecology and Management 249:187-198. 

 
Swain, P.C. and J.B. Kearsley.  2001.  Classification of the natural communities 

of Massachusetts.  Natural Heritage & Endangered species Program 
Massachusetts Division of Fisheries and Wildlife, Westborough, MA.  
Ver.1.3, draft. 

 
Tang, G., B. Beckage, B. Smith, and P.A. Miller.  2010.  Estimating potential 

forest NPP, biomass and their climatic sensitivity in New England using a 
dynamic ecosystem model. Ecosphere ESA Journals 1:1-20.    

 
USDA (United States Department of Agriculture) Forest Service.  2010.  Live 

aboveground carbon storage in U.S. forests, by state, sub-region, and 
ownership group.  Forest Inventory Data Online (FIDO).  Available from 
www.fia.fs.fed.us (accessed January 2012).  

 
US EPA (United States Environmental Protection Agency).  2012.  Level III 

ecoregions.  Western Ecology Division.  Available from 
www.epa.gov/wed/pages/ecoregions.htm (accessed on January 2012). 

 
USGS (United States Geological Survey).  1979.  Mt. Holyoke quadrangle 

Massachusetts. Denver, CO. 
 
Whittaker R.H. and G.M. Woodwell.  1967.  Surface area relations of woody 

plants and forest communities.  American Journal of Botany 54(8):931-
939. 

 
Zhao, K. S. Popescu, X. Meng, Y. Pang, and M. Agca.  2011.  Characterizing 

forest canopy structure with lidar composite metrics and machine learning.  
Remote Sensing of Environment 115:1978-1996. 

 
Zhang, L. B. Huiquan, P. Cheng, and C.J. Davis.  2003.  Modeling spatial 

variation in tree diameter-height relationships.  Forest Ecology and 
Management 189:317-329. 

 


	ABSTRACT
	To remotely estimate biomass, I identified species and stem density in georeferenced AIMS images of each subplot.  From ground data, I created linear regression models to estimate DBH from height.  I used lidar height to estimate DBH values in the spe...
	ACKNOWLEDGMENTS
	INTRODUCTION
	Biomass and carbon
	Role of forests and ecological relevance of my research
	Atmospheric carbon dioxide increases
	Calculation of forest carbon
	From empirical data
	From remote sensing
	Method limitations
	AIMS system

	Objectives

	METHODS
	Study area
	Aerial site sampling parameters
	Ground data sampling methodology
	Transect level systematic sampling
	Subplot level population data

	Remote data
	Stand height analysis
	Height-DBH analysis
	Estimating biomass
	Biomass equations
	Subplot-level ground measurements using actual DBH
	Subplot-level remote estimates using lidar-estimated DBH and imagery
	Spatial and statistical analysis


	RESULTS
	Spatial Autocorrelation
	Stand Height
	Preliminary analysis
	Stand height significance

	Height to DBH Regression
	Subplot Biomass

	DISCUSSION
	Estimation of tree heights using lidar
	Sampling design
	Height analysis

	Estimating DBH
	Biomass
	Biomass range and scaling
	Within plot height variation
	Red oak biomass consideration
	Species identification
	Stem density
	Biomass comparison


	Figure 28.  Biomass per hectare adjusted to reflect actual values for plots 272, 428, and 388.  The red bars represent data that reflects actual stem density (plots 272, 428) or percent red oak (388).  I did not alter the data for any of the other plo...
	RECOMMENDATIONS
	CONCLUSION
	APPENDICES
	Appendix 2.  Coordinates of the Southeast corner of each plot (height analysis) and subplot (biomass analysis).  Coordinates are Massachusetts State Plane Coordinate System, mainland NAD 1983.

	Appendix 3.  Species-specific biomass equations from Jenkins et al. 2004 and a mixed hardwood equation from Jenkins et al. 2003. 
	WORKS CITED

