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Figure 1: As it decays back down to the ground state, the molecule emits a photon at a 

particular wavelength. 

http://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/AtomicLineSpEm.png/250px-

AtomicLineSpEm.png 

 

INTRODUCTION 

 Since the early 1800s, scientists have known that specific colors are 

observed when different elements are burned. When a molecule is heated, it 

absorbs a photon, which increases its energy; it is promoted to an excited state. As 

the molecule cools, it emits a photon, which decreases its energy; the lowest 

energy state is the ground state (Harris, 2010). Photon absorption and emission 

occur at wavelengths specific to each element.  

In a flame test, different chemicals are burned. They produce differently 

colored flames that are related to the wavelengths at which their component 

molecules emit photons. These colors range from red and orange to blue and 

violet. Sodium, for example, produces an orange flame, as shown in Figure 2. In 

fact, as researchers would later discover, the wavelengths at which 

absorption/emission occur are unique to a particular element or ion. This 
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Figure 2: An artist’s rendition of a simple flame test. When a given element or ion is burned, it 

emits photons at specific wavelengths, which correspond to the colors the eye observes. 

http://media.tiscali.co.uk/images/feeds/hutchinson/ency/0008n042.jpg 

 

 

information can be used to identify the composition of an unknown (Cremers et 

al., 2006).  

The absorption and emission properties of light are used in chemical 

analyses to determine concentrations and compositions of unknowns. The 

technique that takes advantage of these properties is known as spectroscopy. 

“Spectroscopy is the study of the interaction of electromagnetic radiation (light, 

radio waves, x-rays, etc.) with matter” (Harris and Bertolucci, 1978). There are 

many different types of spectroscopy, each with specific applications.  

In general, a spectrophotometer requires a light source and a detector. 

Where appropriate, sampling can be done through laser ablation, where a laser is 
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Figure 3: LIBS uses a laser to create a plasma that contains material from the sample of 

interest. This plasma emits light, which is collected and sent to the detector. A spectrum is 

drawn of signal intensity versus wavelength. The various intensity peaks correspond to known 

element emission peaks. http://upload.wikimedia.org/wikipedia/en/c/c8/Libs.jpg 

 

the light source, and a pulsed laser beam is focused on a microscopic region of the 

sample. Particles, atoms, ions, and electrons are vaporized, creating an evolving 

plasma. Each laser pulse ablates a few nanograms of the sample, so it is nearly 

nondestructive. When a laser ablated plasma is analyzed using atomic emission, 

the technique is called laser-induced breakdown spectroscopy (LIBS) (Harris, 

2010). LIBS dates back to 1963 when a laser-plasma was first used on a surface 

(Cremers et al., 2006). While many forms of spectroscopy require careful sample 

preparation, LIBS requires none, making it ideal for analyzing rock compositions. 

Also, a LIBS instrument can operate from a distance, which makes it practical for 

field research.  
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Figure 4: An artist’s rendition of ChemCam as it analyzes a rock sample on the surface of 

Mars. A portion of the possible resulting spectrum is displayed. 

http://smsc.cnes.fr/IcMSL/chemcam_operation.png 

A LIBS is one of the two instruments comprising ChemCam, which is part 

of the Mars Science Laboratory (MSL) on board the Mars rover, Curiosity 

launched in November 2011. This LIBS instrument records spectra for each 

sample in the ultraviolet (UV), visible (VIS), and visible and near infrared (VNIR) 

ranges, with signal intensities (elemental emission lines) at 6421 channels 

(wavelength values) corresponding to elements in the sample of interest.  

Mars rocks may have different elemental compositions from those on 

Earth due to differing conditions under which they were formed. In both places, 

however, the compositions of the various elements that make up the rock provide 

valuable information about the chemical evolution of the planet over geologic 

time. Because ChemCam can only transmit spectra from rock samples, rather than 
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the rocks themselves, back to Earth for analysis, our understanding of Martian 

geology depends on our ability to predict elemental compositions of rocks from 

the 6421 channels of LIBS spectral data. 

The conventional method for analyzing spectroscopic data is univariate 

analysis. This method assumes that one component of the data (usually a single 

emission line) will adequately explain the behavior of the variable of interest. For 

example, the concentration of a prepared sample of potassium permanganate can 

be related directly by the measured absorbance using Beer’s Law. However, for 

more complicated spectral relationships, univariate analysis does not provide such 

useful results.  

Multivariate analysis is needed to account for the covariate interactions 

that occur. The most straightforward multivariate analysis method is ordinary 

least squares (OLS). This method assumes that multiple components are needed to 

adequately explain the behavior of the variable of interest; these various 

components are included in a statistical model. In order for OLS to provide a 

model that will yield stable predictions, the model predictors must not be highly 

collinear. This means that each predictor must contain minimal information about 

the response variable that is also contained in any other predictor. Due to matrix 

effects and spectral resolution, which will be explored further in the next chapter, 

a model in which all predictors are only moderately collinear cannot be 

constructed for LIBS spectral data of rocks. So, statistical methods that do not 
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require this feature are needed to provide reliable rock composition predictions 

from the LIBS data.  

RESEARCH GOALS 

This thesis explores a set of multivariate analysis techniques known 

collectively as shrunken regression that have been designed to provide stable 

models when the data suffer from multicollinearity. Data are multicollinear when 

two or more variables in the data are correlated and provide redundant 

information about the response (Model diagnostics, 2004).   

Partial least squares (PLS) regression is the accepted statistical method in 

the LIBS community for generating prediction models in cases where the data are 

highly collinear. Dating from its introduction in the 1960s, PLS is a well-

established method and is well-understood by the LIBS community. Due to its 

popularity, however, other statistical techniques designed to deal with highly 

collinear data have not been as widely explored to determine if they yield lower 

model prediction errors than the well-tuned PLS models. PLS results can be used 

as a benchmark for comparing model prediction errors from other shrinkage 

methods. Other shrinkage methods of interest are ridge, lasso, fused lasso, elastic 

net, and sparse partial least squares (SPLS).  

In this thesis, specific situations in which any of four methods, including 

PLS, are most useful will be investigated. The intention of this research is to 

demonstrate how other shrinkage methods compare to the PLS method. These 
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techniques will enhance the utility of highly collinear data by providing different 

ways in which the data can be analyzed. The various models are suited to a range 

of applications.  
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BACKGROUND 

LASER-INDUCED BREAKDOWN SPECTROSCOPY 

 Since the early 1800s, scientists have understood that different elements 

emit different colors. Such emissions have been observed in familiar plasmas like 

the sun and flames. These colors correspond to various wavelengths (λ) or 

frequencies (ν = λ
-1

), which are unique signatures for the elements that emit them. 

Although the colors that are observed represent a small part of the wavelength 

range, known as visible light (400nm – 700nm), the entire electromagnetic 

spectrum ranges from γ-rays with wavelengths of 1 pm to extremely low 

frequency (ELF) waves with wavelengths of 100 Mm.  

 

  

 

 

 

 

 

 

Figure 5: Diagram of the entire electromagnetic spectrum, excluding ELF waves. 

http://www.sciencebuddies.org/mentoring/project_ideas/HumBeh_img019.gif 
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Laser-induced breakdown spectroscopy (LIBS) owes its existence both to 

the aforementioned physical phenomenon and to the advent of the laser. The 

former is inherent in all forms of spectroscopy; sample compositions can be 

determined using the fact that, when treated with a light source, each element or 

ion emits photons at distinct and unique wavelengths. LIBS instrumentation 

belongs to a smaller group of spectroscopic techniques known collectively as 

laser spectroscopy. With the development of the laser came the realization that it 

could be used to create plasma that would reveal compositional information about 

samples of interest. Observations that were possible for the Sun now became 

possible for materials that did not naturally exist in a plasma state, such as rocks 

and metals. Lasers allow for increased precision with regard to spectral line 

frequency measurements. 

 In the Handbook of Laser-Induced Breakdown Spectroscopy, 1963 is cited 

as the birth year of LIBS. This was the first time a laser-plasma was used on a 

surface for analytical purposes. This was just three years after American physicist 

Theodore H. Maiman developed the first pulsed laser at Hughes Research 

Laboratories in Malibu, California. Closely related to atomic emissions 

spectroscopy (AES), LIBS measures the intensity of light emitted from a plasma 

using a series of successive wavelengths to measure the concentration of a 

particular element in the sample of interest. AES, however, is limited in that it 

requires sample preparation to dissolve and dilute a sample, and it cannot operate 

at standoff distances. In both AES and LIBS, thermal energy excites electrons into 
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Figure 7. Schematic of LIBS. The light source is a Nd:YAG laser. The detector registers 

atomic emission to create a spectrum of the sample. Because a laser is used, no sample 

preparation is needed and the instrument can operate from a distance to analyze a sample. 

LIBS registers wavelengths ar which photon emission occurs from electronic transitions. 

http://technology.automated.it/wp-content/uploads/HLIC/f32cc86353da5e06060fc83bd94e1b83.jpg 

higher energy electronic states; photons are emitted as the electrons decay back 

down to their ground states. 

 

 

Figure 6: Schematic comparison of AES. AES uses a light source from a spark, flame, or 

plasma. It requires sample preparation to dissolve and dilute the sample, so it is not well suited 

to field work. 

http://www.chemistry.adelaide.edu.au/external/soc-rel/content/images/aes-expt.png 
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Figure 8. Plot of major elemental emission lines in the LIBS spectrum for a spot on the 

Martian meteorite DaG 476. As shown here, the emission lines can be matched to known 

emission lines in a database such as the National Institute of Standards and Technology 

(NIST) database. http://www.psrd.hawaii.edu/WebImg/LIBS-DaG476.gif 

In 2004, LIBS was chosen as one of two analytical components in the 

ChemCam instrument on board the Mars rover, Curiosity, which launched on 

November 26, 2011. This LIBS instrument has the ability to collect LIBS data 

from standoff distances as great as 7 m. As the excited electrons decay back to the 

ground state, a light-emitting plasma is produced. From this plasma, a spectrum is 

obtained that covers three wavelength regions, UV, VIS, and VNIR (223 – 

927nm). The spectrum contains a rich array of elemental lines from more than 

thirty elements likely to be present in the geological sample. These data can be 

interpreted using multivariate statistical techniques to determine elemental 

concentrations, like those of the ten major elements, which are by geochemical 

convention expressed as the oxides SiO2, Al2O3, MnO, MgO, CaO, Na2O, K2O, 

TiO2, P2O5, and Fe2O3.  

Emission Lines  
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 LIBS relies on quantized valence-electron transitions that occur when the 

electrons move to an excited state in the presence of a light source and 

subsequently decay back down to their ground states, emitting photons. When 

these transitions are detected by a spectrometer, emission lines are observed at 

wavelengths that are specific to the elemental or ionic electron source. The 

National Institute of Standards (NIST) maintains an online database of emission 

lines for each element/ion in the UV, VIS, and VNIR spectral regions. With 

proper instrument and spectral calibration, emission lines from the sample spectra 

can be matched with persistent (stable), observed lines in the NIST database. 

These emission lines are critical to determining the elemental composition of an 

unknown sample.  

LIBS Challenges for Geological Samples 

LIBS is challenging to use for geological sample analysis because peak 

intensities and areas are influenced by interactions in the plasma that are partially 

a function of the sample’s chemical composition. These interactions are referred 

to as matrix effects; they are chemical properties of a material that influence the 

extent to which a given wavelength emission is detected relative to the true 

abundance of the parent element. The matrix effects are related to the “relative 

abundances of neutral and ionized species within the plasma, collisional 

interactions within the plasma, laser-to-sample coupling efficiency, and self 

absorption” (Tucker, et al., 2010). Matrix effects can cause emission lines not to 
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Figure 9: ChemCam schematic on Curiosity.  

http://msl-scicorner.jpl.nasa.gov/images/ChemCam_block1.jpg 

http://www.nasaspaceflight.com/wp-content/uploads/2011/11/D81.jpg 

 

be fully resolved (line overlap), which complicates spectral interpretation. 

Because the data contain so many channels, LIBS also suffers from the “curse of 

dimensionality”, because our intuition about how data will behave breaks down in 

high dimensions (Hastie, et al., 2009). Fortunately, advanced statistical analysis 

techniques can tease out relationships that are at first obscured by matrix effects.  
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QUATITATIVE ANALYSIS OF EMISSION SPECTRA 

What Makes a Good Model 

 An ideal regression model is sparse
1
, interpretable, and robust. Sparsity is 

important because it implies a simpler model. A simpler model that performs as 

well as more complex model is always preferable because it is easier to 

understand. Convenient interpretation is crucial for understanding the chemical 

makeup of geological samples. Robustness ensures that prediction results are 

reliable and reproducible.  

Univariate Analysis 

 The conventional method of analysis for spectroscopy data is univariate 

analysis. The equation has a familiar form: 

        .         (1) 

In this equation, β0 is the intercept, β1 is the slope, x is the independent variable, 

and y is the dependent variable. This technique can be used to fit a calibration 

curve for the absorbance (y) versus concentration (x) of a given solution, for 

example. Such a calibration curve can then be used to interpolate the 

concentration of an unknown using the absorbance of that solution.  

 

                                                           
1
 Sparsity refers to the assumption that a smaller subset of the predictor variables is driving the 

prediction results (Chun and Keleş, 2010). 
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Multivariate Analysis 

Ordinary Least Squares (OLS) uses the Method of Least Squares to 

determine the best fit for a set of data. It can be used to model the relationship 

between a response variable and one or more explanatory variables. To fit the 

model, the residual sum of squares (RSS), which is the distance between all of the 

responses (data) and their fitted values, is minimized (Ramsey and Schafer, 2002). 

OLS is a desirable method to characterize the relationship between the response 

variable and explanatory variables when the explanatory variables are not highly 

collinear. The general form of an OLS model is: 

             
 
   .       (2) 

However, for applications where the explanatory variables (Xi) are highly 

collinear, OLS performs poorly. The resulting predictions are highly variable, and 

are thus neither reliable nor reproducible. Shrunken regression methods were 

developed for use in fields like chemistry where explanatory variables are often 

highly collinear and thus result in unreliable models. The methods explored here 

were either developed as direct responses to the OLS difficulties, or were 

developed to improve on existing shrunken regression techniques.  
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Partial Least Squares 

Partial Least Squares (PLS), also known as projection to latent structures, 

has its origins in three papers by Wold, dating from 1966-1982. It was developed 

for use in situations with highly collinear explanatory (p) variables that 

significantly outnumber the number of observations (N), such that p >> N (Butler 

and Denham, 2000). Although there are several variations of PLS, this thesis will 

only explore PLS2 (hereafter referred to as PLS), which has at least two response 

variables, because PLS2 has been shown to perform better on LIBS geological 

data (Dyar et al., 2012) (Rosipal and Krämer, 2006).  

PLS has been used to analyze data from a variety of types of spectroscopy, 

including, but not limited to, near infrared reflectance (NIR) spectroscopy, 

Fourier transform infrared (FTIR) spectroscopy, and Fourier transform-Raman 

(FT-Raman) spectroscopy. It has also been the dominant mode of analysis for 

LIBS spectra.  

 PLS is commonly employed to predict chemical compositions from a near 

infrared (NIR) reflectance spectrum (Goutis, 1996). For example, PLS models 

have been built to predict Ca, Mg, Na, K, P, S, Fe, B, and Mn concentrations in 

wines. This study revealed some relationships between NIR spectra and elemental 

concentrations in wines, although more data was needed to produce sufficiently 

stable models (Cozzolino et al., 2007). 
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The presence of free fatty acids (FFAs) is one of the most important 

factors dictating the quality and economic value of olive oil. Because they are 

more prone to oxidation than triglycerides, their presence in edible oils increases 

the possibility of producing a rancid product. PLS models were built to determine 

the FFA concentration in commercial olive oil using FTIR spectra.  (Iñón et al., 

2003).  

PLS has been applied to FT-Raman spectroscopy, where it has been used 

to “construct highly correlated models relating a petroleum fuel’s Raman 

spectrum to its motor octane  number (MON), its research octane number (RON), 

its pump octane number, and its Reid vapor pressure” (Cooper, et al., 1995). 

Analyzed petroleum blends contained more than 300 individual chemical species 

of different concentrations. Researchers found that PLS models could be used to 

predict MON, RON, pump octane number, and Reid vapor pressure of a fuel from 

its FT-Raman spectrum.   

PLS chooses subspaces from the explanatory matrix, X, sequentially and 

projects the response vector, y, onto the subspaces of the column spaces of X to 

determine the model coefficients (Goutis, 1996). This applies a correction to the 

OLS coefficients to generate a model that does not experience the wild variance 

in predictions from which OLS suffers when features are highly collinear.  

PLS involves a two-step process to determine the model coefficients. The 

first step is the shrinkage step. The shrinkage penalty determines the number of 
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factors to be included in the regression. This shrinks the coefficients by projecting 

down from N-dimensional space into a smaller M-dimensional vector space. In 

the context of this project, N = 6421, the number of channels (wavelength values) 

at which elemental intensity is measured. This uses linear combinations of 

previous variables to calculate the model coefficients. The second step completes 

the regression to produce a PLS model by calculating the RSS; it regresses the 

response, y, on the factors generated in the first step to minimize the sum of 

squares.  

The optimization problem that must be solved to generate the PLS model 

coefficients is not a nice, tractable problem. It involves information about the 

variances and covariances of both the explanatory and response variables, which 

makes the shrinkage calculation complicated (Goutis, 1996).  

The PLS formulation of the NIPALS algorithm introduced in Wold (1966) 

is as follows: 

                   
                 

              
                    .    (3) 
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In this formula, j = 1, …, k-1, σXY is the covariance of X and Y, Ip is the p × p 

identity matrix and Wk-1
+
 is the unique Moore-Penrose

2
 inverse of Wk-1 = (w1, …, 

wk-1) (Chun and Keleş, 2009).  

 A full PLS model may contain hundreds of coefficients that are linear 

combinations of the original 6421 channels. Loadings are principal components 

computed from the spectral matrix (DePalma and Stephen, 2011). They can be 

used to map model coefficients onto emission lines. The number of coefficients 

(loadings) in the predictive model is often constrained to a smaller value to avoid 

overfitting. An overfitted model produces falsely optimistic prediction errors 

because it is highly customized to its training set; the model will not perform as 

well when tested on other unseen data.  

Ridge Regression 

Ridge regression was introduced by Hoerl and Kennard (1970). Ridge 

regression fits a model to a set of training data by minimizing a penalized RSS. It 

imposes a penalty, t, which explicitly constrains the size of the coefficients as 

shown in the following equation. This constraint introduces bias into the model. 

By implementing a bias-variance tradeoff, more stable coefficients are produced 

in the model.  

                             
 
    

 
               

   
 
   

 
    (4) 

                                                           
2
 Independently identified by Moore (1920) and Penrose (1955), the unique Moore-Penrose 

inverse gives a unique solution if it meets four algebraic constraints (Gill). 
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The parameter t is always greater than or equal to 0; t controls the degree of 

shrinkage. In this model, yi is the elemental abundance in sample i and xij is the 

intensity at wavelength j of sample i. Larger t values correspond to greater 

shrinkage, and thus greater bias. Tuning this parameter properly is crucial to 

producing the most stable model; an optimal bias-variance tradeoff must be 

employed.  

 A ridge regression model involves coefficients from all 6421 channels of 

the LIBS spectrum. Because it has so many coefficients, it is quite stable, but it 

does not provide a sparse model. This makes it difficult to discern which channels 

(and from them, elements) exert the greatest influence on the model prediction 

values. The model is generally difficult to interpret because it is not parsimonious.  

 Ridge regression has been used for different types of spectral analysis. For 

example, it was used to analyze IR spectroscopy to determine secondary 

structures of proteins. In the context of the study, ridge models were built using 

IR spectra with corresponding known crystal structures. Part of the intent of the 

study was to determine which secondary structure elements or other quantities are 

predictable from IR spectra. Information about the contents of certain types of 

hydrogen bonds and amino acid composition was extracted. Ridge regression 

performed well in the context of the study (Rahmelow and Hübner, 1996).  
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Lasso 

 Least absolute shrinkage and selection operator (lasso) regression was 

introduced by Tibshirani (1996). The lasso provides a sparse model by shrinking 

some coefficients and setting most other coefficients to zero. This has been 

referred to as the sparsity principle (Chun and Keleş, 2010). Under this principle, 

it is assumed that a smaller subset of the predictor variables is driving the 

prediction results. Thus, other coefficients can be excluded from the model (i.e., 

set to zero) with no significant performance loss. This reduces a large, largely 

uninterpretable model to a sparse, more interpretable model (Tibshirani, 1996).  

 The lasso is related to backward-stepwise selection, which “starts with the 

full model and sequentially deletes the predictor that has the least impact on fit” 

(Hastie et al., 2009). Although backward stepwise-selection produces a sparse 

interpretable model, it does not necessarily provide a model with reliable 

predictive power. This is because coefficients are dropped from the model in an 

iterative process, and they are not reconsidered for inclusion in the model. Thus, 

coefficients that are important in the model might be mistakenly dropped early in 

the process. Ridge regression, on the other hand, is a continuous process that 

shrinks the coefficients, so it is more stable. As noted previously, ridge does not 

set any coefficients equal to zero, so it does not produce a sparse model. The lasso 

combines the desirable features of backward-stepwise selection and ridge 

regression to provide a sparse, relatively stable model.  
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 The lasso penalty is used to select specific channels (wavelengths) for 

each element that explain the most variance in its predicted concentration. It 

shrinks some coefficients and sets other, less influential coefficients to zero. In 

this model, yi is the elemental abundance in sample i and xij is the intensity at 

wavelength j of sample i (Dyar et al., 2012; Ozanne et al., 2012).  

 The lasso penalty is defined as 

                             
 
    

 
                 

 
   

 
     . (5) 

The shrinkage parameter t is defined such that t ≥ 0. As in ridge regression, t 

controls the amount of shrinkage (i.e., sparsity) in the model. Higher values of t 

correspond to greater shrinkage.  

Although the lasso provides a sparse model, it does not perform well in the 

p >> N case. Also, for a group of highly correlated variables, the lasso 

indiscriminately chooses a variable from that group, leaving out potentially 

valuable information for model predictions.  

Lasso regression has been used in a variety of spectroscopy applications. 

Menze et al. (2004) applied the lasso, among other classification methods, to 

classify magnetic resonance spectroscopy (MRS) data.  Specifically, they were 

using MRS to detect recurrent tumors after radiotherapy. In vivo magnetic 

resonance spectra have highly correlated spectral channels, poor signal-to-noise 

ratios, and fall into the p >> N case. The goal was to find a reliable automated 
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method to render MRS results accessible to radiologists who lacked the training to 

interpret the spectra themselves. PLS and ridge regression were also investigated. 

These regression techniques worked well for this application (Menze et al., 2004). 

The lasso has also been used to predict elemental compositions for geological 

samples, as in the context of this thesis (Dyar et al., 2012).  

Generalizing the Ridge and Lasso  

The ridge and lasso penalties can be generalized as follows 

                         
 
    

 
       

  
   

 
            . (6) 

This is known as an Lq penalty. For q = 0, this reduces to subset selection, where 

the penalty restricts the number of non-zero parameters. For q = 1, this reduces to 

the lasso; q = 2 corresponds to the ridge penalty. These are the L1 lasso penalty 

and the L2 ridge penalty, respectively. Note that for q ≤ 1, the constraint region is 

not convex and the prior is not uniform in direction. This makes solving the 

optimization problem more difficult (Hastie, et al., 2009).   

 Given this generalization, it may seem reasonable to estimate q based on 

the data. Other values of q may work better than q = 0, 1, or 2. However, extra 

variance is generated during this estimation process. The improvement in model 

fit has not been observed to be great enough to justify the additional variance 

(Hastie, et al., 2009). Thus, other Lq penalties will not be explored.  
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Fused Lasso 

  Fused lasso regression was introduced to address shortcomings of the 

lasso technique (Tibshirani and Saunders, 2005) while preserving other desirable 

features. For example, the lasso performs relatively poorly when the number of 

observations per sample significantly outnumbers the number of samples (i.e. p >> 

N), whereas the fused lasso is particularly useful in the p >> N case. Also, the 

lasso ignores natural ordering of data features, i.e. it indiscriminately chooses a 

feature from a cluster of influential features. Thus, the model does not necessarily 

reflect the features that have the most bearing on compositional predictions. The 

fused lasso, on the other hand, takes advantage of natural ordering of data features 

when it selects its coefficients. 

 The coefficients of the fused lasso model are obtained using the following 

conditions 

                             
 
    

 
  

     

                                  
 
     

 
   .    (7) 

The first constraint ensures that the number of coefficients in the model does not 

exceed some specific number, and the second constraint ensures that no single 

coefficient significantly outweighs another coefficient. As in the other models, yi 

is the elemental abundance in sample i and xij is the intensity at wavelength j of 

sample i. 
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 The fused lasso has been used for feature selection in protein mass 

spectroscopy (Tibshirani and Saunders, 2005). It has yet to be used in other forms 

of spectral analysis. Its mathematical relationship to the lasso makes it a 

reasonable candidate in the context of this thesis. This thesis is the first 

application of fused lasso to LIBS spectroscopy. 

Elastic Net 

 Elastic net regression is a hybrid of lasso and ridge regression. It retains 

the sparse properties of lasso regression and the stability of ridge regression in the 

p >> N case. Much like the fused lasso, it can also select groups of correlated 

variables. “It is like a stretchable fishing net that retains ‘all the big fish’” (Zou 

and Hastie, 2005).   

 The model coefficients have the following form subject to choices of α 

and t constraints; yi is the elemental abundance in sample i and xij is the intensity 

at wavelength j of sample i 

                                   
 
    

 
  

     

                          
   

      .     (8) 

The second term of the elastic net penalty promotes averaging of highly correlated 

features. Thus, unlike the lasso, which indiscriminately selects a feature from a 

cluster of highly correlated features to represent in the model, the elastic net 

retains information about all the features in the cluster by averaging them. The 
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first term in the penalty controls the sparse nature of the model; it promotes a 

sparse solution in the feature coefficients (Hastie et al., 2009).  

 The elastic net penalty is a convex combination of the L1 and L2 penalties. 

It retains the desirable properties of both the lasso and the ridge. Note that when α 

= 1, the penalty becomes a ridge penalty. Similarly, when α = 0, the penalty 

becomes a lasso penalty. The elastic net is viewed as a generalization of the lasso 

that performs better in the p >> N case and has the ability to execute grouped 

selection.  

 The elastic net has been used for classification of bacterial Raman spectra 

from different growth conditions. “The experiment was designed to be a 

preliminary investigation of the ability of the Raman system to reliably 

distinguish between the same bacterial strain grown in different environmental 

conditions, specifically the presence of chromate in the media” (DePalma and 

Stephen, 2011). In the context of this study, the cross-validated classification rate 

ranged from 0.98-1.00 depending on the choice of α (DePalma and Stephen, 

2011).  

Although the elastic net has been employed for classification in 

spectroscopy applications, it has not been used extensively in previous 

spectroscopy analyses for composition predictions. It is a viable candidate, 

however, because of its mathematical relationship to ridge and lasso regression. 

Both of the latter techniques have been used extensively for analysis of spectral 
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data. As a mathematical improvement on them, it is likely that the elastic net will 

perform at least as well for spectral applications. 

Fused lasso versus Elastic Net 

 At first glance the elastic net and the fused lasso appear very similar. Both 

the elastic net and the fused lasso give sparse models and perform well in the p >> 

N case. They both address the shortcomings of the lasso by selecting groups of 

highly correlated variables for inclusion in the model instead of arbitrarily 

choosing a variable from such a group for inclusion in the model. 

  The first terms in both the elastic net and the fused lasso penalties control 

the sparsity of the coefficients to provide a parsimonious model. Thus, the bolded 

part of the elastic net penalty (Equation 8),                
      

    and the 

s1 fused lasso penalty (Equation 7),         
 
     perform the same function. 

The elastic net penalty uses two constraints, α and t, where as the fused lasso 

achieves sparsity according to one constraint, s1. The α value controls the balance 

between averaging correlated features and the number of non-zero coefficients 

(Ozanne et al., 2012).  

 The second term in the elastic net penalty (Equation 8),         
 
   

       
    , promotes averaging of highly correlated features. The s2 penalty 

in the fused lasso (Equation 7)              
 
    controls the magnitude of 

the differences of the coefficients.  These two penalties are quite different. The 
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elastic net penalty allows the model to select groups of highly correlated features 

and average them. This ensures that information from the cluster is not lost, but 

that it is also condensed into one variable coefficient to preserve the sparse nature 

of the model. The fused lasso penalty does not average the highly correlated 

features. Instead, it calculates the difference between two adjacent features and 

shrinks this difference according to some specified penalty s2. This assumes that 

there is a natural ordering in the features, and it inherently preserves that natural 

ordering when it calculates the model coefficients.  

 The elastic net penalty is more widely applicable than the fused lasso 

penalty because it does not assume that the features have a natural ordering. 

However, because it averages highly correlated features, it could significantly 

reduce the perceived impact of a given feature if the correlated features carry 

much less weight. This may make model interpretation more difficult. 

Sparse Partial Least Squares 

 Sparse partial least squares (SPLS) regression was introduced by Chun 

and Keleş in their 2010 paper. This regression technique was motivated by recent 

advancements in biotechnology. It has gained popularity as a means for analyzing 

high dimensional genomic data. Because of its dimension reduction capabilities, 

PLS drew attention first as a means of analysis for this type of data. PLS does not 

provide a sparse model, however, so it sacrifices straightforward interpretability.   
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  Like the lasso and the elastic net, SPLS operates under the fundamental 

assumption that some small subset of variables is primarily responsible for 

determining the response, known as the sparsity principle (Chun and Keleş, 2010). 

Thus, SPLS also has the ability to perform feature selection, while it retains the 

stable properties of PLS.  

 SPLS adds an L1-constraint to the formula given for PLS in the previous 

section. In PLS, “typically all or a large portion of the variables contribute to the 

final direction vectors which represent linear combinations of the original 

predictors” (Chun and Keleş, 2010). Chun and Keleş argue, however, that a large 

number of irrelevant variables actually contribute noise to the PLS prediction. 

Applying an L1 (sparsity) constraint eliminates these variables from the model to 

improve predictions. SPLS computes the model coefficients using the following 

formulation. 

                                             
      

                .        (9) 

In this formula, M = X
T
YY

T
X. SPLS has four tuning parameters (κ, t1, t2, and K). 

The L1-penalty (t1) encourages sparsity on c where c is a direction vector; this is 

the thresholding parameter. The L2-penalty (t2) addresses the potential singularity 

(inability to invert) in M while solving for c. The K parameter controls the number 

of hidden components.  The κ parameter is responsible for the starting value for 

the SPLS algorithm (Chun and Keleş, 2010).  
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 SPLS (in addition to the elastic net) was evaluated for classification of 

bacterial Raman spectra from different growth conditions. It returned a cross 

validated average classification rate of 0.809 ± 0.032. It did not perform as well as 

the elastic net did for this experiment. Also, interpretation of important features 

was more complicated than for the elastic net case because, as with PLS, SPLS 

does not use the feature matrix directly, but rather principal components 

computed using the matrix (DePalma and Stephen, 2011).  

Like elastic net regression, SPLS is a relatively new technique, so it has 

not yet had a chance to be tested in spectroscopy for prediction of elemental 

compositions. Given its relationship to PLS and its ability to produce 

parsimonious models, SPLS is a reasonable choice for spectral analyses. 



 
 

Table 1. Summary table of the various regression methods explored in this thesis 

Method OLS PLS LASSO ELASTIC NET SPLS 

Summary  

Chooses subspaces from 

explanatory matrix, X, sequentially 

projects response vector, y, onto the 

subspaces of the column spaces of X 

to determine the model variable 

coefficients. 

Shrinks some 

coefficients and sets 

others equal to zero in 

accordance with 

shrinkage parameter, t. 

Provides a sparse model 

that can be used for 

both feature selection 

and composition 

predictions.  

Generalizes the lasso. Shrinks 

some coefficients and sets 

others equal to zero; averages 

highly correlated features and 

shrinks averages. Provides a 

sparse model that has more 

terms than the lasso and can 

be used for feature selection 

and composition predictions. 

Adds an L1-constraint to 

the PLS algorithm to 

impose sparsity. 

Performs feature 

selection yet retains 

stable properties of PLS. 

Penalty None 
                        

              
     , 

       

 

   

                
    

 

   

             

Tuning 

Parameters 
None k, # of dimensions t t, α κ, t1, t2, K 

Advantage(s)  Provides a stable model. 

Provides an 

interpretable model, 

selects subset of 

predictors with the 

strongest effects on the 

response variable. Can 

be used for feature 

selection when less data 

are available. 

Performs well in the p >> N 

case. Provides an interpretable 

model that is more stable than 

the lasso. Useful for feature 

selection. 

Performs well in the p >> 

N case.  

Disadvantage(s) 

Does not 

provide a 

stable model 

when the 

variables are 

correlated; 

predictions 

suffer from 

wild variance 

so they are 

unreliable.  

Provides a complex model in which 

all coefficients are linear 

combinations of the original 

channels. Involves a complex 

optimization problem with no 

simple, closed-form representation. 

Does not perform as 

well in the p >> N case. 

Arbitrarily chooses one 

covariate from a group 

of highly collinear 

covariates to use in the 

model and discards the 

rest. 

Cannot be used for feature 

selection in situations when 

less data are available because 

it overwhelms the data with 

too many model variables. 

Shrinkage properties not 

yet well understood.  

3
1
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Model Selection 

Model selection is critical in statistical analyses. One important point of 

comparison is the accuracy of the model. A good model minimizes the prediction 

error. Mean squared error (MSE) is often used as a measure of the overall size of 

the measurement error (Rice, 2006). MSE for a model coefficient has the 

following form:  

            
 
                      

                      .       (10) 

In these formulae,    is the calculated model coefficient and β is the true parameter.  

Bias can be thought of as the extent to which the model “memorizes” the 

training set. Generally, bias has two components: model bias and estimation bias. 

Model bias is the difference (error) between best-fitting linear approximation and 

the true function. Estimation bias is the difference (error) between the average 

estimates of the model components       and the best-fitting linear approximation. 

For shrunken regression techniques, there is an additional estimation bias because 

the models are not best-fitting linear approximations; they are good 

approximations (Hastie et al., 2009). Variance describes the flexibility that the 

model has to deviate from the training set when it calculates the model 

coefficients.  
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 When the MSE is minimized, so are the bias and the variance of the 

model. Thus, a reasonable bias-variance tradeoff can be achieved for each of the 

various shrunken regression methods. Prediction error results for shrunken 

regression methods are often reported as root mean squared errors of prediction 

(RMSEP) because these have the same units as the original measurements of 

sample compositions, which in this thesis are expressed as wt% oxides.  

Although point-value RMSEPs are good first approximations of model 

performance, they do not take into account their variability. Both model stability 

and MSE must be taken into account when identifying a superior method 

(Hothorn et al., 2005). Both of these components can be examined using 

benchmark experiments. “Benchmarking” has its origins in land surveying, where 

the original meaning is: “A benchmark in this context is a mark, which was 

mounted on a rock, a building, or a wall. It was a reference mark to define the 

position or the height in topographic surveying or to determine the time for 

dislocation” (Patterson, 1992). Similarly, the performance of an algorithm can be 

assessed by “standing” on a reference point (the point-value RMSEP) and 

assessing the variability from that point.  

In “real world” applications where there exists a single learning sample L 

with a distribution    with no dedicated independent test sample, benchmark 

experiments require several steps. Models are trained on samples from    , which 

is the distribution of empirical data and model performance is assessed using 
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samples from   . Thus, for each model fitted on a bootstrap sample (sample 

generated from the original data through resampling), the original learning sample 

L is used as a test sample. This approach leads to overfitting because the same 

sample(s) can be present in both test and training sets. This can be corrected using 

out-of-bootstrap observations, where the test sample can be defined in terms of 

L/L
b
, where L

b 
(b = 1, …, B) is a bootstrap sample. This can also be handled using 

cross-validation techniques, where each bootstrap sample L
b
 is divided into K-

folds and the performance is defined as the average of the RMSEP of each fold 

(Hothorn et al., 2005; Eugster et al., 2008). This method operates as described in 

the cross-validation section of this thesis.  

 For this model comparison, the null hypothesis is that there is no 

difference between the models being compared. In the context of this thesis, the 

null hypothesis states that there is no difference in the performance of the PLS, 

lasso, elastic net, and SPLS models. Their RMSEP values and corresponding 

variances are assumed to be equivalent. For each comparison, a p-value is 

computed. Assuming that the null hypothesis is true, the p-value is the probability 

of getting a test statistic at least as extreme as the observed value. Prior to 

completing calculations, the researcher defines an α value, which determines the 

level of significance for the t-test. Common α values are 0.05 and 0.01. When the 

p-value is less than the defined significance level, the null hypothesis is rejected 

(Rice, 2007). The Bonferroni correction may be used to counteract the problem of 

multiple comparisons, which happens when a set of statistical tests are considered 



35 
 

simultaneously, all with significance level α. This significance level is not valid 

for the set of all comparisons even if it is appropriate on an individual level; it is 

lowered to α/n, where n is the number of statistical tests being performed 

(Weisstein, 2012).    

When choosing a model, interpretability, sparsity, and stability are also 

points for consideration. The ridge penalty, for example, provides a robust model. 

This is important because it means the prediction results will be consistent over 

time. However, the ridge penalty does not yield a sparse model, which makes 

model interpretation challenging at best. PLS is similar in that it produces a robust, 

but saturated model. In contrast, the lasso, elastic net, and fused lasso penalties 

yield sparse outputs by performing automatic feature selection. From a statistical 

point of view, a parsimonious model is always desirable because it is more easily 

interpreted. The latter two penalties also result in relatively stable models.   

The amount of data available is also an important consideration. The lasso 

and elastic net penalties are both useful for automatic feature selection, but model 

choice is dependent on the amount of data available. When data are plentiful, the 

elastic net is preferable because it includes more information from the data and 

the model is more stable. Because of the averaging effect in the elastic net penalty, 

more nonzero coefficients are produced in the model, which leads to greater 

model stability. In cases where the amount of data is lacking, the lasso can be 

used perform feature selection without overwhelming the data with too many 
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model variables because it provides a sparser model than the elastic net (Ozanne 

et al., 2012).  

Cross-Validation 

 Because the goal of this thesis is to draw conclusions about the usefulness 

of various statistical methods to LIBS, it is necessary to develop meaningful ways 

to compare and quantify differences among models. For this purpose, cross-

validation is one of the simplest and most widely used methods for estimating 

prediction error. This method directly estimates the expected extra-sample error, 

which is the average generalization error when the method       is applied to an 

independent test sample from the joint distribution of X and Y as shown below 

(Hastie et al., 2009). 

                        (11) 

     calculates the expected value, where             , which is the loss 

function.  Use of the expected value of a loss function is a standard way to 

calculate prediction error.  

 Ideally, models would be trained on some portion of the data, known as 

the training set, and then tested on a held-out, unseen portion of the data, known 

as the test set. In many cases, however, there is not enough data to have two 

completely separate data sets. In such instances, K-fold cross-validation is used. 

K-fold cross-validation splits the data set into K approximately equal-sized parts. 
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When models are being fit for a sample in Ki, the other K-1 folds (all Kj folds, i≠j) 

are used to train the model and the Ki fold is used to test the model.  

The formula for the cross-validation estimate of prediction is as follows, 

where κ: {1, …, N} → {1, …, K} is an indexing function that shows the fold to 

which observation i is allocated through randomization (Hastie et al., 2009).  

       
 

 
        

          
 
         (12) 

For “leave-one-out” cross-validation, κ(i) = i.  

Common K values are five and ten (Hastie et al., 2009). In the special case 

when K = N, this is known as “leave-one-out” cross-validation. In this case, the 

model fit is computed using all of the data except the i
th

 observation. Through this 

method, there is enough data to train the model sufficiently, but there is no danger 

of validating the model using the same data on which it was trained, which would 

yield an artificially low model prediction error.   

For example, in a data set of 100 samples, using 10-fold cross-validation 

means that there will be ten folds, each containing ten samples (because ten 

divides evenly into 100). Suppose a model is being built to predict the 

composition of ten samples and suppose that the data for these samples are 

contained in the tenth fold. The model will be trained on the data from the first 

nine folds, and then it will be tested on the data from the tenth fold to generate 

model predictions for the compositions of these ten samples. This process will be 
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repeated for the remaining nine folds. Composition predictions for all 100 

samples will be calculated. 

 In such “leave-one-out” cross-validation, the cross-validated estimator is 

unbiased for the true prediction error, which is shown in the following formula.  

                                  (13) 

Although the estimator is unbiased, it can have high variance because the N 

“training sets” (individual samples) are very similar to one another. If N is 

sufficiently large, “leave-one-out” cross-validation can also be computationally 

expensive (Hastie et al., 2009). 

 In a data set of 100 samples, using “leave-one-out” cross-validation means 

that there will be 100 folds, each containing a single sample. When the model is 

being built to predict the first sample, for example, the first sample will be left out 

of the training set, which will contain the other 99 samples. Then the model will 

be tested on the first sample to generate a model prediction for the composition of 

that sample. The same process will be repeated until predictions have been 

generated for all 100 samples.  

 For 5-fold and 10-fold cross-validation, a bias-variance tradeoff is 

employed. The variance is lower than in “leave-one-out” cross-validation. 

However, depending on how the model training varies as a function of training set 

size, bias could be a problem. Expected error (Err) shown in the following 
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formula is well estimated using 10-fold cross-validation. Expected error is 

calculated by averaging the true error over the training sets, τ.  

                                  (13) 

There is too much variation in the true error, Errτ, across training sets for it to be 

estimated effectively. This variation gets averaged out in the expected error to 

provide reliable prediction error values for the models in question.  

 If data are sufficiently plentiful, using a test set is preferable to cross-

validation because this would eliminate a source of variance (cross-validation 

procedure) for calculating model error. In situations where data are insufficient, 

however, use of a test set instead of cross-validation can increase model error. 

This distinction is undoubtedly application dependent and “plentifully large” has 

not yet been defined for LIBS. It is conservative to err on the side of cross-

validation, as is done in this thesis.  

Feature Selection 

 Shrinkage penalties that result in sparse models are useful for feature 

selection. Feature selection (also known as variable selection) is a machine 

learning term that refers to choosing a subset of variables that exert the most 

influence in making model predictions. High dimensionality (i.e., p >> N) results 

in extremely complex models where overfitting of the data is a concern (Hastie et 

al., 2009). Model overfitting gives overly optimistic prediction results. An 
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overfitted model will give less accurate predictions when tested on unseen data. 

Variable selection mitigates the “curse of dimensionality” and results in more 

interpretable models. Several shrunken regression methods, including lasso, fused 

lasso, elastic net, and SPLS can be used to perform feature selection.   

The ability to perform feature selection is an important aspect of a 

desirable model. It pertains to two of the three qualities previously mentioned: 

interpretability and sparsity. In the context of this thesis, feature selection ensures 

that the model coefficients have physical significance; they correspond to 

wavelength channels. It also promotes sparsity because only the most influential 

features are included in the model; others are driven to zero. Thus, a parsimonious, 

physically meaningful model results. 
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METHODS 

Samples and Experimental Methods 

A suite of 100 igneous rocks was analyzed using LIBS at Los Alamos 

National Laboratory. Approximately 150 g of sample was crushed to particle sizes 

of <45 µm. This was about ten times smaller than the LIBS beam diameter. This 

was done to minimize sample inhomogeneity and equalize grain size and porosity 

to allow the most accurate composition measurements. For LIBS sample 

preparation, a few grams of each sample were pressed into pellets in an aluminum 

cup using 35 tons of pressure to further mitigate inhomogeneity and equalize 

porosity (Tucker et al., 2010).  

Because atmospheric pressure exerts known effects on LIBS spectra, 

samples were placed in a chamber filled with 7 torr CO2 to simulate the Mars 

surface pressure.  They were ablated from a standoff distance of 9 m using a 

1064-nm Nd:YAG
3
 laser operating at 17 mJ/pulse; 50 laser shots were taken per 

sample. The optical emission from resultant sample plasma was collected using 

three Ocean Optics HR2000 spectrometers with UV (223-326 nm), VIS (328-471 

nm), and VNIR (495-927 nm) wavelength regions (Tucker et al., 2010). A 

resultant spectrum is shown in Figure 10. Elemental oxide concentrations for the 

ten major oxides were measured from samples prepared as noted above using the 

                                                           
3
 Nd:YAG stands for neodymium-doped yttrium aluminum garnet.  
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Figure 10. Averaged and baseline subtracted sample spectrum from the 100 

sample suite of igneous rocks. Wavelength regions span UV, VIS, and VNIR.  

X-ray Fluorescence (XRF) Laboratory at the University of Massachusetts, 

Amherst, supervised by Dr. Michael Rhodes (Rhodes and Vollinger, 2004).  

Statistical Analysis  

 Wavelength calibration was performed for each of the three spectral 

regions using the NIST database. In each of the three wavelength regions (UV, 

VIS, and VNIR), 10-15 prominent major elemental/ionic emission lines were 

selected from the NIST database. These were matched to spectral peaks in the 

sample spectra, which were identified in terms of pixel number (pixel number is 
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proportional to wavelength). The NIST wavelength value was plotted against the 

pixel number using a quadratic fit (Tucker, et al., 2010). A more accurate fit 

would use a third order polynomial of the form: 

            
     

        (14) 

In this equation, λ is the wavelength value of pixel p, I is the wavelength of pixel 

0, C1 is the first coefficient (nm/pixel), C2 is the second coefficient (nm/pixel
2
), 

and C3 is the third coefficient (nm/pixel
3
). This calibration was necessary because 

the wavelength for all spectrometers drifts slightly as a function of time and 

environmental conditions (Ocean Optics: Installation and Operation Manual).   

The 50 spectra for each sample were averaged and smoothed, and the 

baseline (A-D offset, and ambient light background) was modeled and subtracted 

using the R package “Peaks” (Ozanne et al., 2012) (Morhac, 2008). Spectra were 

averaged to remove noise. They are smoothed to match up the wavelength axes 

among the 100 spectra.  These preprocessing steps were performed using the 

CRAN R package “hyperSpec” (Beleites and Sergo, 2012). This package deals 

specifically with data for spectroscopic analysis. 

The R package “caret” was used to create one set of CV folds that were 

used to generate a list of training sets to build each of the models. This ensured 

that all of the models were being trained and tested on exactly the same data folds. 

This package was also used to create grids of tuning parameters for each of the 

regression techniques. As the models were built, they cycled through these tuning 
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parameters and ultimately selected the best model according to the one SE model 

selection criterion described in the next section. For example, ten possible t values 

were tested for the lasso, ranging from 0.1 to 0.9. For the SiO2 model, the model 

with t = 0.633 was selected.  

The “caret” package was also used as a wrapper package for the various 

CRAN R packages needed to construct the shrunken regression models. This 

permitted functional code to be written in the same form for all the regression 

techniques. Within this wrapper code, the PLS models were constructed using the 

CRAN R package “pls” (Mevik et al., 2011). The CRAN R package “glmnet” 

was used to create the elastic net models (Friedman et al., 2010). The lasso and 

SPLS models were built using the “elasticnet” and “spls” packages, respectively 

(Zou and Hastie, 2012) (Chung et al., 2012). Sample code is available in the 

appendix. 

Finally, “caret” can be used to compare various models using t-tests. This 

is a built in function of the package, and t-tests are a statistically robust test for 

whether significant differences in model performance are present. “Caret” 

completes these t-tests. Pair-wise model comparisons were made. For each pair-

wise comparison, p-values were calculated. The level of significance used in this 

thesis was α = 0.05.  
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Model Selection Heuristics 

There are two model selection heuristics that are commonly used to select 

the best number of components (coefficients) for the shrunken regression model. 

“Best” is determined by MSE and, in relevant cases, sparsity of model 

coefficients. The same model selection heuristic is used across all models 

regardless of whether they are sparse to make the methods comparable.  

A “global minimum” heuristic can be used to choose the number of 

components for the model. The global minimum is defined as the point at which 

the model MSE is at an absolute minimum. According to the definition of MSE, 

this is the point at which bias and variance of the model are minimized, so this 

should provide the best predictive model. This does not, however, ensure that the 

model will be as parsimonious as possible and will still yield good predictions. 

In order to minimize MSE and make the models as parsimonious as 

possible, a “one standard error” (SE) heuristic was employed to choose the 

number of components for each of the models. This heuristic selects the 

component number that yields a mean square error (MSE) of prediction within 

one SE of the global minimum, as illustrated in Figure 11 (Ozanne et al., 2012). 

The intent of the one SE heuristic is to select a model with smallest number of 

components without sacrificing model performance (i.e., small MSE). This 

employs Occam’s razor, which is a scientific rule that requires that the simplest of 

competing theories be preferred to the more complex theories (Merriam-Webster). 
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This also avoids overfitting, which is a potential danger of using the “global 

minimum” selection heuristic.   
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Figure 11. Mean square error (in units of wt% oxides squared) plotted against the log of the 

t value (the shrinkage parameter) for Si, Al, and Fe. The global minimum MSE on each plot 

indicates the value of t for which the smallest prediction error was obtained. The 1 SE 

heuristic model is the value of t used for predictions because this value of t strikes a balance 

between accuracy and model simplicity (Ozanne et al., 2012). 
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RESULTS 

OVERVIEW 

  RMSEP values were used to compare model prediction accuracies for the 

PLS, lasso, elastic net, and SPLS regression models. Pair-wise comparisons of 

model RMSEP values using Student’s t-test reveal that there is no statistical 

difference in the prediction accuracies of the four models for this suite of 100 

igneous rocks. These results are shown in Table 7, which gives both the p-values 

and the absolute differences in RMSEP for the model comparisons.  

MODEL SELECTION 

Partial Least Squares 

 The number of components in the PLS model was constrained to 15 to 

prevent overfitting. The selected 

models for the ten major 

elemental oxides all used fewer 

than 15 components, as shown in 

Table 2. MgO had the most 

complex model with 14 

components, while Na2O had the 

most parsimonious model with 3 

Table 2. Number of components chosen for the 

PLS models  

Elemental Oxides Number of Components 

SiO2 7 

Al2O3 6 

TiO2 10 

Fe2O3 12 

MgO 14 

MnO 12 

CaO 7 

K2O 9 

Na2O 3 

P2O5 10 

A maximum of 15 components was possible. 

The number was constrained to prevent 

overfitting. The number of components was 

chosen using the one SE heuristic. 
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components. The other elements had components numbering from 6 to 12, with 

SiO2 and Al2O3 on the lower end of that range, and TiO2 and Fe2O3 on the upper 

end.  

Lasso 

 The tuning parameter, t, was constrained to 0.1 ≤ t ≤ 0.9 using the CRAN 

R package caret. Larger values of t would have permitted models with more 

coefficients. Caret constrains to a 

maximum value of 0.9 because larger 

values do not improve the predictions 

sufficiently to compensate for the lost 

model simplicity. These t values, shown 

in Table 3, minimize the number of 

components in the model and the model 

RMSEP values according to the one SE 

heuristic.  

 

Elastic Net 

 For the elastic net models, the tuning parameters were constrained such 

that 0.1 ≤ t ≤ 3.0 and α = {0.1, 1.0} using the CRAN R package caret. Models 

were selected according to the one SE heuristic. Most elemental oxide models 

selected α = 0.1, which represents 10% L1-penalty and 90% L2-penalty. The 

Table 3. Lasso: chosen tuning 

parameters 

Elemental Oxides t 

SiO2 0.633 

Al2O3 0.278 

TiO2 0.544 

Fe2O3 0.456 

MgO 0.633 

MnO 0.456 

CaO 0.544 

K2O 0.544 

Na2O 0.189 

P2O5 0.544 

The range of the tuning parameter 

was constrained to 0.1 ≤ t ≤ 0.9 using 

the CRAN R package caret. These t 

values minimize the number of 

coefficients in the models and 

minimize the MSE values, according 

to the one SE heuristic. 

 



50 
 

Table 4. Elastic Net: chosen tuning 

parameters  

Elemental Oxides t α* 

SiO2 0.68 1.0 

Al2O3 3.0 0.1 

TiO2 0.68 0.1 

Fe2O3 3.0 0.1 

MgO 3.0 0.1 

MnO 0.1 0.1 

CaO 3.0 0.1 

K2O 0.68 0.1 

Na2O 2.42 0.1 

P2O5 0.68 0.1 

The ranges of the tuning parameters were 

constrained to 0.1 ≤ t ≤ 3.0 and α = {0.1, 

1.0} using the CRAN R package caret. 

These values were chosen according to the 

one SE heuristic. * In the case were α = 

1.0, this model is equivalent to the lasso 

model with t = 0.68. 

 

Table 5. SPLS: chosen tuning parameters 

Elemental Oxides η* κ K 

SiO2 0.9 0.5 3 

Al2O3 0.7 0.5 3 

TiO2 0.7 0.5 4 

Fe2O3 0.9 0.5 2 

MgO 0.7 0.5 3 

MnO 0.9 0.5 2 

CaO 0.9 0.5 3 

K2O 0.9 0.5 2 

Na2O 0.9 0.5 3 

P2O5 0.9 0.5 2 

The possible values of the tuning 

parameters were constrained to η = {0.1, 

0.3, 0.5, 0.7, 0.9}, κ = 0.5, and K = {1, 2, 

3, 4, 5}. These values were selected 

according to the one SE heuristic. *The η 

parameter is a combination of the t1 and t2 

parameters discussed in the SPLS 

background section. 

 

exception was SiO2, which 

selected α = 1.0. This is equivalent 

to a lasso penalty because it is 100% 

L1-penalty. The MnO model had 

the smallest t value (t = 0.1); Al2O3, 

Fe2O3, MgO, and CaO had the 

largest t value (t = 3.0).  The latter 

four models had the most 

coefficients. 

Sparse Partial Least Squares 

 For the SPLS models, tuning parameters were constrained using caret: η = 

{0.1, 0.3, 0.5, 0.7, 0.9} and K = {1, 2, 3, 4, 5}. The η parameter is a combination 

of the t1 and t2 parameters; it controls 

the sparsity of the model. The sparser 

models are for Al2O3, TiO2, and MgO. 

TiO2 has the largest number of 

hidden components (K = 4). The third 

parameter was κ = 0.5, which simply 

dictates the starting point for the 

SPLS algorithm.  
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Table 6. Prediction errors for tuned models 

 PLS Lasso Elastic Net SPLS 

 RMSEP SE RMSEP SE RMSEP SE RMSEP SE 

SiO2 2.39 0.80 2.03 0.70 2.05 0.65 2.50 0.61 

Al2O3 1.64 0.41 1.87 0.71 1.84 0.71 1.64 0.64 

TiO2 0.33 0.09 0.35 0.12 0.36 0.12 0.37 0.14 

Fe2O3 1.30 0.42 1.54 0.55 1.46 0.55 1.50 0.46 

MgO 1.72 0.35 1.81 0.59 1.76 0.52 1.70 0.42 

MnO 0.02 0.01 0.02 0.01 0.03 0.01 0.02 0.01 

CaO 0.80 0.17 0.89 0.25 0.94 0.27 0.85 0.18 

K2O 0.45 0.19 0.47 0.16 0.42 0.19 0.50 0.22 

Na2O 0.66 0.27 0.72 0.24 0.69 0.25 0.57 0.12 

P2O5 0.18 0.07 0.17 0.09 0.17 0.08 0.17 0.06 

RMSEP and SE are in units of wt% oxides. Lowest RMSEP values for each element are in bold.  

5
1
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Table 7. Pair-wise comparisons of RMSEP differences and p-values 

 RMSEP differences (upper diagonal) and p-values (lower diagonal) 

 PLS Lasso Elastic Net SPLS 

SiO2 

PLS  0.36 0.34 -0.11 

Lasso 1.00  -0.02 -0.47 

Elastic Net 1.00 1.00  -0.45 

SPLS 1.00 0.27 0.23  

Al2O3 

PLS  -0.23 -0.20 0.00 

Lasso 0.64  0.03 0.23 

Elastic Net 1.00 1.00  0.20 

SPLS 1.00 0.29 0.498  

TiO2 

PLS  -0.02 -0.03 -0.04 

Lasso 1.00  -0.01 -0.02 

Elastic Net 1.00 1.00  -0.01 

SPLS 1.00 1.00 1.00  

Fe2O3 

PLS  -0.24 -0.17 -0.21 

Lasso 0.72  0.07 0.03 

Elastic Net 1.00 0.42  -0.04 

SPLS 0.29 1.00 1.00  

MgO 

PLS  -0.10 -0.04 0.01 

Lasso 1.00  0.06 0.11 

Elastic Net 1.00 0.93  0.05 

SPLS 1.00 1.00 1.00  

MnO 

PLS  0.00 0.00 0.00 

Lasso 1.00  0.00 0.00 

Elastic Net 0.90 0.08  0.00 

SPLS 1.00 1.00 0.35  

CaO 

PLS  -0.09 -0.13 -0.04 

Lasso 0.61  -0.05 0.04 

Elastic Net 0.07 0.57  0.09 

SPLS 1.00 1.00 1.00  

K2O 

PLS  -0.01 0.03 -0.05 

Lasso 1.00  0.04 -0.03 

Elastic Net 1.00 0.85  -0.08 

SPLS 1.00 1.00 0.38  

Na2O 

PLS  -0.06 -0.03 0.09 

Lasso 1.00  0.03 0.15 

Elastic Net 1.00 1.00  0.12 

SPLS 1.00 0.39 0.84  

P2O5 

PLS  0.01 0.00 0.01 

Lasso 1.00  -0.08 0.00 

Elastic Net 1.00 1.00  0.01 

SPLS 1.00 1.00 1.00  

None of the p-values are smaller than the specified significance level α = 0.05. 

The null hypothesis is not rejected; in the context of this data set, there is no 

statistically significant difference in performance among these four regression 

methods.   
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DISCUSSION 

OVERVIEW 

 Despite the lack of statistical significance in the difference between 

models, some models do appear to give smaller errors depending on the element 

for which the models are constructed. This begs the question of whether the 

model choice should be made on an elemental basis. While this might improve 

prediction errors slightly, it would also complicate data analysis because the 

models would not be of the same type across elements. Also, because the 

perceived differences between models are so small, it is possible that the models 

that provide the smallest RMSEP values for this dataset would not apply to a 

different dataset.   

 However, the extent to which these conclusions can be generalized may 

depend on the size and composition of the data set. Although samples with major 

element weight percent oxide values ranging from 0-100% were chosen by 

geologists, there was no a priori reason why this suite of 100 igneous rocks should 

provide a comprehensive set of compositions. It is possible that results would 

change if a larger data set with even greater compositional variation was used, for 

example.  
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Figure 12. Box-whisker plot of the RMSE values for SiO2 models. The elastic net model 

and the lasso model give the smallest prediction errors; the elastic net yields the smallest 

spread. The linear combinations seem to hurt the prediction capabilities for SiO2 

composition predictions for the PLS methods. 

SiO2 

 Although there is no statistical difference in model performance among 

the four regression methods explored here, the elastic net and lasso models seem 

to perform slightly better for SiO2 composition predictions than PLS and SPLS do, 

as shown in Figure 12. Because Si emission lines are few but distinct in the UV-

VNIR wavelength range, it is possible that the process by which PLS and SPLS 

remove collinearity (taking linear combinations of channels) overwhelms the 

information inherent in the Si emission lines. In contrast, the lasso and the elastic 
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Figure 13. Box-whisker plot of the RMSEP values for Al2O3 models. In terms of RMSEP 

value, SPLS and elastic net perform slightly better than PLS and lasso. However, SPLS and 

PLS have smaller spreads for possible RMSEP values. All models are statistically equivalent. 

net methods select relevant channels according to their tuning parameters and 

drive others to zero. Presumably these models are selecting the Si emission lines, 

and these lines will not be overwhelmed by other irrelevant information.  

Al2O3 

 All four models are statistically equivalent in their prediction accuracies. 

For Al2O3, SPLS and elastic net perform slightly better in terms of absolute 

RMSEP value, while SPLS and PLS perform better in terms of error spread, as 

shown in Figure 13. Like Si, Al does not have many emission lines in the UV-

VNIR wavelength range. This may be why SPLS and elastic net perform slightly 
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Figure 14. Box-whisker plot of the RMSEP values for MnO models. Although it may 

appear that there are large differences in the RMSEP values on this scale, the difference are 

not statistically significant. The error spread appears to be larger for sparse models. 

better for Al. Also, Al emission lines may be highly correlated with other 

emission lines.  

MnO 

Although there is no statistically significant difference between any of the 

models for MnO predictions, there appears to be a substantial difference in 

RMSEP value for the lasso and elastic net models, as shown in Figure 14. It 

should be noted that the p-value for this pair-wise comparison is 0.08 (Table 7), 

which is not significant at α = 0.05, but it is still a much smaller p-value than 

those obtained for the other three pair-wise comparisons for MnO. At a slightly 
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Figure 15. Box-whisker plot of the RMSEP values for MgO models. The error spread appears 

to be larger for sparse models. There is no statistical difference in performance among the four 

models. 

 

more liberal significance level (α = 0.1) the difference would be statistically 

significant. Geological samples tend to contain less MnO than some other major 

elemental oxides. The sparse nature of the lasso (which has fewer coefficients 

than the elastic net) may allow MnO emissions to be more prominent in the model 

and thus provide lower a lower RMSEP value. Given the RMSEP spread for all 

four models, however, it is difficult to say for certain that this is the case.  

MgO 

 For the four MgO models, the RMSEP values are comparable, as shown in 

Figure 15. The model performances are statistically equivalent based on RMSEP 
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Figure 16. Box-whisker plot of the RMSE values for CaO models. The error spread appears to 

be slightly larger for sparse models. All models are statistically equivalent according to pair-

wise comparisons using Student’s t-test.  

 

values. It appears that the spread is a little tighter for PLS than for the other, 

sparse models. This suggests that some information is being lost when 

coefficients are dropped from the models, which is being retained by the linear 

combinations in PLS to give less variability in the RMSEP value.  

CaO 

 The RMSEP values for the four models for CaO are comparable. PLS and 

SPLS appear to have slightly smaller error spreads, as shown in Figure 16. 

Although there is no statistical difference among the models, it is worth noting 

that the p-value for the PLS – elastic net pair-wise comparison was 0.069, which 
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Figure 17. Box-whisker plot of the RMSEP values for Na2O models. The sparse models appear 

to give slightly tighter spreads for the RMSEP values. All models are statistically equivalent.  

 

is close to the significance level of 0.05. This would be an interesting comparison 

to make with different samples. It is possible that PLS performs better than the 

sparse models because Ca has more emission lines so the lines retain weight in 

linear combinations of channels. Ca emission lines might be dropped or obscured 

in the other models due to high correlation with other lines or averaging effects. 

Na2O 

 For the prediction models for Na2O, the sparse models seem to have less 

variability in their RMSEP values than PLS even though all four models are 

statistically equivalent. SPLS gives the smallest RMSEP, followed by elastic net 
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Figure 18. Box-whisker plot of the RMSEP values for K2O models. There are no statistically 

significant differences between models. The RMSEP variability is relatively uniform across 

models.  

 

and lasso, as shown in Figure 17. It is reasonable to assume that information from 

Na emission lines is retained in the sparse models and is more influential because 

these models have fewer coefficients to obscure the information and lead to 

increased RMSEP variability.  

K2O 

 All four regression models for K2O are statistically equivalent. The error 

spreads are comparable as well, as shown in Figure 18. K has many emission lines, 

which may be why PLS performs well; the K emission lines remain dominant in 

the linear combinations that form the model coefficients. These results suggest 
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Figure 19. Box-whisker plot of the RMSEP values for TiO2 models. Although all four models 

are statistically equivalent, the PLS model appears to have a tighter spread than the other, 

sparse models.  

 

that K lines are also sufficiently distinct to be selected for model inclusion by 

sparse techniques. This also implies that K lines are not highly correlated with 

other emission lines because the lasso performs comparably to PLS, so highly 

correlated lines do not appear to be indiscriminately dropped from the model. The 

lasso appears to retain K channels.  

TiO2 

 The four models for TiO2 are statistically equivalent. In terms of RMSEP 

value, they are almost identical, but the PLS model has a much smaller spread 

than the sparse models, as shown in Figure 19. This suggests that Ti emission 
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Figure 20. Box-whisker plot of the RMSEP values for P2O5 models. There are no statistically 

significant differences between the models. Model spreads appear to be comparable.  

 

lines retain weight in the linear combinations of coefficients so as to produce a 

small RMSEP and reduce the variablity in RMSEP.  

P2O5 

 RMSEP values and spreads are comparable for all four models for P2O5, 

as shown in Figure 20. All four models are statistically equivalent. These results 

suggest that P has plentiful, distinct emission lines that retain prominence both in 

the PLS model and the sparse models.  
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Figure 21. Box-whisker plot of the RMSEP values for Fe2O3 models. All models are 

statistically equivalent. The SPLS and PLS models appear to have smaller RMSEP spreads 

than the lasso and elastic net models. Fe lines are plentiful in the emission spectrum, so they 

may have more prominence in the linear combinations that form the coefficients in the PLS 

model.  

 

Fe2O3 

 As with the other major element oxides, the four regression models have 

statistically equivalent accuracies. The SPLS and PLS models, however, appear to 

have smaller RMSEP spreads than the lasso and elastic net models, as shown in 

Figure 21. PLS appears to perform slightly better for Fe than the other models, 

both in terms of RMSEP value and RMSEP spread. Fe emission lines are plentiful, 

so they may be more prominent in the linear combinations that form the 

coefficients for the PLS model. This may also explain the smaller spread of the 

SPLS RMSEP. In contrast, lasso may pick lines from clusters of highly correlated 
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variables and may miss the Fe emission line(s), which could explain the increased 

variability in RMSEP. Similarly, the elastic net may average out the effects of the 

Fe emission lines, which could lead to greater RMSEP variance.  
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CONCLUSIONS 

 On an elemental basis, the PLS, lasso, elastic net, and SPLS models are 

statistically equivalent. No model significantly outperforms the others. Thus, 

models may be chosen based on their other qualities, such as ease of expression, 

sparsity, and physical interpretability.  

 In LIBS analysis, PLS is the conventional form of analysis. It is a logical 

choice because it is familiar to researchers in the field. It has two major 

drawbacks, however. First, the shrinkage algorithm does not have a nice, closed 

form expression, so it is difficult to discern exactly what is happening during the 

shrinkage. This has been a subject of debate (Butler and Denham, 2000; Rosipal 

and Krämer, 2006). Second, because the model coefficients are made by taking 

linear combinations of channels from the original data set, these coefficients do 

not have explicit physical meaning, though they can be mapped onto emission 

lines using loadings plots. However, this matchup is not as convenient as the 

direct mapping from model coefficients to emission lines inherent in lasso and 

elastic net: it is not sparse. 

 The lasso, elastic net, and SPLS regression methods all improve on the 

PLS method by enabling feature selection. This indicates that the model 

coefficients for these three techniques have explicit physical meaning. From a 

statistical point of view, these models are preferable to PLS because they are 
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parsimonious. From a chemical perspective, these models are preferable because 

they are interpretable; coefficients have physical significance so interactions 

between elements can be better understood. Based on this work, however, one 

does not find any clear preference for one model over the others. With more data, 

it is likely that a clear “best” performer (or performers) will emerge.  

The flight model on board MSL contains many more channels than the 

LIBS used to collect the data used in this thesis. This means that more data will be 

contained in the spectra, so there will be more features available for selection. 

Subject to good training set from which to build the models, the increased feature 

availability may lead to more accurate models. Thus, all the models could perform 

better for spectra obtained on Mars because they will have more emission lines 

from which to build their models.  

The ultimate goal of this thesis is to determine the best method(s) for 

determining the elemental compositions of Mars rocks from LIBS spectral data. 

SPLS, lasso, and elastic net not only provide models with accuracies comparable 

to PLS model accuracies, but they also give interpretable models. These methods 

can improve researchers’ understanding of how Mars evolved by painting a 

clearer picture of elemental compositions and interactions in rocks.  
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FUTURE WORK 

DATA PREPROCESSING: AVERAGED VERSUS UNAVERAGED SPECTRA 

 Spectra from each of the 50 shots for each sample were averaged in this 

thesis, which resulted in 100 averaged spectra that were used for analysis. This 

was done to average out noise. This is permissible because the samples are 

homogenous (rock powders). However, the spectra from MSL will be from rocks, 

which by their nature are heterogeneous. Each shot could contain distinct 

compositional information. In the context of this application, information about 

the compositions of the samples could be lost if the shots were averaged before 

analysis. Moreover, the effect of training set size is untested, although it seems 

likely that larger data sets will produce improvements in accuracy. Therefore, 

models fitted using unaveraged spectra (5000 spectra) should be investigated, 

where CV folds are controlled such that all 50 spectra for a given sample are 

contained in one unit of analysis (one fold).    

ADDITIONAL TECHNIQUES 

Due to time constraints, not all shrunken regression techniques of interest 

were explored for this dataset. Other promising candidates include ridge and fused 

lasso, both of which were discussed in the background of this thesis.  A subset of 

shrunken regression, known as bridge regression is also of interest because it 
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contains some sparse methods. These techniques will be pursued in the coming 

months. 

BENCHMARK EXPERIMENTS 

 Advances in benchmark experiments for comparison of shrunken 

regression models have been fairly recent. The resampling process used in these 

experiments must be explored in further detail to determine which method yields 

the most accurate analysis of model superiority. Resampling techniques to be 

compared include the bootstrap and cross-validation (Eugster et al., 2008).  

AUTOMATIC LINE ASSIGNMENT TO KNOWN PEAKS 

Although the lasso and elastic net perform feature selection and select 

variables that have physical significance, the process by which they select 

variables does not guarantee that the same emission lines will be chosen each time.  

In the case of the lasso, for example, it indiscriminately picks a component from a 

group of highly correlated variables to be included in the model. This choice 

varies each time the model is run. Also, assignment of the included channels to 

known emission lines by hand is time consuming, so manual assignment for each 

element each time the model is run is not feasible.  

This process must be automated to fully exploit the strengths of these 

sparse shrunken regression techniques. Work on this automation has been started. 
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Figure 22. Artist’s rendition of MSL landing on Mars. MSL 

will land on Mars on August 5, 2012 at 10:00 pm US Pacific 

Time. Image credit: swri.org  

LIBS ON MARS: GOING THE DISTANCE 

 One of the numerous challenges that exists with collecting compositional 

data on Mars relates to 

the standoff distance at 

which the sample is 

collected. When 

spectra are transmitted 

from MSL back to 

Earth, they will 

include the standoff 

distance. Sparse 

shrunken regression models may provide valuable input for other methods used to 

better interpret the relationship between standoff distance and peak intensity. 

Features from these sparse models can be used in more advanced regression 

methods such as generalized additive models (GAMs) that require significantly 

lower dimensional data than the original LIBS spectral data.  
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APPENDIX 

REMOVING NA VALUES FROM DATA 

 

killNA  function(comps.xm.hs, element.name){ 

 print(element.name) 

 my.elt  !is.na(comps.xm.hs@data[,element.name]) 

 comps.xm.hs[my.elt] 

} 

 

FIXING CROSS-VALIDATION FOLDS 

 

model.folds  function(elements, x.hs){ 

 sapply(elements, function(y){ 

createFolds (killNA(x.hs, y)@data[[y]], k=10, list=TRUE, 

returnTrain=TRUE)}, 

  USE.NAMES=TRUE, simplify=FALSE) 

} 

 

cv.trainControl  function(elements, cv.folds){ 

 sapply(elements, function(y){ 

  trainControl(method= “cv”, selectionFunction= “oneSE”,   

  index=cv.folds[[y]])}, 

  USE.NAMES=TRUE, simplify=FALSE) 

} 

 

CREATING TUNING GRIDS FOR MODEL PARAMETER(S) 

 

enet.grid  createGrid(method = ”glmnet”, len=2) 

pls.grid  createGrid(method = “pls”, len=15) 

lasso.grid  createGrid(method = “lasso”, len=10) 

spls.grid  createGrid(method = “spls”, len=5) 

 

BUILDING MODELS 

 

MakeLassoModels.caret  function(elements, x.hs, tuning.grid, trc.list){ 

 mapply(function(y, tc.y){ 

train(as.data.frame (killNA(x.hs, y)[[]]), killNA(x.hs, y)@data[[y]], 

method = “lasso”, 

  USE.NAMES=TRUE, SIMPLIFY=FALSE) 

} 

 



II 
 

MakeElasticNetModels.caret  function(elements, x.hs, tuning.grid, trc.list){ 

 mapply(function (y, tc.y){ 

train(as.data.frame(killNA (x.hs, y)[[]]), killNA(x.hs, y)@data[[y]], 

method = “glmnet”, 

  USE.NAMES=TRUE, SIMPLIFY=FALSE) 

} 

 

MakePLSModels.caret  function(elements, x.hs, tuning.grid, trc.list){ 

 mapply(function (y, tc.y){ 

train(as.data.frame (killNA(x.hs, y)[[]]), killNA(x.hs, y)@data[[y]], 

method = “pls”, 

  USE.NAMES=TRUE, SIMPLIFY=FALSE) 

} 

 

MakeSPLSModels.caret  function(elements, x.hs, tuning.grid, trc.list){ 

 mapply (function(y, tc.y){ 

train(as.data.frame (killNA(x.hs, y)[[]]), killNA(x.hs, y)@data[[y]], 

method = “spls”, 

  USE.NAMES=TRUE, SIMPLIFY=FALSE) 

} 

 

EVALUATING DIFFERENCES BETWEEN MODELS 

 

Collecting Resampling Results 

 

resamps  resamples(c(SPLS = MakeSPLSModels.caret, PLS = 

 MakePLSModels.caret, LASSO = MakeLassoModels.caret, ENET = 

 MakeElasticNetModels.caret)  

 

Creating Box-whisker Plots (Example) 

 

bwplot(resamps, metric = “RMSE”, models = c(“SPLS.SiO2”, “PLS.SiO2”, 

 “LASSO.SiO2”, “ENET.SiO2”))  

 

Computing t-tests (Example) 

 

difValues.SiO2  diff(resamps, models = c(“SPLS.SiO2”, “PLS.SiO2”, 

 “LASSO.SiO2”, “ENET.SiO2”)) 

 

summary(difValues.SiO2) 


