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Abstract 

 

 

In this thesis, I have performed time series analysis and forecasted the monthly value of housing starts for                  

the year 2019 using several econometric and machine learning algorithms. In the rapidly emerging field of                

artificial intelligence, data scientists are heavily improvising and using machine learning models to predict              

any variable. I have applied a few popular techniques from machine learning to predict housing starts for                 

the year 2019. Some of these methods are - artificial neural networks, ridge regression, K-Nearest               

Neighbors, and support vector regression, and created an ensemble model. The ensemble model stacks the               

predictions from various individual models, and gives a weighted average of all predictions. In my               

analysis, the ensemble model has performed the best among all the models as the prediction errors are the                  

lowest. The econometric models have higher error rates than the machine learning models. In my analysis,                

I have elucidated each model mathematically and made plots to compare forecasts from each model.               

Lastly, I have stated the limitations of their usage and ways to enhance the current model.  
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1. Introduction1

In this empirical paper, I have forecasted the housing starts in the United States. Housing starts are the                  

number of new residential construction projects that have begun in a month. The common techniques of                

forecasting include econometric time series modeling and machine learning (ML). A subset of artificial              

intelligence, machine learning explores how to construct and analyze algorithms that can learn from data.               

Machines learn from patterns observed in lagged and exogenous variables (if given) and can predict the                

endogenous variable. While economists in decision-making can make causal inferences to understand the             

relationship between variables from econometric models and test hypothesis, finding insights and patterns             

are not relevant for ML models. Recently, econometricians are increasingly incorporating ML models such              

as neural networks and decision trees to enhance the model’s predictive performance. The goal in ML is to                  

obtain the lowest generalization error among the different systems built. One of commonalities between              

ML and econometric models is that they both aim to enhance accuracy of forecasts by minimizing some                 

loss function such as sum of squared errors using different approaches ML methods are, however, more           −      

computationally expensive.  

I have chosen housing starts as it is a leading indicator in the real estate or mortgage market . This forward                     

looking variable estimates a good gauge for future levels of real estate supply, and creates a ripple effect in                   

the overall economy. Its is primarily of interest as the inception and collapse of the housing bubble in                  

2007-08 were the turning points in the subsequent developments that embroiled the American and the               

Eurozone economies in a deep-seated financial meltdown. Buying new houses also increases the demand              

of complementary durable goods such as furniture, refrigerators, etc. Thus, new residential construction             

boosts employment in construction, raw materials, banking and other manufacturing sectors. Mortgage            

rates directly affect housing activity as higher interest rates raise the housing expenses. This lowers the                

number of qualified borrowers, declining home sales, and housing starts. Contrarily, lower interest rates              

make houses affordable, spurring housing starts and home sales.  

This thesis is divided into the following sections. Chapter 2 reviews the methodologies adopted in the                

statistical and economic literature useful in forecasting (2.1 and 2.2, respectively). Chapter 3 breaks down               

the complete analysis into two parts. Firstly, chapter 3.2 examines the econometric models in depth (from                

1 ​The dataset used in this thesis is different from that used in the class project as it has an extra column of 
variable, and more number of observations. Furthermore, the models used in this thesis are very different from 
those in the project, but derived from them.  
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3.2.1 to 3.2.11). I have used a few basic and advanced econometric tools to conduct time series analysis by                   

using ARIMA, ARIMAX, GARCH and VARX models. In this process, I tested for stationarity,              

cointegration, conditional heteroskedasticity, and error correction. Thereafter, chapter 3.3 investigates the           

machine learning algorithms and the ensemble models comprising of Artificial Neural Networks, Support             

Vector Regression, Ridge Regression and K-Nearest Neighbors models. I have measured the forecast             

accuracy through mean absolute percent errors and percent bias in the test sets. The ensemble model stacks                 

predictions from these methods to predict the number of housing starts in the test set. It applies different                  

weights to predictions from each of the aforementioned machine learning models, resulting in the              

weighted average predictions (from 3.3.1 to 3.3.7). Chapter 4 compares the results from each model to                

gain insight into relative model performance, and displays forecasts from the econometric and ML models               

for the year 2019. Chapter 5 highlights the stumbling blocks in conducting the time series analysis,                

potential ways to overcome them, and future research in machine learning forecasting. Chapter 6              

concludes the analysis by stating that the ensemble model performs the best among both ML and                

econometric models as it has the lowest prediction error in the test set. The Appendix in chapter 7 contains                   

the  relevant plots, tables and models. Finally, the Bibliography in chapter 8 consists of all the references. 
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2. Literature Review 

 

In this section, I will discuss the relevant empirical research done to model and forecast the number of                  

housing starts in the US. I will explain the regression and time series models that authors have applied, the                   

dependent and independent variables used, observations and conclusions on how their models and             

empirical results answer their research question. Also, I will discuss a few econometric and machine               

learning concepts pertaining to time series. These are helpful in understanding the drawbacks and              

efficacies of the various methods that the authors have employed in deciding which forecasting tools to                

use. Primarily, the forecasting tools used are Vector Autoregression (Thom et al.1985), Vector Error      −         

Correction Models (Printzis et al. 2015), Structural Equation Models (West et al. 2000) and advanced               

machine learning tools such as Artificial Neural Networks (Khalafallah et al. 2008). 

 

 

2.1. Discussion of the Forecasting Techniques Using Machine Learning Algorithms 

 

In one of the recent studies, Makridakis et al (2018) has compared the performance of eight machine                 

learning models and eight statistical models, deliberated problems arising from measuring forecast            

accuracy and the computational complexity of the methods. Among the ML methods used were Multi               

Layer Perceptron (MLP), Bayesian Neural Network (BNN), CART Regression Trees, Radial Basis            

Function (RBF) etc. A few of the statistical forecasting methods were Naive, Box Jenkins, Holt-Winter               

etc. Secondly, they made a forecasting model in the first 18 observations, generated forecasts in               

subsequent 18 observations and evaluated the accuracy by comparing the actual values with the observed               

values. Computational Complexity (CC) is the total time spent to train a model and extrapolate               

information from it. Thirdly, the paper discusses the outcomes and explains why the statistical methods               

produced higher forecasting accuracy than the ML models, and how to enhance the accuracy.  

 

Applying similar techniques, Pavlyshenko (2019) has predicted sales by machine-learning ensemble           

models using a small set of historical data. These are especially useful for firms who have just launched                  

their store or product(s) and want to predict the volume of sales in the short-run. The models comprising                  

neural networks, LASSO, ridge, ARIMA, random forests and trees are stacked together, resulting in lower               

error rates in the cross-validation and out-of-sample sets (not used on model training). Neural networks,               

trees and LASSO have positive weights, while ARIMA and random forests have zero weights. On the                

9 



out-of-sample set, one can calculate stacking errors. In the next level, predictions on the cross-validated               

become regressors for the linear model with Lasso regularization. Overall, stacking methods have             

enhanced the performance of predictive models in forecasting sales.  

 

Johnson et al. (2016) has forecasted financial time series using machine learning models. Generally,              

advanced forecasting methods predict changes in price in financial markets with high degree of accuracy,               

leading to profits in some of the trades based on the predictions. This paper has tried to resolve the                   

contradiction that financial economists have pointed out market inefficiencies prevent investors from       −       

predicting price, and thus trade profitably. So, they made forecasting simulations from thirty four financial               

indices spanned over six years. These simulations provide evidence that the best machine learning models               

outperform the best econometric models with respect to accuracy. The paper also scrutinizes the factors               

that influence predictive accuracy of ML models. The results suggests that model-based trading and              

predictability are affected by the maturity of the market, forecasting technique used, forecasting horizon,              

and methods to assess model.  

 

Mullainathan and Spiess (2017) have discussed the basics of machine learning, its applications, how it is                

used, different kinds of models and their performance, and compared them with OLS models. They also                

predicted housing value from a dataset comprising of 10,000 randomly chosen owner-occupied units,             

collected in the 201 metropolitan sample of American Housing Survey. Besides the values of each units,                

the sample has 150 variables containing information about the units, their location, base area, number of                

rooms, census region in the US, etc. Comparing various prediction methods, they examined how well each                

method predicted log unit value on a test set (also called hold-out set) that had 41,808 units from the same                    

sample. Sometimes models such as random forests overfit in the training set, overstating the performance               

in the in-sample by lowering the error rates. However, the same models may perform poorly in the test set.                   

Nonetheless, random forests perform significantly better than ordinary least square models albeit moderate             

sample sizes with few covariates. They also created an ensemble model composed of OLS, regression               

trees tuned by depth, LASSO and random forests. The ensemble and the OLS have the narrowest and                 

widest 95 percent confidence interval, respectively. The paper has discussed different kinds of shrinkage              

or regularization parameters that add bias and reduce the coefficients to approximately zero in order to                

reduce the overall variance. In neural networks, the regularizers are the number of hidden layers and                

neurons in each layer, while in parametric equations, they are  LASSO, and ridge regressions.  
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Focusing on just one ML model to predict housing prices, Khalafallah et al. (2008) has used neural                 

network based models to predict the performance of the housing market. The paper has elaborated on how                 

Artificial Neural Network models can assist home developers and real estate investors in forecasting              2

changes in house price in the short run. This model has several features: artificial neural networks can                 

construct generalized information about the housing industry’s current and past performance; it can predict              

the ratio between asking price and average home sales. The main indicators used in constructing ANN                

models are the mean interest rate, time- year and month, percentage change in volume of sales compared                 

to that in the previous year, inventory volume, monthly inventory supply, percentage change in the median                

price of house and average number of days a house is available in the market. ​The eight input neurons in                    

the ANN structure represent these variables. Its output is the ratio between the house’s selling and asking                 

price. The author tested several network structures in unforeseen cases to choose the best ANN structure                

that would forecast accurately with minimal training.  

 

Khalafallah et al. selected this design as neural networks are very robust in estimating almost any output or                  

input. They are trained, cross-validated and tested many neural structures by differing the number of               

neurons in each hidden layer, changing the number of hidden layers, applying the transfer function and                

learning method. The drawback of this model is that it cannot forecast the reaction of the housing market                  

in the long duration. Lastly, the test set and validation set model predicted the error to be in the range of                     

–2% and +2%. 

 

2.2. Discussion of the Econometric Forecasting Techniques on Housing Starts 

 

Wallace et al. (1969) used. a two-equation disaggregated model of residential construction industry. They              

assumed that both single and multiple family housing starts were related to potential demand, availability,               

and cost of funds, construction costs, and other conditions of money and housing markets. Using quarterly                

data from 1960 through the second quarter of 1968, they performed multiple regression and correlation               

analyses to test the two housing models. The results from the equations were consistent with expectations.                

The paper shows that housing starts respond negatively mortgage yields and positively to demographic              

characteristics. Also, single-family starts respond negatively to vacancy rates, implicit price deflator, and             

2  ​Neural networks​ are data-driven machine learning algorithms. Like smoothing algorithms, they learn 
patterns from data. Like regression models, they are designed to capture the relationship between input and 
output variables using cross-sectional data. Neural nets are also used to forecast time series (numerical or 
binary). It mimics the functionalities of the human brain to solve the problems. It link the input information with 
output information through a network of neurons. They neurons learn from other neurons, process information 
using activation functions and generate output.  
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the Federal Reserve discount rate. Multiple-family starts respond negatively to yields on long-term bonds              

and rent-price variable, and negatively to the Treasury bill rate. 

 

Single-family housing starts were highly correlated with Mortgage Yield (measures costs of funds),             

number of Households Headed by an Individual 25-to 34 Years of Age (measures potential demand),               

Federal Reserve Discount Rate (measures the availability of funds), Implicit Price Deflator for Residential              

Construction (measures construction costs), and Vacancy Rates (measures the balance of demand and             

supply in the housing sector).  

 

Housing starts of multiple-family units were highly correlated with Mortgage Yields (a measures costs of               

funds), number of Persons Reaching Age 21 (a measures additional demand for multiple-family housing),              

yield on three-month treasury bills (a measures the availability of funds), ratio of rent component of                

consumer price index to implicit price deflator for residential construction (measures profit margin of              

investments), and long-term bond yields (measures expected conditions in the bond and money markets)​.              

The models indicate that changes in housing starts lag changes in many of the causal variables. The lags                  

imply the time builders need to plan and enforce tasks once the monetary policy stipulated to raise or                  

diminish the number of housing starts.  

  

Ira G. Kawaller and Timothy W. Koch (1981) forecasted the housing starts using aggregated monetary               

targets to understand how monetary policy impact housing starts. Thus, the flow of funds to financial                

institutions primarily determine housing starts. This is a supply side or a “supply of funds side” approach.                 

Alternatively, demand-side factors reflect changes in the mortgage rate. Mortgage loans depend on how              

funds flow to financial intermediaries that grant mortgage loans. The mortgage loans impact the value and                

pace of housing starts. In this approach, Koch et al. (1981) assume yield on mortgages move in a way such                    

as demand for mortgage credit is equal to its supply.  

 

They ran various ordinary least squares regressions for different types of housings starts. The dependent               

variables—number of housing starts (in thousands) was regressed on the aforementioned variables. They             

forecasted using quarterly data from the third quarter of 1962, through the second quarter of 1970. First,                 

they examined the structure of the residential housing market the number of housing starts. This         −        

variable is decomposed into several categories such as conventionally financed single-family owned            

dwelling units (HC), federally underwritten single-family dwelling units (HFED), Multiple-family          

dwelling units (HM), and Mobile homes (HMHUS). Then, they forecasted both subsectors of             

single-family units and for different types of housing starts till the end of 1971.  

12 



 

Koch et al. included a dummy variable to capture the effect of extreme weather that hurt the housing                  

industry in the first three months of 1978 and 1979. They projected the flow-of-funds data (FF*) based on                  

the regression equation estimated quarterly from 1970 through 1979. So, there is a linear relationship               

between the flow of funds (FF) and CM2. CM2 is the difference between the aggregate M2 of the third                   

month between the current and former quarter. Housing value will be greater if more funds flow. To                 

forecast housing starts, they used the average new home sales price in 1980. The model reduced forecast                 

for housing starts when inflation is higher. This is because consumers can finance fewer units with the                 

same amount of dollars.  

 

Unlike the previous two similar methods followed by Wallace et al and Koch et al., Brady et al. forecasted                   

short-run movements in different types of residential housing (single and multiple family housing starts).              

The financial variables related to data series are loan-to-value ratios, interest rates, amortization periods on               

mortgages, costs of residential construction, and savings volume flowing into the financial intermediaries.  

 

According to their analysis, demand variables such as per capita disposable income and relative price of                

housing services, shift in the long-run only. Their analysis closely relies on supply variables to explain the                 

short-term fluctuations in the housing markets. From the supply side, the interest rate on mortgages,               

monetary stringency, and rate ceilings kept on savings deposits with financial intermediaries determine the              

savings inputs to financial intermediaries as they purchase most of the mortgages. Along with the savings                

inputs, the federally set ceilings on interest rate and loan-to-value ratio imply the volume of mortgage                

instruments held in the asset portfolio of both public and private sector. Coupled with their participation in                 

the mortgage market are the demand factors which together establish the terms of acquiring mortgages.               

Finally, the costs of residential construction, and government intervention in the market link and close the                

supply side factors of housing activity.  

 

Thom et al. (1985) provided evidence on the relationship between mortgage availability and housing              

starts. Firstly, they employed a four variable ​vector autoregression (VAR) to compute impulse response              3

functions. The results show that both mortgage availability and interest rates significantly affect housing              4

starts. Secondly, they estimate vector autoregression to decompose starts using 1979(12) as the base              

3 ​Vector autoregressive (VAR​)​ ​models are used in multivariate time series. Here each variable is a linear 
function of previous lags of itself and that of other variables.  
 
4 ​Sometimes, we would like to know how one variable responds to an impulse from another variable in a higher 
dimensional system comprising of multiple variables. So, economists compute ​impulse response relationship 
between two variables or find out how the variable reacts or alters behavior due to the impulse.  
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period. According to the decomposition, the availability effects have weakened as competitive financial             

markets have evolved and been deregulated. So, the relationship between housing starts and mortgage              

availability has diminished. Thirdly, they made an unrestricted model that entails observations on             

mortgage interest rate, mortgage availability, private sector starts, and mortgage availability. They            

estimate the mean interest rate on long-term bonds the mortgage interest rate as a vector autoregression                

(VAR).  

 

They use the moving average representation of the VAR to judge how important are interest rates in                 

determining housing starts since financial deregulation in 1980. In the model to showcase the relationship,               

the variables they used are average ​interest rates on long-term government bonds, interest rates on new                

home mortgages, mortgage availability and the number of privately-owned housing starts. Government            

bonds rates are the proxy for capital market rates. The IRFs suggest that housing starts are persistently                 

responsive to shocks in mortgage availability and interest rates. The responses of housing starts to an                

availability shock are not very significant and of a smaller magnitude than the responses to interest rate                 

shocks.  

 

West et al. (2000) measured the forecasting accuracy of regional single-family housing starts. They have               

predicted residential construction in regional housing markets. To analyze the accuracy of the forecast, the               

data consists of quarterly forecasts (from previously published econometric papers) of Florida and its              

largest six metropolitan economies. The sample consists of simulation from periods 1985:1 - 1996:2 and               

three phases of the business cycle: expansion, recession, and recovery. Thereafter, the paper compare the               

forecasts of the single-family unit starts with univariate time series and random walk alternatives and the                

results suggest that multi-family housing starts perform better than single-family starts for the same              

housing market in Florida.  

 

Regional structural equation models (RSEMs) are constructed to analyze expected changes in the supply              5

of new housing units. Furthermore, they used random walk and univariate ARIMA models to assess the                6

accuracy of regional econometric models that forecast residential construction. They made the data on              

5 ​Structural equation models ​are models used to construct multivariate statistical analysis i.e. a combination of 
multiple regression analysis and factor analysis. It measures structural associations between latent constructs 
and variables. In a single analysis, it computes interrelated and multiple dependence. Here two types of 
variables are exogenous and two are endogenous. The dependent variables are endogenous variables are 
equivalent to the explanatory variables. 
 
6 ​A time series follows a ​random walk​ pattern if the first difference of observation i.e difference between 
observation at time t and time (t-1) are random. 
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single-family housing starts stationary by taking the first difference. The autocorrelation functions            

highlight autoregressive and moving average parameters. Finally, they calculated the Modified Theil            

inequality coefficients, which is the ratio of RMSEs of the structural model to those associated with a                 

random walk and univariate ARIMA housing starts equations. The modified Theil inequality coefficients             

are reliable indicators as it forecast models with higher accuracy. If a modified Theil inequality coefficient                

is greater than one, it means that ARIMA, univariate or a random walk model yields smaller absolute                 

forecast errors than the structural model. Contrarily, if the inequality coefficient is less than one, it means                 

that the prediction errors from RSEMs are less than those of univariate, ARIMA or a random walk model.                  

The paper concluded that the accuracy of structural model that forecasts single family construction activity               

is low relative to those of univariate ARIMA and random walk models.  

 

Puri et al. (1988) constructed a multi-equation econometric model of the US housing market and contrast                

its viability with the forecasts generated from ARIMA models. The econometric model has credit and cost                

availability variables and stock-flow structure focused on the housing supply equation. They made two              

types of forecasts up to four time periods ahead for both time series and parametric models.  

 

The two-time series models shown in the paper are the univariate ARIMA model and a bivariate leading                 

indicator model. In the latter, they constructed a time series with private dwelling units as a leading                 

indicator series. Of the two, the ARIMA model performs better as it is difficult to forecast indicator series                  

and there is a short lag between housing starts series and indicator series. Hence, they dropped the                 

indicator model from the analysis. Also, ARIMA forecasts have minimal bias and a negligible proportion               

of error due to bias. They used actual and forecast values of the exogenous variables to conduct                 

simulations. The exogenous variables are CPI, public housing dwellings, weighted population, credit            

availability by mortgage agencies, T-bill rate (3 months bond), rate on 3-5 year treasury bond rate,                

effective interest/dividend rate paid by insured S&L associations. The paper concluded that time series              

forecasts were less superior to “unaided one-period ahead econometric forecasts.” However, as            

econometric models are biased, predictions made by ARIMA models are better in the long run.  

 

 

In the literature review above, I have examined the scholarly empirical research papers wherein              

economists have used various methods to forecast housing starts or similar variables of the real estate                

market. I observed that statisticians and economists have not undertaken much research in this field using                

the advanced machine learning tools as it is a relatively emerging field. So, I will study and use a few of                     

those methods, forecast housing starts, and compare my results with those from the econometric methods               

that I have described in the literature review.  
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3. Data Analysis 

 

3.1. Description of the Data  

First, I will detail the the characteristics of the dataset before giving a synopsis on the econometric tools                  

used for time series analysis. I have used monthly data of all variables from Federal Reserve Bank of St.                   

Louis Economic Research (FRED) from June 1976 to December 2018. Totalling 511 observations, the              

dependent variable is the number of housing starts. Below is the list of all the variables.  

 

1. hous_st : ​The number of privately owned housing starts for each month (in 1000s of units). 

2. CPI: The consumer price index measures ​the ​weighted average of prices of a fixed basket of                

consumer goods and services. It assesses changes in cost of living standards with respect to               

inflation. A higher CPI implies higher inflation, reducing people’s disposable income/savings, and            

vice versa. 

3. mortgR: A 30 year mortgage rate that measures the interest rate charged when financing a new                

home. 

4. fed_fundsR: The federal funds rate is the interest rate that banks charge other other banks for                

overnight loan requests to meet the federal reserve requirement.  

5. income:​ The real disposable personal income per person on average (in billions of USD). 

6. pvt_house_comp:​ The number of new privately owned houses completed (in 1000s of units). 

7. sec_conL: The number of securitized total consumer loans outstanding (in billions of USD).             

Through securitization, financial institutions distribute various assets such as residential          

mortgages, and auto loans to third party investors to generate a sustainable cash flow.  7

8. real_estL:​ The number of real estate loans from all commercial banks in billions of USD. 

9. yield_sp:​ The difference between a 10 year treasury bond and a 2 year treasury bond.  8

7 ​Through ​securitization, ​financial institutions pool diverse array of contractual debt such as commercial, 
residential mortgages, credit card debt obligations, auto loans, and other non-debt assets. By selling these assets 
(called securities) to third party investors, they generate cash flows. These securities can be pooled to generate 
collateralized debt obligations (CDOs), bonds, credit default swaps (CDS), mortgage backed securities (MBS), 
and asset backed securities (ABS). 
 
8 ​In general,​ yield spread​ is the difference between the return or yield between any not debt instruments, not 
just treasury bonds. For instance, if a 10 year treasury bond is trading at 6 percent, and a 3 months treasury bill 
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10. unempR: ​The civilian unemployment rate. 

11. house_supply: ​Monthly Supply of Houses in the United States, Months' Supply 

 

I have divided the original dataset into the training and test sets, wherein the first 80 percent of                  

observations belong to the training set, and the last 20 percent belong in the test set. After fitting the                   

models in the training set, I measured their performance using two metrics in both the sets: mean absolute                  

percent error and percent bias. The mean absolute percentage error (MAPE) is the absolute percent               

difference between the predicted and observed values and is useful when we compare forecasts of series in                 

different scales. Here, we measure the error in terms of percentage.  

AP EM = n
1 ∑

n

i=1 y| i|
y −y| i i

︿|   

The percent bias calculates the the average amount by which the observed values deviates from the                

predicted values. Its value is close to 0 if the model is unbiased. From the bias-variance tradeoff, complex                  

models have lower values of bias and higher variance, and vice-versa. 

BP = n
1 ∑

n

i=1
yi

y −yi i
︿

00%× 1  

 

3.2: Summary of the  Econometric Analysis 

 

Before making any models, I had to ensure that all the variables in the time series are stationary. So, I have                     

made the ACF and PACF plots to check for autocorrelation in all the series. To corroborate results from                  

plots, I have conducted hypothesis tests that verifies whether the series are stationary. As all the variables                 

have unit-root (are non-stationary), I differenced each of them to make them stationary. Thereafter, I               

created an ARIMA model using housing starts as the variable, and an ARIMAX variables which               

incorporates both exogenous stationary variables and endogenous variables (housing starts). I have also             

analyzed the diagnostic plots to check if the residuals are serially correlated via ACF, PACF, and Ljung                 

Box Tests, and examined if the histograms of the residuals are skewed. The squared residuals of ARIMA                 

model shows conditional heteroskedasticity, so I have further analyzed the variance of the series using               

ARCH and GARCH models. Once the assumptions are fulfilled, and forecast accuracy measured via error               

rates, I forecasted monthly values of housing starts using the ARIMAX, ARIMA and ARMA-GARCH              

is trading at 3 percent, then the yield spread is 2 percent. It primarily depends on factors such as credit ratings, 
riskiness,  and time to maturity.  
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model for the year 2019. The downside of an ARIMA model is that it only projects the future value based                    

in previous values, devoid of external economic variables that can sufficiently influence the movement of               

the variable. Therefore, I made a VARX, which is a dynamic model. It involves variables that most                 

impact housing starts model mortgage rates, private houses completed, real estate loans, etc. Previously,   −           

I tested for cointegration in the variables, and built a vector error correction model, which elucidates how                 

deviations from the long-run are corrected. Moreover, I constructed impulse response functions to depict              

how sensitive the variables are to shocks from another variable, and how long it takes to revert to its mean.                    

Again, after ensuring that the errors are serially uncorrelated and checking the model diagnostics, I               

forecasted value of housing starts using the VARX model for one year. From chapter 3.2.1, I have                 

described each method in detail. 

 

3.2.1.Autocorrelation 

Autocorrelation measures the linear relationship between lagged variables in a time series data. The ACF               

plot shows different autocorrelation coefficients. For example, measures the relationship between       r1      yt

and .   measures the relationship between and . and so on.y t−1 r2 yt y t−2  

The PACF plot measure the relationship between and after removing the effects of lags       yt  y t−k        

. So, the first partial autocorrelation is identical to the first autocorrelation, because there is, , ..(k )1 2 . − 1                

nothing between them to remove. In simple terms, the PACF removes the lags that cause autocorrelation.  
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Figure 1: Plot of the Autocorrelation Function (ACF) of the US Housing Starts shows serial correlation as the                  

ACF dies down 

When a plot has trends, then the spikes in the ACF plot gradually decrease as lags increase. Because the                   

housing starts series has autocorrelation, it is not white noise. The blue lines in the ACF and PACF plots                   

indicate significance and the spikes in the plot that exceed the significance lines above and below imply                 

that the current level of housing starts is significantly autocorrelated with its lagged values. From figure 3,                 

we will include 3 lags. The number of significant correlations (spikes greater than than the significance                

lines) indicate the term of the AR model.p   
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Figure 2: Partial Autocorrelation Function (ACF) of the US Housing Starts as PACF cuts off after 3 lags 

A time series is stationary whose properties are independent of the time in which we observe the data. So,                   

a series with trends or seasonality is non-stationary as trends and seasonality change the values of                

parameters at different points in time. Alternatively, a white noise series is stationary as it looks the same                  

at any point in time. Generally, stationary time series have no predictable patterns in the long run. Such                  

time plots will be approximately horizontal, have constant variance and mean, albeit they may be cyclical.                

The distribution of the time series should be constant  between time and time t .t + n  

A non-stationary time series can be made stationary by differencing consecutive observations. Logarithmic             

transformations and differencing can stabilize the variance and the mean of the time series, respectively.               

Furthermore, differencing eliminates seasonality and trends. The ACF plots are helpful to identify             

stationary time series. For such data, ACF plummets to zero fast. On the contrary, the ACF of a unit root                    

or non-stationary series decreases relatively gradually, as also depicted by the spikes of the housing starts                

data. The value of  is often large and positive for non-stationary data.r1  

ARIMA models explain or capture serial correlation present within a time series. We test whether the first                 

h autocorrelations are significantly different from we expect in a white noise process. The Ljung-Box test                

checks for autocorrelation  where: 

: the time series data points at each lag are i.i.d i.e. there is no autocorrelation,H0  

: the data points at each lag are not i.i.d. and are serially correlated.HA  
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The ACF of the differenced housing starts doesn’t look like that of a white noise series. First differencing                  

removed the trend in the residuals, resulting in uncorrelated errors. There are autocorrelations lying              

outside the 95% limits, and the Ljung-Box Q∗ statistic has a very small p-value of This               .892 0 .3 × 1 −11   

suggests that the monthly values of the US housing starts are not random, but are correlated with those of                   

the previous months. After differencing all the variables, I have made ARIMA models to forecast. 

 

3.2.2 ARIMA Models 

In ARIMA, the autoregressive (AR) is an extension of the concept of random walk used for non-stationary                 

economic and financial data. The observations in random walk models can change unpredictably in any               

direction. Thus, the forecasts are equal to the last observation as the values are equally likely to move up                   

or down. Let a time series be If the elements of the series, , are independent and       ε , .., }.{ t : t = 1 . n       εi     

identically distributed (i.i.d.), with zero mean , variance , and no serial correlation      μ   σ2      

then the time series is a discrete white noise (DWN). In particular, if thecor(ε , ) = , ∀ i = ),  ( i εj / 0  / j               

values are drawn from a standard normal distribution (i.e. ~ , then the series is known as wi          εt  (0, ))N σ2        

Gaussian White Noise. In a random walk, each term, depends entirely on the previous term, and a         xt        xt−1    

stochastic white noise term, : εt xt = xt−1 + εt  

From the random walk models, we derive the AR model which is linearly dependent on the previous                 

terms. A time series model, is an autoregressive model of order if:     x }{ t         AR(p),p −   

, where is a white noise. In models, the forecasts converge to the x ..  xxt = α1 t−1 + . + αp t−p + εt    xt       R(1)A        

mean at a faster rate as the value of lowers. In models, if is true, then the model         α1   R(2)A    αα1
2 + 4 2 < 0       

displays a pseudo-periodic behavior, implying that the forecasts appear as stochastic cycles. If the              

condition fails, then the model does not follow a stochastic cycle and behaves similar to an model.  R(1)A  9

The Moving Average (MA) in ARIMA is a linear combination of the past white noise terms. Intuitively,                 

this means that the random white noise “shocks” are directly seen at each current value of the model. This                   

is in contrast to an model, where the white noise “shocks” are only seen indirectly, via regression     R(p)A              

onto previous terms of the series. A time series model, is a moving average model of order ,          xt        , MA(q)q   

if: 

, where  is a white noise. ε  ..  εxt = εt + βt t−1 + . + βq t−q εt   

9 ​The  above condition condition ​arose from the general solution to the homogeneous form of the linear, 
autonomous, second-order difference equation. 
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The error terms in an ARIMA model explain ​"short-term" influence of the past, and lagged terms explain                 

"long-term" influence. ​The order of integration is another concept closely associated to stationarity. The              

order tells the number of times we should difference the series to make it stationary. An series has                (0)I    

order 0 if it does not require any differencing, and is already stationary. A series is order 1 or if it is                   (1)I     

non-stationary initially, but the first difference makes it stationary. An series frequently crosses the          (0)I      

mean, whereas and series can stary or wander farther from their mean value and rarely comes  (1)I   (2)I               

across the mean. ARIMA repeatedly differences  times to make a stationary series.d  

A time series model, is an autoregressive integrated moving average model of order and    xt           ,p d  

 if:q RIMA(p, , ) : A d q  

, such that: x   x ..  ε ε ..  ε  x′t = α 1 ′t−1 + α2 ′t−2 + . + εt + β1 t−1 + β2 t−2 + . + β q t−q  

  is the differenced series  where the differences could be more than 1, x′t  

  is a white noise process with  and variance .εt (ε )E t = 0 σ2  

Whilst the AR model uses its own previous behavior as inputs to capture market effects such as mean                  

reversion in the housing price, the MA model shows the “shock” information to a series, such as the                  

impact of a boom in housing construction or a steep drop in real estate loan rates. Combining                 

autoregression with differencing and a moving average model yields a non-seasonal Autoregressive            

Integrated Moving Average (ARIMA) model. A series with is a white noise series.        RIMA(0, , )A 0 0       

Intuitively, ARIMA denotes the number of previous time steps the current value of our variable depends                

on. For example, at time​ t​, the variable   linearly depends on   and .ous sth t ous sth t−1 ous sth t−2   

Figure 1 in the Appendix shows the time series of each economic variable. Graphically, all the predictors                 

are non-stationary. The statistical hypothesis unit root tests, such as the Augmented Dickey Fuller (ADF)               

test checks whether the series requires differencing. The null hypothesis is that the series is unit root or                  

non-stationarity. Applying a difference operator to a non-stationary or a random walk series gives a             xt    

stationary or a white noise series: . More precisely, in time series, the difference     εt   x  xΔ t =  t − xt−1 = εt         

operator is known as a backshift operator, where The null hypothesis is that ,       B   x  x .B t =  t − xt−1       α = 1  

while the alternative hypothesis is that  In this test,.α < 1   

the series is not stationary,HO :   

the series is stationary.HA :   
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We look for evidence that the null hypothesis is false. Consequently, small p-values (e.g., > 0.05) suggest                 

that differencing is required. In the housing starts series, the p-value of 0.3791 is much bigger than the 5%                   

critical value, so we fail to reject the null hypothesis. That is, the data is not stationary. Occasionally, the                   

differenced data will not appear to be stationary and it may be necessary to difference the data a second                   

time to obtain a stationary series. Thus, differencing the series twice (2nd difference), and applying the test                 

again yields a small p-value of 0.01. Now the differenced housing starts series is stationary. Likewise,                

after differencing all the variables, the p-values from the Augmented Dickey-Fuller test are less than 0.01.                

Surprisingly, the CPI series is stationary after differencing upto 3 times. From table 1 below, the variables                

income, securitized consumer loans, and real estate loans are twice differenced. The backshift operator,−               

 represents the second order differencing as :,B  

x (B x ) (x ) x x x ) x ) xB2
t = B t = B t − xt−1 = B t − B t−1 = ( t − xt−1 − ( t−1 − xt−2 = xt − 2 t−1 + xt−2  

 

Variable P-value before differencing Number of differences 

Housing Starts 0.3790981 1 

Income 0.6345780 2 

Federal Funds Rate 0.1145223 1 

Yield Spread 0.2567 1 

Securitized consumer loans 0.9705642 2 

Unemployment rate 0.0859251 1 

CPI 0.2545744 3 

Private houses completed 0.7298269 1 

Mortgage rate 0.0702159 1 

Real estate loans 0.6012911 2 

Housing supply 0.3389323 1 

 

Table 1: The number of differences required for each variable to be stationary 

I have used the stationary variables in modelling ARIMAX models in the next chapter.  
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3.2.3.ARIMAX Model 

The standard ARIMA models forecast solely based on the past values of the housing starts, and does not                  

have covariates. The model assumes that the future values are linearly dependent on the past values and                 

previous stochastic shocks. Similar to ARIMA, a multivariate regression model is the ARIMAX model              

wherein the covariates mortgage rate, first difference of private houses completed, and second  −            

difference of income, securitized consumer loans and real estate loans are present on the right hand side of                  

the model. The model follows an with a first order difference or   RIMAX(2, , )A 1 3     RMA(2, ),A 3        

backshift: 

  This gives a model with covariates at time  and their coefficients: hous st ous st ous st .B t = h t − h t−1 t  

  

Regression with :RIMAX  (2, , )A 1 3   

 hous st − 8.1082 mortgR .0054 income.d2  1.2251 sec conL.d2 .1930 CP I .d3B t = 4 t − 0 t +  t − 7 t +  

 where:.1023 pvt house comp.d1   .0096 real estL.d2 ,0 t + 0 t + εt  

.5159 B hous st  .8454 B hous st .9201ε  + .4622 ε .3158 εεt = 1 t−1 − 0 t−2 − 1 t−1 1  t−2 − 0 t−3  

 

Figure 3 : The plots show errors from regression and ARIMA models. The ARIMA errors resemble white noise.  
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Figure 4: The diagnostic plots show the ACF and histogram of residuals from ARIMA(2,1,3) 

From the Ljung-Box test on the data comprising the residuals from regression with , the             RIMAX(2, , )A 1 3   

p-value of implying that the model is not serially correlated. The time plot and histogram  .1069 .05,0 > 0              

of the residuals shows that the variance in the residuals are almost constant. The MAPE is 0.357 and the                   

percent bias is 0.3439. 

Unlike the ARIMAX model which contains exogenous variables, the predicts the         RIMA(3, , )A 1 2    

endogenous variable  housing starts using only its lags and the model is:−  10

 

 hous st .0488 B hous st .4336 B hous st .1437 B hous st  .427 ε .8473 ε  ,B t = 1 t−1 − 0 t−2 − 0 t−3 − 1 t−1 + 0 t−2 + εt   

where is white noise. The mean absolute percentage error (MAPE) is 0.3922 and the percent bias is εt                  

 Both the error rates are higher than those of .3885.0 RIMAX(2, , ).A 1 3   

ARIMA models are athoretic, and therefore cannot be interpreted the same as those of regression               

coefficients. As there are three lagged terms of housing starts in the model, its current value depends of on                   

10 ​In R, I had looped over several combinations of p,d and q and stored the fitted model of ARIMA(p,d,q). 
Given any order of ARIMA, if the current AIC value is less than the previously generated AIC, then the current 
AIC is the final AIC and that order is chosen. After terminating the loop, the order obtained was ARIMA(3,1,2). 
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the value in the all previous four months combined. Figure 5 below shows the plot of residuals of the                   

model to check if the series is discrete white noise (DWN):  11

 

Figure 5: The ACF plot of the residuals of ARIMA(3,1,2) shows that the errors are not serially correlated. 

 

The correlogram seems to follow discrete white noise. The p-value of fails to reject the           .07732 .05,0 > 0     

null hypothesis that the residuals of is not serially correlated i.e. the series is white noise​.      RIMA(3, , )A 1 2            

Next, I will explain how to mathematically obtain forecasts from an ARIMA model. In order to forecast,                 

we have to rewrite the  using the backshift notation as:RIMA(p, , )A d q  

1 B ..... B ) (1 ) x 1 B ..... B ) ε( − α1 − . − αp
p − Bp

t = ( + β1 + . + βq
q

t  

                                                                    ⇓  ⇓  ⇓   

                                differences             R(p)A d A(q)M  

11 ​A good forecasting method will yield uncorrelated residuals. If there are correlations between residuals, then 
there is information left in the residuals which should be used in computing forecasts. The residuals should also 
have zero mean, otherwise the forecasts are biased. Additionally, residuals should also have constant variance 
and be normally distributed.  
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The  is:RIMA(3, , )A 1 2   

1 .0488 B .4336 B .1437 B ) (1 ) hous st 1 .472 B .8473 B ) ε( − 1 + 0 2 + 0 3 − B t = ( − 1 + 0 2
t  

I have expanded the left hand side, keeping the right hand side constant: 

1 1 .0488) B 1.0488 .4366) B − .4336 .143) B .143 B ] hous st[ − ( + 1 + ( + 0 2 + ( 0 + 0 3 − 0 4  

Now, I have applied the backshift operator on both sides: 

ous st 1 .0488) hous st 1.0488 .4366) hous st − .4336 .143) hous st .143  hous sth t − ( + 1 t−1 + ( + 0 t−2 + ( 0 + 0 t−3
 − 0 t−4  

.472 ε .8473 ε= εt − 1  t−1 + 0 t−2  

In the next step, I have moved all the terms, except  to the right hand side:ous sth t  12

ous st .0488 hous st .4854 hous st .2906 hous st .143  hous st .472 ε .8473 εh t = 2 t−1 − 1 t−2 + 0 t−3 + 0 t−4 + εt − 1  t−1 + 0 t−2  

To get one step ahead forecast for the next month: , I have replaced with ous sth T +1  t T + 1 :  

ous st .0488 hous st .4854 hous st .2906 hous st .143  hous st .472 εh T +1/T = 2 T − 1 T −1 + 0 T −2 + 0 T −3 − 1  T  

To get two step ahead forecast for the following second month: , I have replaced with ous sth T +2  t T + 2 :  

ous st .0488 hous st .4854 hous st .2906 hous st .143  hous sth T +2/T = 2 T +1/T − 1 T + 0 T −1 + 0 T −2  

This process continues for all future monthly values. In order to better understand the dynamics of the                 

system, I have depicted the forecasts in the results (Table 9) and graphed them ( Figure 4 in the Appendix).                    

Another approach would be to observe the time paths or impulse response functions related to the system                 

(discussed in 3.2.10). 

 

3.2.4. ARCH and GARCH models 

The two main drawbacks of ARIMA models are firstly, they do not consider volatility clustering i.e.        −          

they are not conditionally heteroskedastic. Secondly, because ARIMA linearly models the data, the             

forecast width is constant as the model does not incorporate new information or recent changes. Hence, we                 

need to use the Autoregressive Conditional Heteroskedastic (ARCH) model and Generalised           

Autoregressive Conditional Heteroskedastic (GARCH) model. OLS models assume that the expected           

value of the squared error terms are constant over time i.e. errors are homoskedastic. (G)ARCH models                

12 ​Albeit the above equation looks like an ARIMA(4,0,2) model , it is not ARIMA(4,0,2) as it does not satisfy 
the stationarity conditions. It is still an ARIMA(3,1,2). 
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emphasize on this assumption. Data suffers from heteroskedasticity when variances of error terms are              

larger and smaller in other range of data points. Rather than correcting the problem, (G)ARCH model                

heteroscedastic variances.  

Different forms of volatility such as sell-offs during a financial crises, can cause serially correlated               

variances which produce heteroscedasticity. A univariate helps in modeling volatility, its      ARCH(1, )G 1       

clustering and forecasting. In financial time series, we cannot assume that the variance or the volatility is                 

constant as some periods are more volatile than others. When the volatility of a time series changes over                  

time, this technical behavior of volatility clustering is called conditional heteroskedasticity. Further, if the              

conditional variance is conditional on information of the variable itself (housing starts), its past shocks and                

previous values of conditional variance, then the data is conditionally heteroskedastic.  

The ACF and PACF of residuals can confirm that if the residuals are not white noise, they can be                   

predicted. Residuals of strict white noise series are i.i.d normally distributed with zero mean. Moreover,               

the PACF and ACF of squared residuals in figure 6 have no significant lags. Finally, we cannot predict a                   

strict white noise series, either linearly or nonlinearly. The squared residuals of model            RIMA(3, , )A 1 2   

show a cluster of volatility or conditional heteroskedasticity as shown from the ACF plots.  

 

 

Figure 6: The ACF plot of the squared residuals of ARIMA(3,1,2) indicate that volatility is clustered together in                  

different time periods. 
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The squared residuals from are autocorrelated as they do not randomly occur in time,    RIMA(3, , )A 1 2            

implying that the time series exhibits conditional heteroskedasticity. Also, the conditional heteroskedastic            

series is non-stationary. This is also called volatility clustering as periods of high variance tend to group up                  

together. The Ljung-Box test on the squared residuals yields a p-value of , which            .623 0 .052 × 1 8 < 0   

rejects the null hypothesis of no serial correlation. To further prove the presence of conditional               

heteroskedasticity, I have performed the Engle’s ARCH-LM test with lags. This checks for the presence         q        

of ARCH effects at lags  to . The general procedure to model an ARCH process is as follows:1 q  

Let is the error term of a model which is normally distributed with zero mean and conditional variance εt                   

of the error term is . In other words,ar(ε  /ε , ε , .., )σ2
t = V t t−1  t−2 . εt−q  

)(0,εt ~ N  εα0 +  ∑
q

i=1
αi

2
t−i  

The  model for the conditional variance is:RCH(q)A   

, where and to avoid ε  ...  ε   εσ2
t = α0 + α1

2
t−1 + . + αq

2
t−q = α0 +  ∑

q

i=1
αi

2
t−i   α0 > 0  , ∀ i , ..,  αi ≥ 0  = 1 . q   

negative variances. 

Subsequently, we estimate the best fit model, obtain the squared errors and regress them with      R(q)A           q  

lagged values of the errors and a constant shown in the above equation. The null hypothesis is that no                   

ARCH effects are present, and the alternate hypothesis is that at least one of must be significant. We              αi      

test for ARCH effects jointly at different values of lags: As the p-values with          ... .H0 = α1 = α2 = . = αq = 0      

varying values of are very small, we reject the null hypothesis to conclude that ARCH   , , , 2,q = 2 4 8 1              

effects are present.  

GARCH is an extension of ARCH where not only depends on the lags of the squared error terms but       σ2
t             

also on its own lags. In contrast to ARCH which involves only the most recent return, GARCH boosts the                   

forecasting accuracy by assigning lesser weights to past returns corresponding to more distant      βi         

volatilities. The model is: 

 ε  ...  ε σ ... σσ2
t = α0 + α1

2
t−1 + . + αq

2
t−q + β1

2
t−1 + . + βq

2
t−q  

The method of maximum likelihood estimates most (G)ARCH models, such as measuring relative loss or               

profit from trading stocks in a day. and measure the ARCH and GARCH effect, respectively. The       α   β         

GARCH models assume that the conditional mean of the time series is zero, which in reality is not always                   

true. We can supplement the conditional variance structure of GARCH by a conditional mean that is                

29 



modeled by an ARMA model. By observing the time series, we can identify the ARMA order. Likewise,                 

the squared residuals from the fitted ARMA model helps to identify the GARCH order. Then, we                

maximize the log-likelihood function for ARMA + GARCH model to obtain the maximum likelihood              

estimation for the model.  

I have fit GARCH model(s), starting with a model with Gaussian innovations.        ARCH(1, )G 1      13

considers a single autoregressive and a moving average lag, i.e. The modelARCH(1, )G 1            RMA(1, ).A 1    

predicts the variance by taking the weighted average of the long term historical variance, the predicted                

variance at time and the predicted variance of the squared residuals at time An   ,t            t ).( − 1  

 model is :RMA(1, ) ARCH(1, )A 1 − G 1  

 θ yyt = μ +  1 t−1 + γ ε1 t−1 + εt  

  z  , where z  (0, ) i.i.d.,  and  σ α  ε  β  σ , α , β .εt = σt t  t ~ N 1  2
t =  0 + α1

2
t−1 +  1

2
t−1  > 0  ≥ 0  

are constants that the model estimates using maximum likelihood and is the squared,  and zα β            εt−1    

residual at time . and measure and respectively. In the GARCH model, the   t )( − 1  θn   γn   R(n) A   A(n),M        

persistence explains the rate at which volatility decays after applying a shock. measures the extent to            α1      

which a volatility shock today feeds through into next period’s volatility and measures the rate at            α1 + β1      

which this effect dies over time. ​Large values of means that large changes in the volatility will affect         β1           

future volatilities for a long period of time since the decay is slower.  14

Ideally,  α1 + β1 < 1   

If  the series will become unstable and the volatility forecasts are explosive.,α1 + β1 > 1   

If  the model has an exponential decay and persistence of volatility occurs.,α1 + β1 = 1  

The  model for housing starts is:RMA(2, ) ARCH(1, )A 2 − G 1  15

13 ​The gaussian distribution is the same as normal distribution.  
14 ​Source: ​https://newonlinecourses.science.psu.edu/stat510/node/85/ 
 
15 ​The order of ARMA - GARCH should be simultaneously determined, not separately. When the ARMA -                 
GARCH models estimate the process well, estimates will be inconsistent if we consider the conditional mean                
(ARMA) model only and neglect the conditional variance, (GARCH) model as this implicitly assumes that the                
conditional variance is constant, and vice-versa. Only under certain conditions, such as when MA(0), we can                
estimate the order of ARMA independent from GARCH and also generate consistent estimates.  
 
Unfortunately, it is difficult to jointly estimate the orders of ARMA - GARCH. The reasonable approach is to                  
experiment with a few candidates models in the training set, pick the model with the lowest prediction rate, and                   
use the selected model to predict in the test set. Ensuring that the prediction rate is lowest does not necessarily                    
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ous st 0.6152 hous st .3685 hous st  .4984 ε .1791 εh t =  t−1 + 0 t−2 − 0 t−1 + 0 t−2  

, where .027.8896 .1277  ε  0.4095 σσ2
t = 2 + 0 2

t−1 +  2
t−1 ε  idN (0, ) t ~ i 1  

and are statistically insignificant, implying that no autocorrelation exists. isR(1) A  R(2)A          .4094β1 = 0   

also insignificant, which means there is no persistent volatility clustering. ​To check for normality, we have                

to observe the distribution of the residuals.  

white noise innovation process is Gaussian.H0 = εt  

white noise innovation process is not Gaussian.HA = εt  

The standardized residual tests in table 2 such as ​Jarque-Bera Test and the Shapiro-Wilk tests suggest that                 

the data is normally distributed. ​From the Ljung-Box Test, the distribution of residuals and squared               

residuals is Gaussian as the p-value is greater than the 5 percent significance level at lags 10, 15 and 20.                    

Similarly, the model has no effects as the p-value of the is very high. The table     RCHA       RCH MA − L       

below shows the different residual tests and the p-values: 

 

Residual Test  Statistic p-value 

Jarque-Bera Test Residual  (chi square)χ2  .69273090  

Shapiro-Wilk Test Residual W .94636570  

Ljung-Box Test Residual (10)Q  .11380270  

Ljung-Box Test Residual (15)Q  .053910220  

Ljung-Box Test Residual (20)Q  .069441940  

Ljung-Box Test Residual Squared (10)Q  .21864010  

Ljung-Box Test Residual Squared (15)Q  .10540820  

Ljung-Box Test Residual Squared (20)Q  .10930430  

Arch-LM Test Residual  RT 2  .17091480  

 

guarantee that the model is suitable. We also have to check if the residuals and the squared residuals have                   
ARCH effects, autocorrelation and normal distribution. ​For instance, ARMA(2,1) - GARCH(1,1) resulted in the              
lowest MAPE of 0.30, but the residuals failed the diagnostic tests, so I eliminated it.  
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Table 2: Standardized residual tests and the p-values. All the p-values are significant at 5 percent. 

The qq-plot of the standardised residuals, suggests that the fitted standardised skew-t conditional             

distribution is good. Using the above model, I have forecasted housing starts for the year 2019 which is                  

shown in chapter 4: Results.  

 

Figure 7: The plot shows the quantiles of the residuals. Since most of the points lie along the line, the                    

distribution has the same shape as that of the theoretical distribution. 

Until now, I had used some of the simpler forecasting techniques that primarily involved just the response                 

variable: housing starts. I have explored how we can expand ARIMA models by adding exogenous               

variables and their lagged values to forecast housing starts. Now, I will discuss some of the advanced                 

methods that necessitates me to check first if the explanatory variables have common stochastic trends, or                

are cointegrated. 

 

3.2.5 Cointegration 

When the trends and patterns of two series are similar, then they are cointegrated. The cointegration test                 

measures whether the residuals from a regression are stationary. Stationary residuals are cointegrated. It is               

also a Dickey-Fuller stationarity test on residuals where the null hypothesis is that the series are not                 

cointegrated. For a stationary test, we should reject the null hypothesis of no cointegration. The concept of                 
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cointegrated time series arises from the idea that housing prices, securities’ prices, interest rates and other                

economic indicators return to their long-term average levels after significant movements in short terms              

(mean reversion). Besides the imbalance in the demand and supply of houses, prices revert to their means                 

as housing prices are highly correlated with inflation. Further, inflation rates are highly correlated with               

wages or real disposable income. 

Given two series and , we search for parameters and such that   xt  yt       , ,α β   ϱ    

 x   r ,yt = α + β t + rt = ρ t−1 + εt  

where residual and, series of independently and identically distributed (i.i.d) innovations with rt =    εt =           16

mean = 0 

If then and are cointegrated (i.e., does not contain a unit root). If then the ,ρ| | < 1   xt   yt     rt         ,ρ| | = 1   

residual series has a unit root and follows a random walk. Below I have constructed an Engle Granger  rt                  

cointegration model using the variables private house completed and housing starts as explanatory and              

response variables, respectively. Both series have unit root as they are If they cointegrate, then the           (1).I       17

coefficients and  will define an equilibrium.α β  

ous st 6.8147 .9736 pvt house comp ,  r .7482 rh t = 6 + 0 t + rt  t = 0 t−1 + εt  

Figure 2 in the Appendix shows the plots of the equation, residuals and innovations. Here, the series seems                  

cointegrated but the residuals are not From the above regression, I tested if the residuals had unit      R(1).A            

root. As the p-values (shown below) are very small for all the tests, we reject the null hypothesis that the                    

residuals are unit root, implying the series: housing starts and private houses completed are cointegrated.               

In fact, no other variable is cointegrated with housing starts.  

 

Test p-value 

Augmented Dickey Fuller 0.00583 

16 ​In time series, the term  ​innovations​ is used the same way as the term ​errors ​is used in a cross-sectional 
analysis. So, we can interchangeably use them.  Errors are called innovations in time series because the errors 
contain new information in the system. The same errors are not considered new in a cross-sectional analysis as 
the observations are not chronologically arranged in a sequence.  For instance, the tenth observation in a cross 
sectional data is neither newer nor older than the ninth observation. However, in a time series, the tenth 
observation comes after ninth, hence, the error or innovation has new information.  
 
17 ​If one of the series is stationary i.e. 𝐼(0) and the other one is 𝐼(1), the series cannot be cointegrated. This is 
because cointegrated series  have common stochastic trends or same long run behavior. The linear combination 
of the cointegrated series cancels out the common stochastic trends, creating a  stationary linear relationship. 
The OLS estimates of cointegrated variables will be very consistent. 
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Phillips Perron 0.0001 

Schmidt and Phillips Rho  0.0001 

Johansen Trace Test  0.0001 

 

Table 3: Unit root test for stationarity of residuals from cointegration 

 

3.2.6. Error Correction Model (ECM) 

A drawback of Error-Granger statistic regression is that it has a small bias, and we cannot infer if the                   

estimated parameters in the regression are significant as the distribution depends upon unknown             

parameters. To avoid this problem, I have built an error correction model that investigates the long-run                

relationship between the two series. ​The variables without cointegration have a short term         (0)I      

relationship as opposed to those variables with cointegration , as the latter have a long term        (1)I         

relationship. These theoretically-driven models estimate both short and long term effects of one time series               

on another. For instance, if the first lagged value in a series deviates from its long run equilibrium, how                   

does this error influence the short run dynamics? So, the ECMs measure the rate at which the variable in                   

question returns to its equilibrium after other variables change. The error correction is ,              xεt = yt − β t  

where is the cointegrating coefficient and is the error from regressing on . We define ECM as: β       εt       yt   xt      

.y  ε   Δx  Δ t = α t−1 + γ t + ut   

This equation states that the and can explain change in . is the disequilibrium term or the     εt−1   xΔ t      yt  εt−1        

equilibrium error that occured in the previous period. The model is in the state of disequilibrium if                 

, and vice-versa. When and is high above its equilibrium, so should be=εt−1 / 0     ,xt = 0  ,εt−1 > 0 yt−1        yΔ t   

negative to restore the equilibrium value. Intuitively, this signifies that the error correction coefficient               α

should be negative for the ECM equation to be stable dynamically. Therefore, if is above equilibrium,             yt−1     

then it will decline in the next period, which will correct the error or disequilibrium. In this case, the ECM                    

is: 

 hous st .25682 ε  0.24530 Δ pvt house comp  uΔ t =  − 0 t−1 +  t +  t  

From the cointegration part and the error correction term, is the long run parameter, while         .9736β = 0        

and are the short-run parameters. So far, I have only used one explanatory.25682α =  − 0   .24530γ = 0              
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variable, but to find the number of cointegrating relations when there are more than two series, we               (1)I    

use the Johansen Test and a Vector Autoregressive Model (VAR).  

 

 

3.2.7. The Johansen Test for Cointegration 

This test measures the number of cointegrating relations present out of integrated time series.           n     

Cointegrated series have at least one common trend among the variables. Then we test if the linear                 

combination of underlying series forms a stationary series. If the series at time are           , .., xx1 .  n    t   

individually integrated, then the linear combination, at time is  (1),I      x x .. xy = β1 1 + β2 2 + . + βn n    t   

stationary: and the variables are cointegrated. If the linear combination is not then the variables (0),I             (0),I     

together are not cointegrated, and we don’t have to construct a vector error correction model. The                

Johansen test is composed of two tests: trace test and maximum eigenvalue test.  

The trace test examines that there are  number of cointegrating vectors such that r .r < n   

H0 : r < n  

HA : r = n   

The test sequentially proceeds for , and the first value of that the trace test fails to reject     , , , ..,r = 1 2 3 . n       ri         

the null hypothesis, is the estimate of In essence, the trace test measures if there is at least one linear       .r               

combination of explanatory variables that makes the process stationary. The “maximum eigenvalue “ test              

is similar to the trace test with a slight difference in the alternative hypothesis. It ensures that the number                   

of linear combinations does not equal to the number of explanatory variables If the all the            r = ).( / n  ,r = n     

explanatory variables are stationary and not cointegrated. The test also proceeds sequentially and the              

hypotheses are: 

H0 : r < n  

HA : r = r + 1  

The Johansen test checks if    where is the number of time series under test. or 1.r = 0 ,r = n − 1 n   

means that no cointegration is present. When rank there is a cointegrating relationshipH0 = 0          ,r > 0       

between at least two time series. The eigenvalue decomposition outputs a set of eigenvectors. The               
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components of the largest eigenvector is used in formulating the coefficients of the linear combination of                

time series. This creates stationarity.  

In this case, I have tested cointegration between variables housing starts, private houses completed,              

housing supply and real estate loans. The largest eigenvalue generated by the test is . Next, the              .15060    

output shows the trace test statistic for the four hypotheses of From to the            to r .r = 0 ≤ 3   r = 0   ,r ≤ 2   

test statistic exceeds the 0.05 significance level. For instance, when Similarly, in          , 133.69 8.28.r = 0  > 4    

the second test we test the null hypothesis for against the alternative hypothesis of As         r ≤ 1       .r > 1   

we reject i.e. the null hypothesis of no cointegration. However, when we fail0.59 1.52,5 > 3    ,r ≤ 1           ,r ≤ 2    

to reject the null as Thus, the matrix’ rank is 2 and the series will become stationary after     2.87 7.95.1 < 1               

using a linear combination of two time series. 

 

ankr = r  Test statistic 10 % level 5 % level 1 % level 

r ≤ 3  0.65 6.50 8.18 11.65 

r ≤ 2  12.87 15.66 17.95 23.52 

r ≤ 1  50.59 28.71 31.52 37.22 

r = 0  133.69 45.23 48.28 55.43 

 

Table 4: Values of trace statistics at significance levels for the hypotheses  

The linear combination by using components of eigenvectors associated with the largest eigenvalue of              

 results in the following stationary series:.15060  

  .inear series 1.00 house st .9398363 pvt house compl =  − 0   

Moreover, the p-value in the Dickey-Fuller test is 0.01 < 0.05. So, we reject the null hypothesis of unit                   

root and conclude that the series formed from the linear combination is stationary.  18

18 ​Source: ​https://www.quantstart.com/articles/Johansen-Test-for-Cointegrating-Time-Series-Analysis-in-R 
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Figure 8: The plot shows the linear combination of two series as there are two cointegrating relations. 

Having obtained a linear combination of cointegrated series, I have made a Vector Error Correction Model                

to model the cointegrated time series.  

 

3.2.8. Vector Error Correction Model (VECM) 

Unlike the error correction model which is a single equation, a VECM is a multiple equation model used                  

when series are non-stationary and cointegrated. The concept of error correction helps to understand how               

deviations from the long-run are “corrected”. We also make VECM when variables have at least one                

cointegrating relations. 

Analogous to coefficients in a regression model, the coefficients of ECT in a VECM quantifies the effect                 

of the error correction term on a specific dependent variable. The sign shows whether error is corrected or                  

inflated. In the former case, the variable approaches equilibrium; while in the latter case, the error is                 

inflated i.e. it further deviates from the equilibrium. If the coefficients of certain variables are               

indistinguishable from zero, then those variables are considered “dominant” as they do not adjust towards               

equilibrium, but they “drive” the system of variables. Other variables that do adjust are considered               

“dominated”, and if no variables adjust towards equilibrium, then they are not cointegrated.             
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Mathematically, suppose there are two variables in a system with no lagged difference terms. It has one                 

cointegrating equation which is:  yy2, 1 = β 1, t  

Its VEC model is: 

 y (y  y )Δ 1, t = α1 2,  t−1 − β 1, t−1 + ε1, t  

 y (y  y )Δ 2, t = α2 2,  t−1 − β 1, t−1 + ε2, t  

 

In the above models, the variable in the right hand side is the error correction term, which is zero in the                     

long run equilibrium. When and drift from their stable position or the long run equilibrium, the    y1   y2             

error correction term will not be zero and both and will adjust to restore the equilibrium status. The         y1   y2          

coefficient of measures the rate of “adjustment of the endogenous variable towards equilibrium.”  αi         ith       19

Using the same variables used to check for cointegration, I made a VECM model with 3 lags and 2                   

cointegrating relations (check Table 1 in the Appendix for the full model). The value of lag which results                  

in the minimum information criteria (in this case, AIC) is chosen as the order of the model. Table 5 depicts                    

only the error correction terms (ECT1 and ECT2) and the p-values of the the four variables. As the                  

p-values are extremely small, the coefficient estimates are significant at the 5 percent critical value. 

 

 

Variables ECT 1 ECT 2 p-value 

Housing Starts -0.0267838950 -0.0363147859 5.283760e-01 

3.335254e-01 

Private Houses 
Completed 

0.3198985285 0.3288063833 8.922016e-19 

3.075843e-24 

Mortgage Rate 0.0002606689 -0.0001891956 1.870030e-02 

5.323680e-02 

Housing Supply 0.0003273892 -0.0002339375 1.274370e-01 

2.175834e-01 

 

Table 5: Coefficient estimates and p-values of the two error correction terms of the four variables 

19 ​Source: 
http://www.eviews.com/help/helpintro.html#page/content/VAR-Vector_Error_Correction_(VEC)_Models.html 
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The error correction terms (ECT) describe how the time-series adjust to disequilibrium and ECTs are               

between 0 and 1. The ECTs for housing starts are negative. This implies that when is above its               ous sth t−1     

long-run level, then there will be a negative change in , which would pull housing starts back          hous stΔ t        

towards its long-run relationship with mortgage rate, housing supply and private houses completed. The              

estimated coefficient of is -0.0268, suggesting that 2.68 percent of disequilibrium is  CT (− )E 1   ous st h          

corrected between between one month. The coefficients of ECT1 and ECT2 of housing supply and               

mortgage rate are almost negligible, denoting that there are dominant variables and do not adjust towards                

the equilibrium. 

While VECM tests for long term relationship, a VARX captures short-run relationship among the 

variables employed (example, where there is a shock). We can transform a VECM into a  Vector 

Autoregression Model (VAR) to forecast values. ​VECM and the corresponding VARX model equivalently 

represent the same model.​  Yet, as it is computationally easier to forecast directly from a VARX model, I 

did not transform the vector error correction model, rather I made a separate VARX.  

 

 
3.2.9. Vector Autoregression with Exogenous Variables (VARX) 
 
A vector autoregression model generalizes a univariate autoregressive model to forecast a vector of time               

series. A VAR-X extends a VAR model by including exogenous variables in the system. The system has                 

one equation per variable. The right hand side of each equation comprises of a constant, the variable’s                 

autoregression, its distributed lags, and the lags of other variables in the system. For, instance, if we would                  

like to model three different time series , the vector autoregressive model of order 1, or       , , and xx1 x2  3          

 with three variables is the following:ARX(1)V   

 

 x  x  xxt,1 = α1 + β11 t−1,1 + β12 t−1,2 + β13 t−1,3 + εt,1  

 x  x  xxt,2 = α2 + β11 t−1,1 + β22 t−1,2 + β23 t−1,3 + εt,2  

 x  x  xxt,3 = α3 + β31 t−1,1 + β32 t−1,2 + β33 t−1,3 + εt,3  

  

In the first equation, is a function of its past lag and the first lag of and . In general, if a    x1         xt−1       x2   x3      

system has variables, each equation in a model will include lags of and lags of and  k      ARX(p)V     p   y  p   ,x   

an error term. ​We treat all variables symmetrically in VARX i.e we model them in such a way that these                    

endogenous variables equally impact each other. For a stationary series, we can directly fit a VARX to the                  

data and forecast. This is called “VARX in levels”. Otherwise, we first commonly difference the               
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non-stationary data, and then fit the model. The resulting model is called “VARX in differences.” Using                

leveled variables (which are stationary) in VARX models can result in spurious regression. But,              

differenced variables will remedy the problem. In both instances, the concept of least squares estimates               20

the model.  21

The VARX model can be used when the variables under study are but not necessarily cointegrated. ​I            (1)I       

estimated a model (Table 2 in the Appendix) with with four predictors housing starts,  ARX(3)V            −   

housing supply, mortgage rate and private houses completed. The appropriate number of lags is          p      

selected using the usual goodness of fit criteria and then checked if the residuals correspond to the model                  

assumptions absence of serial correlation, homoscedastic and normally distributed residuals. ​The lag−             

parameter, minimizes the information criterion: AIC. After computing the Breusch-Godfrey test for p = 3             

serially correlated errors, where the hypothesis are: 

 no serial correlation, serial correlation is present.H0 = H1 =   

The large p-value of suggests that the residuals for this model are not serially correlated, so    .0786 .050 > 0              

the model is appropriate. I have forecasted the values of housing starts using in the results              ARX(3)V     22

chapter. But “a good forecast does more than provide a current ‘best estimate’—it identifies the key                

variables and states the nature of their impact. As new data come in, such a forecast gives a basis for                    

continual reappraisal of the situation.” So, I have performed structural analyses such as impulse response                23

functions and granger causality test that summarize the properties of a ARX(p).V  

 

3.2.10. Impulse Response Function 

As the coefficients of a VARX model are very hard to interpret, we interpret the impulse response function                  

which is based on momentum and persistence. The momentum effect occurs when the variable moves in                

20 ​Sims, Stock and Watson (1990) have estimated and conducted hypothesis testing on  time series models, in 
which some variable are non-stationary. They made a vector autoregression at levels even when variables have 
unit root.  
 
21 ​Source: ​https://newonlinecourses.science.psu.edu/stat510/node/79/ 
 
22 ​Difference between VARX and ARIMAX: ​VARX is devoid of MA terms and uses autoregressive lags to 
approximate MA terms. It’s solution is a less parsimonious solution than when we directly include MA terms in 
the ARIMAX model.  OLS or GLS can estimate VARX quickly, whereas maximum likelihood method 
estimates ARIMAX model, which is usually slow.  
 
23 ​by George Schultz, A Note on Forecasting, 1963 
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the same direction but moves away from its historical mean for some time. Hence, it temporarily offsets                 

the force of regression (convergence) towards the mean. As opposed to momentum, a variable that is                

persistent will stay in the current state before converging to its historical mean. IRFs are useful in                 

answering questions such as how will a variable, which is at its historical mean, respond in the future, to a                    

temporary unit shock in a single period? Do the forecasts have cycles, and how quickly do they converge                  

to the mean?  

In IRF, we shock one variable, say federal funds rate, and propagate it through the fitted VARX model for                   

a number of periods. We can trace this through the VARX model and see if it impacts the other variables                    

in a statistically significant way. ​The vertical axis represents the variable. The solid black line estimates          y        

the amount  that is expected to change if there is a one unit impulse on the  variable after a time period.y x  

 

Figure 9: Impulse response from mortgage rate on housing starts 

When there is a shock in housing starts by mortgage rate, the value of housing starts traverses negatively at                   

a fixed rate away from the mean, creating a momentum effect. After three periods, it hovers around a                  

constant rate, creating a persistantance effect, and doesn’t return to its historical mean. ​The dotted lines                

show the 95 percent interval estimates of these effects. The VARX function prints the values               

corresponding to the impulse response graphs​. 
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Figure 10: Impulse response from private houses completed on housing starts 

The impulse response of private houses completed on housing starts shows that with a one unit shock by                  

private houses completed causes housing starts to slightly increases, then fall towards zero into the               

negative territory at a constant rate as the effect of shock dies, followed by a slight upward movement as                   

housing starts reverts to the mean.  
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Figure 11: Impulse response from housing supply on housing starts 

An impulse (shock) to housing starts from housing supply at time zero has large effects the next period as                   

housing starts falls precipitously. The downward momentum persists, and even after six periods of shock,               

the value of housing starts does not revert to the mean. 

3.2.11. Granger Causality 

As VARX models forecast each variable, we can describe the relationship between the variables using               

granger causality test. The F-test on the lags of other variables implements the granger causality. It tests                 

the null hypothesis that all the lags of of a variable are do not have a predictive power for i.e. it           X          ,Y    

does not not contain useful information to predict If feedback loop is present, i.e. if has predictive        . Y        Y    

power for then and are both endogenous, and we would have to make a VARX model. It does  ,X   X   Y                

not test if causes , but examines if the lags included are informative in predicting For instance,   X  Y           .Y    

federal funds rate can granger cause housing starts if housing starts can be more accurately predicted by                 

the lagged values of both housing starts and federal funds rate, rather than the lagged values of housing                  

starts alone. Thus, the granger causality test examines if lagged values of a variable can enhance the                 

forecasts of another variable. There are three steps involved in performing the Granger Causality F-test.               

Firstly, the restricted model by regressing  on  lags without  lags is:y y x  
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yyt = a1 + ∑
m

j=1
γj t−j + εt   

Secondly, the unrestricted model by adding  lags and regressing is:x  

x yyt = a1 + ∑
n

i=1
βi t−1 + ∑

m

j=1
γj t−j + εt  

Lastly, we use the F-test to test the null hypothesis that  ∀ i  β = 0  

In the first case, the F-test rejects the null hypothesis that housing starts do not granger cause private                  

houses completed, mortgage rate and housing separately as the p-value of           .597 0 .05.1 × 1 −11 < 0  

Likewise, the test rejects the null hypothesis that mortgage rate does not granger cause housing starts,                

private houses completed and housing supply as the p-value of is very small. However,          .065 02 × 1 −10      

private houses completed does not granger cause housing starts, mortgage rate and housing supply as the                

p-value of  is very high..67420   

 

 

Null hypothesis p-value 

Housing starts do not granger cause private houses 
completed, mortgage rate and housing supply 

1.597478e-11 

Private houses completed do not granger cause 
housing starts, mortgage rate and housing supply 

0.6742 

 

Mortgage rates do not granger cause private 
houses completed, housing starts and housing 
supply 

2.065e-10 

Housing supply do not granger cause private 
houses completed, mortgage rate and housing 
starts 

4.975e-07 

 

 

Table 6: p-values of the four different null hypothesis in a Granger Causality Test 
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3.3. Machine Learning Models  24

 

In this section, I have predicted housing starts in the United States using a stacked ensemble of the                  

following machine learning methods: K-Nearest Neighbors, Ridge Regression, Support Vector          

Regression, and Artificial Neural Networks. Machine learning relies on cross-validation to prevent            

overfitting and underfitting. Albeit these model generate more accurate predictions than econometric            

methods, they are hard to interpret. Together these aforementioned individual learning algorithms, or base              

learners in the ensemble enhance the predictive accuracy and robustness, which is otherwise not possible               

from using  each of them separately.  

Super Learning, or stacking is a class of algorithms that finds the optimal combination of the base learners.                  

Ensemble machine learning methods use multiple learning algorithms to obtain better predictive            

performance than could be obtained from any of the constituent learning algorithms. In setting up the                

ensemble, I specified the base algorithms used with specific parameters of each model and train each of                 

them in the training set. Then, I conducted a ​k-​fold cross validation on each of the learners and obtained                   25

the cross-validated predictions from each of them. Models which are more accurate are assigned higher               

weights in stacked ensemble. The predictive accuracy increases when the ensemble uses diverse set of               

initial base learners with different hyperparameters and feature subsets . However, such fine-tuning to             26

generate complex models may cause the problem of overfitting where the model perfectly fits the training                

set, but generalizes poorly in the test set. Partially caused by collinearity between predictors, this is can                 

problematic in model stacking as we combine multiple predictors together. To prevent overfitting, I used               

cross-validation and regularization. 

  

24 ​Chapter 3.3.1 - 3.3.3, 3.3.5 - 3.3.7 were expanded considerably from  the ideas built in the project.  
25 ​Unsure of the best way to evaluate  time series models while forecasting, economists and statisticians often 
evaluate a model’s performance in the test set or out of sample (OOS) set.  Cross validation does not account for 
unit roots and serially correlated variables when using econometric models.  The former method evaluates in 
only one set, while the latter (CV method) evaluates in multiple sets. OOS evaluation is a standard procedure as 
conventional models such as ARIMA are completely iterative i.e. they start estimating from the beginning of 
the series. Opsomer et. al (2001) explain that if errors are highly autocorrelated, then cross validation 
“underestimates bandwidths in a kernel estimator regression framework”, overfitting the model. Nonetheless, 
such problems are immaterial when applying ML methods, so we use CV.  
 
26 ​Different from dimensionality reduction, ​feature selection​ reduces the number of attributes (or variables). In 
contrast to dimensionality reduction, such as, Principal Component Analysis  where we create new 
combinations of attributes,  in feature selection we exclude variables without altering them.  
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3.3.1 Cross Validation and Hyperparameter Optimization 

We use ​k-​fold cross-validation (CV) as a resampling procedure to evaluate the performance of machine               

learning models when sample size is limited. Splitting the dataset into ​k ​number of groups, we apply the                  

model in the groups and tested the model in the group. It estimates how the model is expected to   k − 1         kth           

perform when we make predictions in the test set. The groups constitute the training set and the          k − 1        kth

group constitutes the test set. After fitting the model in the training set, the error rates are calculated on the                    

test set. Unlike a longitudinal dataset, I cannot use the conventional approach of cross-validation in a time                 

series dataset. So, I divided the ​historical data set on the training set and validation set by the “time slices”                    

method, such that the training data will lie in the first time period and the validation set in the next one.                     

This works similar to cross validation but uses the first 180 observations of the time series in the first                   

training data set and the next 12 observations ​as the validation data. The second training set has 181                  

observations i.e. the first 180 observations and the additional one observation. The second validation set               

has 12 observations from to observation, and the process continues. In total, the time slices   821 nd   941 th            

methods has created 217 folds. Modeling in 211 datasets is computationally expensive, so instead of               

incrementing each fold by every month, I incremented the number of folds by every 12 months. Now, the                  

second training set has observations, and the second validation set has 12 observations    80 2 921 + 1 = 1           

from to observation. Thus, there are 217/12 ~ 18 fold cross validation sets or 18-fold time931 rd   052 th                

slices.  

In many machine learning models, there are certain parameters, called hyperparameters, whose values are              

set before starting the learning process in the training set. These are in contrast to other parameters that are                   

derived after training. The simple algorithm of ordinary least squares regression has no hyperparameter,               

so it only relies on the given data to evaluate the coefficients. In contrast to OLS, the more complex                   

algorithm, called ridge regression, adds a regularization hyperparameter to the OLS regression before             

training the model. We choose the values of the hyperparameters through “hyperparameter optimization.”             

These parameters affect the computational time to run a model and its forecasting accuracy. Tuning the                

hyperparameters relies more on experimental results, than theory so there is no single best way choose the                 

values. Usually, we try numerous different combinations and assess each model’s performance. After             

specifying the hyperparameters, the algorithms or models are trained in the dataset. One way to find the                 27

optimal configuration is via grid search, wherein I trained numerous models for different values of               

parameters and choose the best one. Here, R exhaustively searches through a pre-specified subset of               

27 ​Source: ​https://towardsdatascience.com/demystifying-hyper-parameter-tuning-acb83af0258f 
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hyperparameters of the learning algorithm and and checks the performance by doing a 18-fold cross               

validation on the training set.  

 

3.3.2. Principal Component Analysis for Data Preparation 

After CV, I noticed that the variables in the whole dataset are highly correlated with each other, causing                  

multicollinearity. ​These are redundant variables as they add nothing new to the model. ​As this may bias                 

OLS estimates, I used Principal Components Analysis (PCA). PCA reduces dimension dataset to an          p −     

-dimension dataset where It describes the original data using fewer variables or dimensions thanm    .p > m             

initially measured. We project the original data and the differenced variables onto a new, orthogonal basis.               

 This removes multicollinearity.  28

A data matrix of dimension (where is the number of observations and is the number of   X    n × p   n       p     

variables) can have up to principal components. The goal of PCA is to significantly reduce     in(n , )m − 1 p            

the number of variables used such that the least number of principal components explain maximum               

variability​. ​Each component is a linear combination of the original variables. No information is redundant               

as all principal components are orthogonal to each other. Combined together, they form an orthogonal               

basis for the data space. As a form of multidimensional scaling, it linearly transformed variables into a                 

lower dimensional space.  This space retains maximum information about the original variables.  

In this unsupervised learning problem, I obtained the principal components from a raw dataset using the                

following steps: The original dataset of dimensions is converted to a ​d ​dimension dataset. Then, I      d + 1            29

computed the mean and covariance matrix of X and Y of the whole dataset using the following formula: 

ov(X , )c Y = 1
n−1 (X ) (Y )∑

n

i=1
 i − x i − y  

28 ​Let ​V​ be a subspace of ​Rn​ ​for an ​n-​dimensional space, and  B1={v1,v2,....,vr}  is a collection of vectors from 
V. B1 ​ is a basis for ​V​ if  is both linearly independent and spans ​V​. The vectors  in ​B1 ​are linearly independent 
when they are not a multiple of each other. ​B1 ​spans​ V ​when every vector in ​V​ is a linear combination of those 
in ​B1. ​Let ​B2​ be another basis for ​V​. If ​B1​and ​B2​ are perpendicular or orthogonal to each other, then these 
vectors form an orthogonal basis.  
 
29 ​There are two categories of learning processes: supervised, and unsupervised. In supervised learning, the 
dataset has output values (i.e. we have the prior knowledge of response variable). Using the output values, the 
supervised learning model  best estimates how the explanatory and response variables are associated. For 
instance, logistic regression, support vector machines, random forests and artificial neural networks.  On the 
other hand, when the dataset does not include the values of the output, the unsupervised learning model such 
PCA infers the structure of data and is useful for exploratory analysis.  
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This gives a square matrix of dimension, and after which I got the eigenvectors and their      d × d            

corresponding eigenvalues from the above covariance matrix. A vector whose direction is constant when              

applying linear transformation is known as an eigenvector. For a square matrix ​A​, and vector ​v, ​and scalar                  

such that then is the eigenvalue associated with eigenvector ​v ​of A. ​The roots or solutionsλ    v v,A = λ   λ                

of the equation gives the eigenvalues of A. From the eigenvalues, I solved for   et ( A I)d − λ = 0             

eigenvectors and arranged them  from highest to lowest order of eigenvalues.  

Thereafter, I chose ​k ​eigenvectors with the largest eigenvalues to form a dimension of matrix ​W ​.            d × k       

The eigenvectors with the lowest eigenvalues have the least information about the data’s distribution, so I                

had dropped those.  30

reflects as much information from the original variables. If is a covariance matrix of the tenCP i           Σ         

explanatory variables with eigenvalues of  hous st, CP I , ... , house supply}X = {        Σ :  

 and their respective eigenvectors:  , then the  PC is:.. ,λ1 ≥ λ2 ≥ . ≥ λ10 ≥ 0 , e , ..., ee1  2   10 ith  

C X income  fed fundsR CP I .. house supply, i , ..10.P i = ei
T = ei1 + ei2 + ei3 + . + ei 10  = 1 .  

is the proportion of total information explained by the principal component.λk

∑
10

i=1
λi

kth   

In PCA, every variable is centered at zero so that we can easily compare each principal component to the                   

mean. Centering also removes problems arising the scale of each variable. The components are always               

sorted by how important they are, so the most important components will always be the first few. In this                   

dataset, accounts for more 60 percent of total variance in the data. The cumulative proportion shows C1P                 

how much variance is accumulated. The first principal component captures most of the variance in the data                 

set, and the subsequent principal components capture the remaining variability, thus the proportion of              

variance decreases with each principal component.  

 

Dimension Eigenvalue Percentage of 
variance 

Cumulative Variance 

1 6.0739086 60.7390863 60.73909 

2 1.8835272 18.8352721 79.57436 

3 1.1807085 11.8070849 91.38144 

4 0.4287866 4.2878663 95.66931 

30 ​Source: https://medium.com/@aptrishu/understanding-principle-component-analysis-e32be0253ef0 
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5 0.2441449 2.4414486 98.11076 

6 0.1353575 1.3535751 99.46433 

7 0.0299749 0.2997494 99.76408 

8 0.0182776 0.1827762 99.94686 

9 0.0038175 0.0381750 99.98503 

10 0.0014966 0.0149660 100.00000 

 

Table 7: Eigenvalues and the variance explained by each principal component 

A common technique to determine the number of PCs to use is to eyeball the scree plot below wherein we                    

observe the “elbow point”, where the proportion of variance explained (PVE) plummets. An eigenvalues              

less than 1 would mean that the component actually explains less than a single explanatory variable. The                 

first 3 components have an eigenvalue greater 1 and explains almost 91 percent of variance. Alternatively,                

the first 6 components explain 99.46 percent variance. Thus, I have reduced dimensionality from 12 to 6                 

while only “losing”  0.53567 percent of variance.  31

 

Figure 12: Visualize eigenvalues (scree plot): shows the percentage of variances explained by each principal               

component. 

31 ​Albeit the plot suggests that we should use three PCs only as they explain enough variation, I chose six PCs 
because the MAPE and percent bias in the the test sets were considerably lower when using the latter. So, all the 
models performed performed better with six PCs.  
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After creating a new dataset with these six principal components and the response variable, housing starts,                

I split the dataset into training and test the first 80 percent of the observations are in the training set and        −              

the last 20 percent are in the test set. The individual and stacked models are fit in this training set. Next, I                      

have explained the individual models used to make the stacked ensemble K - Nearest Neighbors,          −      

Support Vector Regression, Ridge Regression and Artificial Neural Networks. 

 

3.3.3. K- Nearest Neighbors 

K-Nearest Neighbors (KNN) is one of the simplest machine learning models that is mostly used to classify                 

data points based on how the neighbors are classified (separated into different categories), but also used in                 

regression to predict values. KNN algorithm stores all the available cases and classifies the new case                

based on how similar it is to the ​k ​nearest cases. To find the nearest neighbors, we calculate the Euclidean                    

distance between the new point  and each point in the training set :a, )( b x , )( i yi   

istance  d = √(a ) b )− xi
2 + ( − yi

2  

We chose the ​k ​value which determines the number of neighbors to consider before establishing the value                 

to the new observation. ​k ​is a hyperparameter that is chosen to get result in the best possible fit for the                     

dataset. Based on the distance, we choose the closest ​k data points. When ​k ​is very small, and if there are                     

slight perturbations in the training set, the decision boundary changes considerably (becomes overly             

flexible), increasing the variance but reducing the bias. Alternatively, when the value of ​k ​is very high, the                  

model poorly performs. The method becomes less flexible when ​k ​grows and the decision boundary               

smoothens or resembles linearity, causing high bias but low variance. While the predictions become              

relatively stable, they usually are the values which most frequently occur (prior believes). The final               

prediction for the point is the average value of the ​k ​training observations that are closest to (x )f 0     x0           yi      

, represented by .x0 N 0  32

(x )f 0 = k
1 ∑

 

x∈N 0

yi  

32 ​Source: 
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761 
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In the KNN model with six predictors on the training set, ​k ​is set from 0 to 10. Ten different models with                      

all ten values of ​k ​are trained and ultimately we select the model with the lowest error. When , the                  k = 2   

error rate is lowest and thereafter, it rises. The test set MAPE of  and a negative bias of 7.9%2 8.15%.1   

Now, I will discuss another prominent but more advanced technique support vector machines. SVMs are         −      

applied to both classification and regression. When it is applied to a regression problem, it is called                 

support vector regression. 

3.3.4. Support Vector Regression 

Just as we minimize the error rates in simple regression, in Support Vector Regression, the goal is to fit the                    

error within a particular threshold.  

 

 

 

 ​  Figure 13: Hyperplane, boundaries and margin in a support vector regression  33

In figure 13, the perpendicular distances between the blue middle line and the observed values (shown by                 

the green stars) nearest to the blue line are called margins. Most of the green stars lie within the black                    

dotted lines (boundary lines). We consider all the points that are within the boundary line when moving                 

along the SVR. The decision boundary is the margin of tolerance. In SVR, we only consider those points                  

33 ​Source: ​http://www.saedsayad.com/support_vector_machine_reg.htm 
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that minimize errors, fitting a better model. These stars are known as support vectors, which are closest to                  

the boundary lines. Hyperplane in a two-dimensional space is the blue line in the middle that is useful to                   

predict the target values. In an ​n-​dimensional space, it is a subspace . ​The line of best fit is the           n )( − 1          

hyperplane with the maximum number of points. In SVM, the hyperplane separates between data classes.  

The equation of hyperplane is: Each of the two boundary line is at a distance of and     x .w + b = 0            + ε  − ε  

from the hyperplane. Therefore, the equations of the boundary lines are:           

. Thus, if the equation that satisfies the SVR for a linearx , and, wxw + b =  + ε   + b =  − ε     x ,y = w + b           

hyperplane is: . We find a decision boundary at distance from the hyperplane such  xε ≤ y − w − b ≤ ε        ε       

that support vectors are within the boundary lines. Maximizing the margin is analogous to minimizing the                

complexity of the model. For that, we regularise the solution by minimising 𝑤.  

The SVR model uses two parameters: the cost and loss values to avoid overfitting. The values for cost                  

parameter used in the model are 4,8,16 and 32. For each cost value, we use L1 and L2 type of loss                     

parameters. The two types of loss functions are: 

In L1-SVM, we optimize the following: inimize m 1
2 (ξ )w| |2 + C ∑

M

i=1
i + ξ*

i  

In L2-SVM, we optimize the following: inimize m 1
2 (ξ )w| |2 + 2

C ∑
M

i=1
i + ξ*

i
2  

 regularization term added to avoid overfitting,w =   

is the penalty parameter. We can tune model performance to ensure a balance between the C ∈ R                 

regularization term and loss function by setting various values of C.  

The L1 loss function is called the least absolute deviations (LAD) or error (LAE) and the L2 loss function                   

is also known as the least squares error. The L1 loss function is more robust than L2 as it is resistant to                      

outliers in the data. As L2 squares the error in the model, the overall error is larger vs                 (ξ ){ i + ξ*
i

2   

than the L1 loss function. So, the model is more sensitive to individual observations and adjustsξ )}( i + ξ*
i                 

the model to minimize the error. In that case, if an observation is an outlier, the model will be modified to                     

minimize the single outlier case at the cost of other observations. This is because the errors from other                  

other observations are smaller as opposed to the single outlier case. Alternatively, the L2 loss function                
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always yields one stable solution. A model is considered unstable if the slope of the regression line                 

considerably changes when there is small change in data, creating multiple solutions. The L2 loss function                

is stable as a small change in data point will only slightly alter the regression line, giving only a single                    

solution.  34

In support vector machines, one drawback is that generally we cannot linearly define the classifier or                

hyperplane i.e. in most real life cases, we cannot actually draw a straight line or a plane that separates two                    

two categories of data points. In that case, the hyperplane will be a wavy curve or a surface (non-linear                   

decision boundary). To make a linear classifier, we perform a kernel trick, in which we lift the feature                  

space to a higher or possibly an infinite dimensional space.  

 

Figure 14: The kernel trick transforms the  non-linear (left) to a linear decision boundary  35

Similarly, in support vector regression, we draw a hyperplane that minimizes the loss function.              

Hyperplanes change when the loss function changes. We apply the kernel trick to lift the feature space, or                  

convert the lower dimension data into a higher dimension, resulting in a non-linear decision boundary.               

From the analysis, the model outputs the MAPE in the test set is and bias is when the cost             .53%9    .33% 3    

is 16 and loss is L2.  

34 ​Source: ​http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/ 
35 ​Source: ​https://towardsdatascience.com/support-vector-machine-simply-explained-fee28eba5496 
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Ridge regression is another model that uses the L2 penalty on the weights of the equation, i.e. it minimizes                   

the L2-regularized squared error instead of only the squared error. 

 

3.3.5. Ridge Regression 

When predictors in a regression are strongly correlated, regression coefficients of a variable depends on               

other predictors in the model. Therefore, the specific independent variable does not reflect the effects of                

the predictor on the regressor. It only partially or marginally effects the regressor based on other predictors                 

in the model. Ridge regression adds bias to alleviate multicollinearity. We fit a model with all ​p                 36

predictors and regularize or constrain the coefficient estimates, i.e. use a method that shrinks the               

coefficient towards 0 to reduce the variance of the variable. Similar to least square estimates, the ridge                 

regression coefficient estimates by minimizing:βR
  

(y  x )∑
n

i=1
i − β0 − ∑

p

j=1
β j  ij

2 + λ ∑
p

j=1
β SSj

2 = R + λ ∑
P

J=1
βj

 
  

The penalty term, is the tuning parameter (or the hyperparameter) that is separately determined.   λ ≥ 0            

is called the shrinkage penalty, which is small when are close to 0. The shrinkageλ ∑
p

j=1
βj

2
          , , ..ββ1 β2 . p       

penalty is not applied to the intercept, . When the ridge regression generates least square       β0    ,λ = 0       

estimates, but as , the effect of the shrinkage penalty increases, which shrinks the coefficients   λ → ∞             

towards 0. Ridge regression generates different set of coefficient estimates for each value of          βR
      ,λ  

unlike a single set of coefficient estimates generated from least squares. Increasing , decreases the            λ    

flexibility of the model, lowering the variance but raising the bias. Unlike the OLS regression, the scale of                  

parameters highly impact the coefficients of ridge regression, so we should standardize the predictors to               

the same scale before applying this method. In ridge regression, when the test set MAPE            − , 0),λ = ( 4 1      37

is and there is a negative bias of The lowest error rates resulted when the values of 1%1         .07%.5          

hyperparameters were and Next, I will discuss the final model incorporated in the  α = 0   2.λ = 3            

ensemble, known as Artificial Neural Networks.  

 

3.3.6. Artificial Neural Network 

36 ​Source: 
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Ridge_Regression.pdf 
37 ​Source: ​http://statweb.stanford.edu/~tibs/sta305files/Rudyregularization.pdf 
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The human brain consists of about 80,000 is a convoluted network of neurons. A neuron is a cell that                   

transmits electrochemical signals or nerve impulse to process information. Artificial Intelligence (and its             

subset: Machine Learning) “gives cognitive powers to computers to program them to learn and solve               

problems”. Thus, we can simulate human intelligence via computers. A neuron is a central processing unit                

that computes mathematical operations in a set of inputs to get an output.  

 

A neural network is a network of interconnected nodes, called neuron. Each neuron is a variable and the                  

intermediary variables are called derived variables. Just as logistic regressions, logit models, models with              

polynomial transformations and lagged variables are derived from original models and variables, so are the               

neurons in the hidden layers. All the arrows representing neurons represent parameters, called weights.              

The output layer contains all the output variables or the output neurons. The layers between input and                 

output layers are called “hidden layers” and they include hidden neurons. The hidden layer is the middle                 

layer which processes information and yields output. In the model, the inputs are ​, ​and             C , C , .., CP 1 P 2 . P 6    

the weights are Thereby, the output is , where inputs. ​In   , , ..w .w1 w2 . 6      (x)y = f = ∑
 

 
P C wi  i   1, , , }i = { 2 3 4    

neural networks, hyperparameters are the variables which determine the structure of the network and how               

to train the network. These are the number of hidden layers, and the learning rate, respectively. Before                 

training the model i.e. prior to optimizing the bias and weights, hyperparameters are set. We add more                 

layers until the test rate does not improve further. 
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Figure 15 : Basic structure of an Artificial Neural Network  38

 

The more hidden layers or neurons, the more the network will be able to capture the complicated                 

relationship. In the hidden layer, such a variable is a function of the previous layer. The top neuron in the                    

hidden layer is a function of all the input variables, such as their weighted average. The second neuron in                   

that layer is also a weighted average but uses different weights. Each neuron in the second hidden layer                  

gets inputs from the first hidden layer. Therefore, the top neuron in the second hidden layer might be a                   

weighted average of all the neurons in the first hidden layer. Finally, the output neuron is the weighted                  

average of the neuron in the last hidden layer. So, eventually, the output variable is a complicated function                  

of the input variable.  

  

Activation function is the function applied on this output. Next layers’ inputs is the output generated from                 

previous layers’ neurons. ​A mathematical function that converts inputs into output and processes the               

neural network is an activation function. In the absence of activation functions, neural networks behave               

38 ​Source of the figure: 
https://www.researchgate.net/figure/a-The-building-block-of-deep-neural-networks-artificial-neuron-or-node-E
ach-input-x_fig1_312205163 
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like linear functions, where the output is directly proportional to the input. One type of activation function                 

is sigmoid or logistic, which I have used the model. The ​sigmoid function produces a sigmoidal curve, that                  

is ​S​ shape. The model is logistic and values are in the range:  The formula is: 0, ).( 1 (x)f = 1
1+e−x   

 

Figure 16: Sigmoid (logistic) function applied in the ANN model  39

 

The activation function processes from input to outer layer via hidden layer(s) through a mechanism called                

forward propagation. First, the is applied at each layer,    (input  eight ) ias ∀ Y − , ),Y = ∑
n

i=1
i × w i + b ∈ ( ∞ ∞       

and then the value obtained from the activation is propagated to the next layer. ​The figure below depicts a                   

simplified neural network and the technique behind the “black box”. ​The entire neural network is a                

function of outputs approximated from each individual neuron. ​In supervised learning, we present the              

inputs, output and can modify the weights to minimize the gap between the observed and the predicted                 

output. Alternatively, in unsupervised learning, we cannot modify the weights. In this case, the neural               

network amends it own weights, thereby, similar inputs result in similar outputs. The network solely               

observed differences and patterns in the output without any external help.  

 

In neural networks, the weight parameters are closely analogous to the coefficient estimates in a regression                

model. These weights describe the association between variables and dictate the importance or influence              

of each variable that is processed in the network. Thereby, variables which are irrelevant or do not                 

influence the response variable significantly, are suppressed by lower (and even negative) weights, and              

vice-versa. As the number of weights in neural networks exceed number of coefficients in regression               

39 ​Source of picture: ​https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 
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model, neural networks are extremely flexible. Hence, they are useful for modeling non-linear functions              

with many interactions.  

 

After obtaining the output in the output layer, I calculated the error by subtracting the original from the                  

predicted output. In forward propagation, error helps to correct the biases and weights. The gradient               

descent determines the amount of weight that should be changed. Alternatively, the process of              

backpropagation involves partial derivatives of each neuron’s activation function to identify the gradient             

or the slope in the direction of the updated weights. The gradient informs how much the error changes a                   

weight changes. Backpropagation keeps changing the weights iteratively until the error is reduced by the               

maximum amount, called learning rate. The scalar parameter, learning rate sets the adjustment rate to               

reduce the errors faster. Higher is the value of learning rate, faster the algorithm will reduce the errors.  

At each step, gradient descent helps to find the global cost minimum, where the error is the lowest. Then,                   

the model fits the data very well, giving more accurate predictions. If is the predicted value of            (x)h       ,y  

which is the observed value, then the error for one data point is:             rror h(x) ) redicted ctual.e = ( − y 2 = p − a  

Repeating this process for all the data points in the dataset and summing all the errors to one combined                   

error gives the Cost Function, (w).J  

where:(w , ) (h (x ) ),J 0 w1 = 1
2m ∑

m

i=1
w

(i) − y(i)  

 the number of training examples, i.e. observations in the training setm =  

input vector for the training examplex(i) = ith  

 the class label for the training exampley(i) = ith  

weights w = w , , ..., )( 1 w2  wn  

algorithm’s prediction for the training example using the parameter .(x )h w
(i) = ith θ  

The goal is to minimize the cost function (bottom of the curve) so that the error is close to 0 by changing the                       

value of  at each step. The diagram below shows how gradient descent works:w  
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Figure 17: Using gradient descent in the cost function to adjust weights  40

We draw a tangent line from the point and find the slope of the line. The slope identifies how much change                     

is needed by taking the partial derivative of the cost function with respect to .w   

slope change in the function when changes. If the derivative is positive (positive slope), thedf
dw 

=   =      w           

error rises as we increase the weights, so we should reduce the weight, and vice-versa. If the derivative is                   

0, the error has reached the stable point and we should not change the weight.  41

The derivative of cost function with respect to is: w0   J(w , ) (h (x ) )d
dw0 0 w1 = 1

m ∑
m

i=1
w

(i) − y(i)  

This gives the change in . ​Then, we multiply the change with the learning rate variable, called alpha     w0              

(usually ). It signifies the magnitude of the step size to get the minimum value. To get the new .01α = 0                   

 value, we subtract the change from the earlier value of w0 .w0  

40 
Source:​https://medium.com/deep-math-machine-learning-ai/chapter-1-2-gradient-descent-with-math-d4f2871af
402 
41 Source: 
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e 
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J(w , )w0 = w0 − α d
dw0 0 w1  

Likewise, the derivative of cost function with respect to is: w0   J(w , ) (h (x ) ). xd
dw 1 0 w1 = 1

m ∑
m

i=1
w

(i) − y(i) (i)  

To get the new  value, we subtract the change from the earlier value of : .w0 w1 J(w , )w1 = w 1 − α d
dw1 0 w1  

We apply the gradient descent to update the weights until the error rate is minimized; thus, iterating the                  

process until convergence: { ...  … }(h (x ) ). xwj = wj − α 1
m ∑

m

i=1
w

(i) − y(i)
j
(i)  

The learning rate defines the speed at which a network updates its hyperparameters. The learning process is   α                

diminished when the learning rate is low, but it smoothly converges. Alternatively, the learning process is fast                 

when the learning rate is high, but may diverge.  42

 

Figure 18: Learning rates  with different speeds α  43

Before building neural network models, I had scaled or normalized data to a standard format to improve the                  

accuracy and speed of training set performance. First, I combined the six principal components with the housing                 

starts variable into a dataframe and then scaled all the explanatory variables: to . Since, I have            C1P   C6P     

42Source:​https://medium.com/deep-math-machine-learning-ai/chapter-7-artificial-neural-networks-with-math-bb
71116948b 
43 ​Source: 
https://towardsdatascience.com/what-are-hyperparameters-and-how-to-tune-the-hyperparameters-in-a-deep-neu
ral-network-d0604917584a 
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applied the logistical function, I scaled or normalized the the principal components to the interval (0, 1). Then, I                   

further split the dataset into training and test set and created time slices using the same procedure outlined for                   

cross-validation. There are 2 ways to normalize: Z-score normalization, and the min-max normalization. I have               

used the latter, wherein for each observation  I calculated the following:,xi  

zi = x −min(x)i
max(x)−min(x)  

​and are the minimum and maximum value of all the observations of the variable, respectively.in(x)m   ax(x) m               

It transforms all the scores into the range of  Both the normalization methods are sensitive to outliers.[0, ]. 1   

After pre-processing, I created a neural network model with explanatory variables as to and            C1P   C6P   

response variable as housing starts. I added a decay parameter to regularize the network towards reducing bias                 

and variance, so that the models do not overfit the data and generated a neural network of one layer. With the                     

size ranging from 1 to 10, and decay from 0.1 to 4, the  the test set MAPE is  and bias is 0.31%1 .63%.− 6  

Figure 19 is a neural interpretation diagram (NID). The black lines indicate positive weights between layers and                 

grey lines indicate negative weights. The thickness of line increases as the magnitude of each weight increases.                 

The first layer consists of input variables whose nodes are labelled as to for the six explanatory            C1P   C6P      

variables. It consists of one hidden layer with eight hidden nodes labelled as to , and a bias node             1H   8H      

labelled as B1. The last layer consists of the output layer labeled as O1. It shows the bias nodes which are                     

connected to the hidden and output layers.  
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Figure 19 : Artificial Neural Networks with one hidden layer having eight nodes 

 

3.3.7. Stacked Ensemble 

After combining the results from multiple different models to predict housing starts, I created a stacked                

ensemble which is composed of the K-Nearest Neighbors regression, ridge regression, support vector             

regression and an artificial neural network. Then, I combined the validation-fold predictions from the              

component models into a new dataset as explanatory variables. Finally, I stacked a new model via ridge                 

regression where response variable was housing starts and the explanatory variables were the predicted              

housing starts from each of the component models. Combining predictions from these independent, and              

less correlated models, reduces variance, and consequently, diminishes the overall test set bias and MAPE.  

After obtaining the predictions in the test set and the error rates, I forecasted the values of housing starts                   

from January to December, 2019. ​We need values of other variables to forecast housing starts in the                 

future, so indirectly I had to predict the principal components as well. ​We cannot directly use machine                 

learning algorithm for multi-step forecasting. I have made a multivariate multi-step time series forecasting              

model that forecasts housing over the next twelve months, given the recent and historic level of housing                 

starts and other exogenous variables. So, I have used the ML models recursively to make multi-step                

forecasts. This procedure predicts one step at a time, feeds the predicted values in the model as inputs to                   
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forecast the value for next month. I had iterated this process twelve times to get values from January,                  44

2019 to December, 2019. 

 

4. Results  

 

Checking the final models based on the cross-validated performance, I stacked them via ridge regression               

and obtained the predictions in the test set to compare them with the actual number of housing starts. The                   

test set consists of values from July 2010 to December 2018. The test set MAPE from the stacked                  

ensemble is and the bias is The MAPE of the ensemble model is the lowest among  . 518%6     . 573%. − 0           

the individual component models while the bias is closest to 0, indicating that the ensemble model is                 

unbiased. This implies that on average the predicted value of housing starts deviate from the observed                

values by housing starts per month. Among the econometric models, the has  .518%6           RIMAX(2, , )A 1 3   

the lowest MAPE and percent. In contrast to the MAPE of the individual learning algorithms and the                 

ensemble model, the econometric methods underperform. 

 

Econometric and ML Models MAPE Percent Bias 

RIMA(3, , )A 1 2  .3920  .3880  

RIMAX(2, , )A 1 3  .3570  .3440  

RMA(2, ) ARCH(1, )A 2 − G 1  .3690  .3590  

AR(3)V  0.355 0.346 

KNN 0.279 .181− 0  

SVR .0950  .0330  

Ridge Regression .1140  .050− 0  

ANN .1030  .066− 0  

Ensemble of ML models .0650  .005− 0  

 

44 ​The predictions of each successive month are added at the end of the dataset, which help to make next 
month’s prediction. 
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Table 8: Comparing the error rates (MAPE and percent bias) of the econometric, machine learning and                

ensemble  models. 

Figure 20 displays that the predicted and actual housing starts increase marginally over time in the test set.  

 

Figure 20 : Actual and predicted housing starts from each of the component models in the test set 
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Figure 21 : Actual Housing starts from July 2010 to December 2018 and predicted Housing starts from the                  

ensemble model 

Based on the increasing order of MAPE, the models perform best in the following order: SVR, ANN,                 

ridge regression, and KNN. This is also corroborated by the plot comparing actual and predicted values                

from individual models shows KNN predictions are relatively flat prior to 2014 and substantially lower    −             

than the actual value of housing starts. Post-2014, the predictions are exceptionally high, albeit not               

constant as before. Equivalently, the predictions from ANN are analogous to a step-function: constant              

before 2012, then jumps up and then flattens between 2012 and late 2013, then surges again twice until it’s                   

gradient is positive after year 2015. The predictions from SVR and ridge regression seem to follow the                 

same trend as the actual values of housing starts, but with a few outliers in the years 2017 and 2018. 

Finally, Table 9 depicts the forecasts of housing starts (in 1000s of units) from the aforementioned and                 

VARX models for the year 2019. The ARIMA model generates the highest forecasts where the values of                 

housing starts are gradually rising until May, after which it fluctuates. The VARX model gives a more                 

conservative forecast on a lower level, and follows a downward trend throughout the year, widening the                

gap between the values from VARX and those projected from the other three models. The forecasts from                 

the ARMA GARCH model are marginally lower than those of the ARIMA model but somewhat linearly −               

climb at a very slow gradient. Finally, the forecasts from surges linearly, then plateaus to some extent,                 

before fluctuating in June-July and then it surges. To sum up, except for VAR, other model forecasts are                  

similar.  

Year 2019 RIMA(3, , )A 1 2  RIMAX(2, , )A 1 3  ARX(3)V  ARMA(2,2) −
GARCH(1,1) 

January 1263.583 1180.307 1216.2202 1255.681 

February 1260.987 1225.467 1119.0588 1258.140 

March 1274.743 1227.548 1115.0081 1259.314 

April 1270.308 1228.654 1083.1347 1260.461 

May 1277.965 1224.715 1041.3320 1261.594 

June 1268.353 1222.757 1012.1100 1262.714 

July 1271.857 1182.278 982.1425 1263.822 

August 1262.992 1200.415 951.2494 1264.91 
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September 1268.083 1190.270 922.9862 1265.999 

October 1262.739 1195.869 896.4428 1267.069 

November 1269.046 1209.779 870.7747 1268.127 

December 1264.631 1221.963 846.4608 1269.173 

 

Table 9: Forecasts of housing starts (in 1000s) of units using the four econometric models 

Finally, Table 10 has forecasts from the machine learning models. For all models, except for KNN, the                 

forecasts appear to be cointegrated as they have the same stochastic trends. The lowest forecasts               

correspond to the SVR model with the lowest MAPE, followed by ridge, ANN and the ensemble model.                 

They follow a downward trend and reach the nadir in October, after which they skyrocket in                

October-November. The forecasts from KNN are flat till September, then stumble for a month, before               

spiking and converging with the forecasts from other models. The two plots in the Appendix gives                

diagrammatically represents the forecasts from both econometric and ML models 

Year 2019 KNN Ridge ANN SVR Ensemble 

January 1452.5 1208.5 1407.7 1157.8 1267.4 

February 1452.5 1274.4 1767 1233.1 1397.6 

March 1452.5 1231 1698.3 1181.5 1351.4 

April 1452.5 1222.2 1434.3 1174.5 1283.3 

May 1452.5 1227.5 1454.4 1179 1291.2 

June 1452.5 1170 1345.7 1115.3 1227.2 

July 1452.5 1137 1350.4 1078.7 1206.5 

August 1452.5 1147.2 1360.4 1092.2 1216.3 

September 1452.5 1070.4 1341.2 1006.5 1160.7 

October 1356 956.1 1157.6 886 1022.1 

November 1356 942.6 1238 872.7 1032.8 

December 1770.5 1775.1 1823.3 1812.8 1818.4 
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Table 10: Forecasts of housing starts (in 1000s) of units using the four ML  and ensemble models  

5.  Limitations and Future Research 

First, I will discuss the macroscopic challenges of using machine learning models in a low frequency data.                 

Generally, machine learning algorithms work on large sized data, also known as “big data.” Examples of                

high frequency data are geospatial, transactional, behavioral, geo-spatial etc. Personal devices and digital             

products often compile these data on vast databases containing wide array of variables. Larger time series                

in finance are datasets measuring daily global index prices, commodities, foreign exchange, CBOE             

Volatility index (VIX) and the Dow Jones weekly returns , among others. Traditional economic             45 46

indicators in macroeconomics pertaining to fiscal, labor, monetary and trade statistics which are mostly              

available on a quarterly or annual basis. This starkly contrasts with high frequency variables as very less                 

data is accumulated. Moreover, splitting the dataset into training and test sets further shortens its length,                

possibly making results from the learner algorithms less reliable. The dataset for this analysis constituted               

only 511 observations, which is very small. Analyzing in a bigger dataset will yield better results as more                  

information from the variables are considered and tested in the validation sets. In short series, insufficient                

data is withheld for testing the model, so applying cross-validation becomes hard. ​Deep learning              

architecture usually performs better in large datasets, whereas time series models such as VARX and               

ARIMA cannot handle huge datasets at a time. Well-suited for short-term forecasts, ARIMA models              

cannot accurately predict long term values as they depend on several external factors. For example, the                

movement of economic indicators such as mortgage rate, real estate loans, employment and inflation rate,               

among others will substantially influence housing supply and housing starts. Just by incorporating the              

lagged effects, the simplistic and restricted ARIMA model cannot fully capture changes in all dimensions,               

resulting in higher MAPE than that produced from VARX and ARIMAX models in the analysis. Unless                

the underlying dataset is simple enough time series are stationary and variables fluctuate very less,      −          

machine learning approaches will relatively perform more efficiently.  

45 ​The ​CBOE Volatility Index (VIX)​ measures market expectations of near-term volatility conveyed by S&P. 
This time series dataset comprises of  daily open, close, high and low. 
 
46 ​The ​Dow Jones Industrial Average (DJIA) returns​ dataset composes of weekly stock returns in 
percentage. We can train algorithms in this dataset to infer which stock will generate the maximum return in the 
following week. 
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Now, I will deliberate on one of the microscopic deficiencies arising from applying the sigmoid activation                

function in the artificial neural networks model. From the graph of sigmoid function, the response               

variable responds very gradually as an explanatory variable changes, so the gradient sluggishly reduces.              

This causes the problem of “vanishing gradient,” whereby the gradient is small or has disappeared. In this                 

scenario, the network either does not learn further, or is exceedingly slow. We can use other types of                  

activation functions such as tangent hyperbolic function .The tanh function is very similar to a sigmoid                

function:  

 (x) anh(x)  sigmoid(2x) ,  ∀ f (x) − , )  f = t = 2
1+e−2x − 1 = 2 − 1  ∈ ( 1 1  

The tanh function has a stronger gradient compared to that of the sigmoid function, but the problem of                  

“vanishing gradient” still persists, so we can use the rectified linear unit function (ReLu) activation               

function. Usually ARIMA models produce accurate results when the dataset has seasonality, trends or              

autocorrelation. However, multitudinous factors such as competitor’s behavior, economic and climatic           

phenomenon, media effects or other short term fluctuations can complicate the nature of a time series.                

These factors manifest particularly when the analysis entails forecasting at a granular level            −  

minute-by-minute, hourly, daily, weekly, etc. Therefore, we can implement more sophisticated methods            

such Long Short Term Memory (LSTM), which is a convoluted recurrent neural network (RNN)              

architecture that can learn forecast long sequences. The downside that is it tricky to configure and requires                 

considerable preparation to properly format the data before the model can start learning.  

We can also do scenario based forecasting. Typically performed in risk management, we can produce               

baseline forecasts, create multiple “what if” situations for stress-testing, and generate forecasts for each              

scenario. These can help companies hedge both systemic risks arising from a downturn in business cycle                

such as a recession, and idiosyncratic risks emanating from within the specific industry. Finally, in this                

paper, I have also explained mathematically how to forecast from ARIMA models, but not from other                

models. It would be useful to know how the process works for other time series and machine learning                  

models.  
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6. Conclusion 

In this empirical analysis, I have conducted time series analysis and forecasted housing starts using various                

econometric and machine learning models. From the results, I observed that the ML models outperform               

the econometric models. The ensemble ML model had a MAPE of 6.51 percent compared to the MAPE of                  

which was 35.7 percent lowest among all other econometric models. This suggestsRIMAX(2, , )A 1 3      −          

that economists engaged in forecasting macroeconomic variables should explore forecasting from ML            

based models. These models can discover complex non-linear relationships in the data, without assuming              

anything about the exogenous factors. They can determine the relative importance of each variable without               

being affected by multicollinearity. However, we also have to be prudent when deciding which models to                

use, particularly, as they cannot be interpreted and can overfit in the training sets.  

In both time series and ML models, performance of forecasts differ depending on the dataset. As we often                  

assume that past patterns can indicate the behavior of a series, they are projected. Consequently, if the                 

patterns continue, the forecasts will be precise, but if the patterns abruptly deflect, the projections may                

heavily differ from the actual value, as noticed from the flat KNN predictions. This creates a “black swan”                  

event wherein the event deviates beyond its generally expected path and is hard to project. So, we have to                   

retrain the model repeatedly to account for newer information. ML models can capably model any type of                 

patterns, compared to time series forecasting methods where we have first ensure homoskedastic errors       −        

and same probability distribution throughout the series. Hence, I have conducted several tests such as               

(G)ARCH for conditional heteroskedasticity, and Johansen test of cointegration, among others. Thereafter,            

I have forecasted housing starts.  
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Figure 1: The non-stationary plots show the values of economic variables over time (June 1976-December               

2018) 
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Figure 2: Plots showing the equation, residuals and innovations from the cointegration model between housing               

starts and private houses completed 

 

hous_st hous_st pvt_house_comp mortgR house_supply 

ECT1 -0.0268(0.0425) 0.3199(0.0347) 0.0003(0.0001) 0.0003(0.0002) 

ECT2 -0.0363(0.0375) -0.3288(0.0307) -0.0002(9.8e-05) -0.0002(0.0002) 

Intercept 163.2674(34.76) -9.3985(28.4199) -0.2161(0.0905) -0.2639(0.1756) 

ous sth t−1  -0.5518(0.0587) -0.2430(0.0480) 1.7e-06(0.0002) -0.0003(0.0003) 

ous sth t−2  -0.3224(0.0576) -0.2111(0.0471) -0.0001(0.0001) 1.2e-05(0.0003) 

ous sth t−3  -0.1176(0.0489) -0.1207(0.0400) -0.0002(0.0001) -5.1e-05(0.0002) 
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ortgRm t−1  -43.9864(18.0267) 2.5715(14.7387) 0.5653(0.0469) 0.6693(0.0911) 

ortgRm t−2  
 

-11.1202(19.6690) 7.4237(16.0815) -0.3211(0.0512) -0.0641(0.0993) 

ortgRm t−3  
 

-42.0914(18.5365) -1.7610(15.1556) 0.1238(0.0482) 0.1072(0.0936) 

vt hous compp t−1  0.0496(0.0596) -0.4583(0.0487) 0.0002(0.0002) 0.0008(0.0003) 

vt hous compp t−2  
 

-0.0044(0.0663) -0.2872(0.0542) 0.0002(0.0002) 0.0007(0.0003) 

vt hous compp t−3  
 

-0.0131(0.0597) -0.1894(0.0488) 0.0001(0.0002) 0.0002(0.0003) 

ous supplyh t−1  -13.1016(10.4502) -4.5648(8.5442) -0.0506(0.0272) -0.3478(0.0528) 

ous supplyh t−2  -21.3106(10.5554) -5.8704(8.6302) -0.0625(0.0275) -0.2075(0.0533) 

ous supplyh t−3  -14.1123(9.9092) -4.0074(8.1018) -0.0483(0.0258) 0.0047(0.0501) 

 

Table 1: Coefficients of the VECM 

 

============================================================================ 

                                            Dependent variable:  

                               --------------------------------------------- 

                             hous_st, pvt_house_comp, mortgR, house_supply 

                                  (1)        (2)         (3)         (4)  

---------------------------------------------------------------------------- 

hous_st.l1                      0.443***   0.097**     0.0002**    0.00003  

                                (0.046)    (0.038)     (0.0001)    (0.0002)  

  

pvt_house_comp.l1                0.040     0.283***     0.0001      0.001*  

                                (0.064)    (0.053)     (0.0002)    (0.0003)  

  

mortgR.l1                       -32.268*    0.294      1.512***    0.639***  

                                (17.514)   (14.556)    (0.045)     (0.087)  
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house_supply.l1                -29.253***   -3.226      -0.018     0.661***  

                                (9.570)    (7.954)     (0.025)     (0.047)  

  

hous_st.l2                      0.222***    0.044      -0.0001      0.0003  

                                (0.050)    (0.041)     (0.0001)    (0.0002)  

  

pvt_house_comp.l2                -0.039    0.250***    0.00001     -0.0002  

                                (0.063)    (0.053)     (0.0002)    (0.0003)  

  

mortgR.l2                        -0.614     6.542     -0.802***   -0.639***  

                                (28.479)   (23.670)    (0.074)     (0.141)  

  

house_supply.l2                  -7.547     1.884       -0.003     0.139**  

                                (11.436)   (9.505)     (0.030)     (0.056)  

  

hous_st.l3                      0.227***   0.137***    -0.0001     -0.0001  

                                (0.048)    (0.040)     (0.0001)    (0.0002)  

  

pvt_house_comp.l3                0.025     0.183***    -0.0001     -0.0005  

                                (0.060)    (0.050)     (0.0002)    (0.0003)  

  

mortgR.l3                       30.923*     -5.984     0.274***     0.013  

                                (17.955)   (14.923)    (0.047)     (0.089)  

  

house_supply.l3                  13.121     5.803       0.032      0.215***  

                                (9.800)    (8.146)     (0.025)     (0.048)  

  

const                          321.561***  -41.733      0.022     -0.805***  

                                (62.661)   (52.080)    (0.162)     (0.309)  

  

trend                          -0.193***    0.034      -0.0003     0.001**  

                                (0.070)    (0.058)     (0.0002)    (0.0003)  
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---------------------------------------------------------------------------- 

Observations                      508        508         508         508  

R2                               0.944      0.954       0.995       0.922  

Adjusted R2                      0.943      0.953       0.994       0.919  

Residual Std. Error (df = 494)   97.370     80.928      0.252       0.481  

F Statistic (df = 13; 494)     642.237*** 794.994*** 6,916.869*** 446.179*** 

============================================================================ 

Note:                                            *p<0.1; **p<0.05; ***p<0.01 

 

Table 2: R output: VARX(3) model 

 

##       b->h1      i1->h1      i2->h1      i3->h1      i4->h1      i5->h1  

##   6.9973094   2.7541821   1.9130187   0.1593454   2.6374881  -0.7964275  

##      i6->h1      b->h2      i1->h2      i2->h2      i3->h2      i4->h2  

##  -1.0175347   6.6981651   3.0004355   2.4396672   0.8289042   2.6990313  

##      i5->h2      i6->h2      b->h3      i1->h3      i2->h3      i3->h3  

##  -0.2761348  -1.7851033  60.6841860 -30.0739451 -30.8723839 -67.0854827  

##      i4->h3      i5->h3      i6->h3       b->h4      i1->h4      i2->h4  

## -41.9800897 -28.9049180  -8.6273998  35.2036697   9.3985052  10.3136393  

##      i3->h4      i4->h4      i5->h4      i6->h4       b->h5      i1->h5  

##   6.6504071  14.3804396   2.4946905 -20.5704051  17.0209935  -8.9758188  

##      i2->h5      i3->h5      i4->h5      i5->h5      i6->h5       b->h6  

## -13.2607918   0.8004982  -6.0931299  -1.1598040  -2.6605575  25.1301763  

##      i1->h6      i2->h6      i3->h6      i4->h6      i5->h6      i6->h6  

##  -1.8421162 -12.1820600 -21.3783462 -21.6272392   4.7187724  -2.5071266  

##       b->h7      i1->h7      i2->h7      i3->h7      i4->h7      i5->h7  

##  29.6180954  -0.3854124 -21.5384474 -64.6874797  29.0406152  -4.1728956  

##      i6->h7       b->h8      i1->h8      i2->h8      i3->h8      i4->h8  

##  16.9318749   5.3045046  -7.3714461 -54.5435554  18.5750584  -0.3864044  

##      i5->h8      i6->h8        b->o       h1->o       h2->o       h3->o  

##  -5.6130632 -28.4729414 180.5661546  87.3308392 168.1559459 298.7879217  

##       h4->o       h5->o       h6->o       h7->o       h8->o  

## 169.1409014 503.7799004 162.6350091 257.4076078 253.5629605 

Table 3: R output: Weights of the first ANN model with 8 nodes in the 1st hidden layer (size = 8) 
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Figure 4: The forecasts from ARIMA, ARIMAX, VARX and ARMA - GARCH models for year 2019 

 

 

Figure 5: The forecasts from KNN, ANN, Ridge, SVR and ensemble models for year 2019 
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