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Abstract

Ever since the ground-breaking work Theory of Games and Economic Behavior
by Von Neumann and Morgenstern more than sixty years ago, game theory
has become an increasingly important tool for abstracting and analyzing real-
world problems involving conflict and cooperation among different parties.
There are two major types of games, zero-sum and non-zero-sum games; the
latter is then further divided into non-cooperative and cooperative games. This
paper focuses on solutions for cooperative games. In particular, I studied in
detail the Nash bargaining solution and the bargaining set family. After proofs
of some existence and uniqueness theorems, I compared and contrasted the
assumptions and rationale behind different solution concepts, and evaluated
their applicability using some examples and a case study modeling the airliner

market.
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Chapter 1

Introduction and Background

Game theory is a relatively new branch of mathematics that deals with the
analysis of “games” — not so much in the sense of poker or chess games,
but more in terms of situations that involve conflict and cooperation among
the players. In essence, game theory is a mathematical method for analyzing
strategic interactions. When oligopolists in a market make product price and
quantity decisions, when institutions negotiate on trading contracts and part-
nership terms, when countries make threats to go to war against each other,
each agent has to be concerned about the reactions and expectations of the
other parties involved. The incorporation of these reactions (to the best of
one’s knowledge) into the strategic decision making process calls for the study

and application of game theory.

The foundation of game theory was set up in a collaborative study by John

von Neumann and Oskar Morgenstern in their ground-breaking book, Theory



of Games and Economic Behavior in 1944 [36]. The book was a landmark
in the transition of the study of games in economics (such as the study of
oligopoly equilibrium by Auguste Cournot) into a mathematical discipline,

with more precision and a stronger sense of objectivity. The most important

idea introduced by von Neumann and Morgenstern was their detailed analysis
of two-person zero-sum games. They showed that in zero-sum games, games
in which the goals of the players are always strictly opposed to one another,

there always exists a mixed-strategy minimax solution.

In the following decade, game theory studies flourished at Princeton Univer-
sity and the RAND Corporation under the sponsorship of the Air Force. John
Nash formulated a universal solution concept for non-cooperative games by
introducing and proving the existence of what is now known as the “Nash
Equilibrium.” Based on Nash’s work, Reinhard Selten further reduced the
number of possible Nash equilibria by proposing the concept of “subgame per-
fect equilibrium.” The story of “the Prisoner’s Dilemma,” invented by A. W.
Tucker, became part of the popular culture as a vivid example of the interplay
between competition and cooperation. It took academia about two decades to
overcome the stereotypical view that game theory was merely a study of two-
person zero-sum games whose application was restricted to military situations.
By 1994, when the Nobel Prize in Economics was awarded to Nash, Selten and
Harsanyi (whose major contribution was the study of games with incomplete
information), game theory had finally obtained a central position in economics
— in particular, non-cooperative game theory, studies on games that exclude

pre-play binding agreements, had made a great impact on economics research,



especially in the realm of industrial organization.

In the meantime, cooperative game theory has developed from a few rough
ideas into an important chapter of game theory with deep mathematical theo-
rems. Allowing pre-play communication and binding agreements, the study of
cooperative games enhances our understanding of the conditions for success-
ful cooperation — What makes some coalitions stable and others vulnerable?
What is fairness when dividing revenues among players of different power po-
sitions? How can we reduce the feasible outcomes to complicated cooperative
games? Many mathematicians and scholars in other disciplines have come
up with different solution concepts based on varied assumptions, in an effort
to better model the real world problems. Cooperative game theory has been
widely used to analyze warfare, political choices of presidential candidates, al-
location problems of social resources, as well as many other areas in the social

sciences.

My paper will be structured in a similar way as the evolution of game theory.
In Chapter 2, I will give a very brief introduction to Utility Theory, a theoreti-
cal support of game theory. In Chapter 3, zero-sum games are studied and the
Minimax Theorem is proved. Chapter 4 is devoted to non-cooperative games:
I will give a brief account of the Nash Equilibrium, and provide examples to

illustrate the different types of two-person non-cooperative games.

The main focus of my paper is on cooperative games (Chapter 5). As it is still
a developing area of research with an abundance of solution concepts, I am
interested in studying and comparing these various intricate solutions, and see

under what circumstances some solutions might be preferred to others. T will
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give a detailed account of two major solution concepts introduced by two Nobel
Laureates, the Nash bargaining solution by John Nash, and the bargaining set
by Robert Aumann'. The latter concept gradually evolved into what I call the

bargaining set family, which include the kernel, the nucleolus and modifications

of these concepts. The major theorems for these solutions are provided, among
which are some proofs of lemmas, and theorems for which alternative proofs I
derived . After a brief examination of a few other important solution concepts
for cooperative games, I will compare and evaluate these different solutions

based on their rationale, assumptions and respective range of applicability.

In Chapter 6, a brief literature review is provided, after which I will construct
a simplified model of the airliner market as a three-person cooperative game.
This case study further illustrates the interrelationship and differences among
the several solution concepts studied, and it also gives rise to some non-trivial
implications. Chapter 7 concludes the paper, and contains recommendations

of avenues for further research.

The theorems, lemmas and examples in the paper are numbered in the form
of (chapter.section.sequence number). Since a lot of new definitions are in-
troduced here, for the reference convenience of the reader, I have included an

index at the very end of the paper.

'Robert Aumann won the Nobel Prize in Economics in 2005, along with Thomas
Schelling, for “having enhanced our understanding of conflict and cooperation through game-

theory analysis.”



Chapter 2

Utility Theory

In most, if not all, books about game theory, utility theory is introduced and
described as a theoretical support. Interestingly, game theory was developed
before utility theory: the latter was indeed created as a pillar for the former.
Even though utility theory can stand on its own and is useful in other fields, the
close inter-relationship between these two areas warrants a brief introduction

of utility theory, before we delve fully into the world of game analysis.

Utility theory assigns numbers (or functions) to various alternatives that a
person is facing, according to how much “utility”, or benefit, each alternative
brings. Like game theory, it tries to abstract mathematical relationships and

characteristics from concrete real-world choices.

Let us first introduce some notation for utility theory.

11
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2.1 Notation

Suppose a person is facing r basic alternatives, A;, A,, --- A,, from the
compositions of which he makes a choice. We define a single lottery L that

yields each alternative A; with p; as

L= (p1A17P2A2, s 7prAr)a

where p; is the objective probability assigned to the occurrence of alternative

Ail
ZPiZl and p; >0 fori=1,2---r
i=1

A compound lottery L' is constructed based on a finite number of single lot-

teries:

L' = (q1L1: q2L2: e aqTLT‘)a

where g; is the probability associated with lottery L;.

To make a decision on the most preferred lottery, we first have to define the

notion of “preference” and “indifference”:

Definition Assume a person has an individual taste system that is consistent
overtime. If given two alternatives A; and A;, he always chooses A; over A;,
then A; is preferred to A;, denoted as A; > A;. If he equally likes the two
alternatives, then A; is indifferent to A;, so A; ~ A;. If A; is not preferred to

A,j, then A, i Aj.



2.2 Utility Theorem 13

The preference and indifference relationship between two lotteries L; and Lo

can be defined similarly.

Now we introduce the Utility Theorem and some of its implications in game

theory.

2.2 Utility Theorem

Given r basic alternatives A, As, - -+, A,, assume the following (see Luce and

Raiffa [11, Chapter 2] for a detailed explanation):

1. Ordering of alternatives:
The preference and indifference relationship holds between any two basic

alternatives, and is transitive.

2. Reduction of compound lotteries:
Each compound lottery is indifferent to a single lottery that is composed

of basic alternatives.

3. Continuity:
Each basic alternative is indifferent to a lottery involving a least preferred

alternative and a most preferred alternative.

4. Substitutability:
A lottery indifferent to a basic alternative A; can be substituted with A;

in any lottery.
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5. Transitivity among lotteries:
The preference and indifference relationships among lotteries are also

transitive.

6. Monotonicity:
If Ay = A,, then a lottery (pAy, (1 — p)A,) is preferred or indifferent to
(0 Ar, (1— p)A,), if and only if p > .

With these six axioms above, we have the following:

Theorem 2.2.1 Utility Theorem Given two lotteries L and L', let L =
(p1A1, -+, prA) and L' = (p} Ay, -+ ,pl.A.). There are real numbers u; asso-
ciated with the basic alternatives A; (i =1,2,--- 1), such that for L and L',

the magnitudes of the value of the functions

u(L) = pruy + pous + - + pu,  and  u(L') = plus + phus + - + plu,

reflect the preference between L and L'.

The function u(L) is defined as a utility function:

Definition Given a set of lotteries L, if the preference and indifference re-
lationship “>” satisfies the six axioms, then the utility function u: . — R is

such that for any two lotteries I and L' in L,

u(L) >wu(L'), ifandonlyif L > L.
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Suppose u(L) is a utility function, and v/(L) = au(L) 4+ b with a,b € R and

a > 0, then

L>L < ull)>ull')s au(l)+b>au(l)+bs /(L) >u (L)

Thus, it is shown that if u(L) is a utility function, then a positive linear trans-
formation of u(L) is also a utility function preserving the preference sequence
of the lotteries. It can also be shown (see [36, Chapter 3]) that if both «'(L)
and u(L) are linear utility functions representing the ordering of >, there exist

a,b € R and a > 0, such that

u'(L) =au(L)+b

Therefore, the uniqueness of a utility function is defined up to linear transfor-

mations with a positive coefficient.

This gives rise to problems in interpersonal comparison of utility, which has
always been a target for criticism in the application of game theory analysis to
group decision making. For instance, in order to select an option that maxi-
mizes the group welfare, we inevitably have to “sum up,” albeit not necessarily
in the traditional sense of addition, the utilities for each individual. Here the
assumption is that there is a way to compare interpersonal utilities — there
exists some kind of common measuring stick that we can use to assess the util-
ity of an alternative to different people. The most widely used measurement
unit, money, seems to be an obvious choice. However, does one dollar mean

the same thing to a rich person as to a poor person? Although both would
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prefer a ten-dollar bill to a one-dollar bill, (thus both of their utility functions
yield a higher value when the alternative is ten dollars), most of us would
reckon that for the rich, the utility difference between the two options may
be negligible; while for the poor, the difference could be considerable. There-
fore, since the uniqueness of a utility function is only defined up to a linear
transformation, even with money as a unit, the addition of utilities between
different people warrants more justification. With more complicated options
that cannot be measured in monetary terms, interpersonal comparison is even

harder to justify.

With the complexity explained, in most parts of this paper, we assume that
interpersonal comparison of utility is possible. We will also introduce some

solution concepts that do not require such comparison.



Chapter 3

Zero-Sum Games

There are two major types of games, zero-sum games and non-zero-sum games.
The mechanism and strategies behind these two types of games are quite
different: zero-sum games, by definition, require that the payoffs to all the
players involved add up to zero. We assume in this paper that each player is
rational, i.e. he attempts to maximize his individual payoff. Even though in
an n-person game, people may align their welfare and form small coalitions,
they will still have to face the question of dividing a specific payoff within that
coalition. Therefore, the goals of the players in a zero-sum game are strictly
opposed to one another. Each person tries to maximize his own payoff, and in
doing so, he also minimizes that of the other players, since the total amount

is fixed. In this sense, zero-sum games are competitive in nature.

By contrast, non-zero-sum games are more cooperative than competitive.

Since different options give varying total payoffs, it leaves more room for

17



3.1 Remarks on Zero-Sum 18

players to achieve mutually beneficial outcomes. Within non-zero-sum games,
there exists two subcategories: cooperative games and non-cooperative games.
In non-cooperative games, total payoffs vary for different outcomes but pre-

play communication is still forbidden; whereas in cooperative games, players

are allowed to have pre-play discussion and make binding agreements. We
recognize that more often than not, many real world problems can be better
reflected and modeled by non-zero-sum cooperative games; at the same time,
the cooperative nature of such games makes it harder to give one single justi-
fied and applicable solution, as in the case of non-cooperative games. In this

section, we start with the easiest of the three, zero-sum games.

3.1 Remarks on Zero-Sum

Notice that while strictly competitive games are called “zero-sum” games, they
indeed constitute all games whose payoffs to all players add up to a constant
value. We give a brief note here about why constant-sum games are equivalent

to zero-sum games, by introducing the notion of “sunk cost.”

In economics terms, sunk costs are costs that cannot be retrieved. For in-
stance, the cost of building a plant cannot be retrieved, even when the owner
stops production. Therefore, such costs are foregone, and should not be taken
into consideration while making strategic decisions. For a constant-sum game
with the payoffs adding up to the amount of m, we can invent a pre-game in
which all n players are required to pay a fixed participation fee m/n. Since

the fee is a sunk cost, it doesn’t affect the strategies that the players choose in
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the game; meanwhile, we have transformed the game into a zero-sum game, in
which all final net payoffs now add up to 0. In this chapter, we proceed with
games in which payoffs sum to zero, but bear in mind that the results derived

are applicable to all constant-sum games.

We will focus on two-person zero-sum games, and the results can be readily

generalized into n-person games.

3.2 Two-Person Zero-Sum Games and the Min-

imax Theorem

Before we propose the Minimax Theorem, which is fundamentally the most
important theorem in the study of zero-sum games, we will first introduce

some terminology needed for understanding of the games.

3.2.1 Notation

There are two people playing a game, whom we call the players. Both players
are faced with a finite number of options, called the strategies, from which
they need to choose simultaneously. Since both players make their choices at
the same time, the result, called the outcome, is determined by the combined

choice of the players.

There are two types of strategies, pure strategies and mixed strategies. Pure

strategies are like the “basic alternatives” in utility theory, whereas mixed
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strategies are like “lotteries,” i.e. probabilistic combinations of the pure strate-
gies. More specifically, we denote the m pure strategies that player 1 faces by

{aq, a9, -+, }, and the n pure strategies that player 2 faces by {51, B2, , Bn}-

Let a;; = M(a;, ;) € R denote the payoff that player 1 gets from player
2. Since it is a zero-sum game, the payoff that player 2 gets is naturally

—a;j. Thus an outcome (a;j, —a;;) is associated with the pair of pure strategies

(OémBj)-

We denote a mixed strategy employed by player 1 by x = (z101, Tata, -+ + , Tyt ),
where

m

inzl and z; >0 for 2=1,2,---,m,
i=1

which means pure strategy «; is employed with probability x;. Similarly, we
denote by y = (y151, 202, , ynPn) a mixed strategy employed by player 2,
where

Zyjzl and y; >0 for j=1,2,--- n.
7=1

The payoff for a pair of mixed strategies is defined as
M(x,y) = Z Zfl?iyjaij-
i=1 j=1
Notice that by setting z; = 0 for all j # 4, x can also represent the pure
strategy x;, and similarly for y. Thus, player 1 chooses a strategy x (pure

or mixed) in order to maximize his payoff M(x,y); simultaneously, player 2

chooses a strategy y to minimize M (x,y).
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Since the game is purely competitive, it is reasonable to assume that each
player is antagonistic, so one needs to be prepared for the worst-case sce-
nario. The goal of maximizing one’s payoff therefore translates into getting
the biggest return possible in these worst-cast scenarios, which leads to the

definition of security level.

Definition The security level of a player is the least amount that he can
receive from a strategy choice, regardless of his opponent’s strategy. Let v; be

the security level for player 1 with strategy x, thus

v1(x) = min M (x,y)

Y

Definition The maximin strategy for player 1 is a strategy x° that maximizes

the security level of player 1:

v1(x%) = maxv;(x) = maxmin M (x,y)
x x y

Let vy = v1(x?%). We call v; the maximin value of player 1 in the game.

Since the game is zero-sum, we interpret player 2’s aim as the minimization of
player 1’s payoff, rather than the maximization of his own payoff. Thus, the
largest payoff that player 1 can possibly get, when player 2 chooses to play

strategy y, is

va(y) = max M(x,y)

Analogous to the maximin strategy of player 1, we define the following;:
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Definition The minimax strategy for player 2 is a strategy y° that minimizes

va(y):

va(y°) = n;in va(y) = myin max M(x,y)

Let vy = v2(y®). We call vy the minimax value of player 2 in the game.

By playing y°, player 2 guarantees that player 1 will not get more than v;

in other words, player 2 has maximized his security level at —uvy;.

3.2.2 The Minimax Theorem

The Minimax Theorem tells the relationship between the two security levels,

vr and vy, of the two players.

Theorem 3.2.1 Minimax Theorem I[n a two-person zero-sum game, the
mazimin value of player 1 is the same as the minimax value of player 2; that
18
vy = maxmin M (x,y) = minmax M (X,y) = vy
x y Y T

We call v = v; = vy the value of the game.

The Minimax Theorem looks surprisingly trivial: the commutativity of the
operators max and min seems almost intuitive for any function. Therefore,
before delving into a rigorous proof of the Minimax Theorem, we take a brief
diversion and first look at a counter example to show that for a non-continuous

function f(z,y), the commutativity doesn’t always hold.
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Consider the following function:

reQ yeQ
rZQ, yeQ
reQ ygQ
rZQ, ygQ,

where z,y € [0,2] and Q denotes the set of rational numbers.

flzy) =

— W N

By some simple algebra, we get
2 = maxmin f(z,y) # minmax f(z,y) = 3
T Y Y T

We defined the function f(z,y) to be the notorious function that is not con-
tinuous anywhere in the domain. In fact, if we replace Q and Q with any
two disjoint real number intervals, the commutativity of max and min doesn’t
hold. We can also replace the payoff 1,2, 3,4 with other numbers or functions,

as long as they preserve the order of magnitudes in our example.

3.3 Proof of the Minimax Theorem

Historically, there have been several proofs of the Minimax Theorem, including
Von Neumann and Morgenstern (see [36, page 153]), Nash [20], and Owen (see
[23, Chapter 2]). We will describe Owen’s proof in detail here.

Lemma 3.3.1 v; = maxy miny, M (x,y) < min, max, M (x,y) = vy

Proof Let x° be a maximin strategy of player 1. Let y® be a minimax

strategy of player 2. Thus

v; = maxmin M (x,y) < max M (x,y%) = M(x°,y°)
x y x
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At the same time,

o7 = minmax M (x,y) > min M (x°%,y) = M(x°,y?)
y @ x y
Thus,
Vr S M(Xo,yo) S Vir-
]
Lemma 3.3.2 Ifx = (21,29, -+ ,x,) &€ B, where B is a compact and convez

set of points in an n-dimensional Fuclidean space, then there exist real numbers

P1,D2,° s Py Pni1, Such that

Zpﬂi = Pny1 and (3.1)
=1
sz’yi > ppy1 where 'y = (y1,Y2, - ,Yn) € B (3.2)
i=1

Proof We know x ¢ B. Since B is a compact set, and any continuous real
function defined on a compact set has a minimum, there exists a point z € B
such that |x —z| < |x —y|, for all y € B. Thus, z is the point in B that is

closest to x.

Let p; = z; —x; fori = 1,2,--- ,n. To satisfy the first condition in the lemma,

let

n

n n n
_ E : _ § : _ 2
Pn+1 = bix; = (Zi - Zlfz)&"z = E 2T — E Zz;
i=1 i=1 i=1

i=1
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Now we have

n n

Zpizi — DPnt1 = (Z 2z - Z 2iTi) — (Z “ili — ng)
i=1 i=1 i=1

= Z(Zz —z;)* >0 (z#x)

=1

Thus, we have shown that equation (3.2) holds for z. We need to show that

it is also true for all y € B, which we prove by contradiction.

Suppose for some y € B, " | piyi < ppt1. Since B is a convex set, we know
for0<r <1, w,=ry+ (1—r)z € B. Let f(x,r) denote the square of the

distance between x and wy:

n

fxr)=d(x,we) = (i —ry; — (1—1)z)

i=1
We take the derivative of f(x,r) with respect to r, and evaluate it at r = 0.

With some simple algebra, we get

%Lﬂzo = Q(Zpiyi - Zpizi)

We have shown that """ | p;z; > p,i1, and by assumption .1 piyi < pny1,

thus, %|r:0 < 0.

Since f(x,r) is a continuously differentiable function of r and is strictly de-
creasing in the neighborhood of 0, we know that there exists ¢ > 0 such that

if 0 <r < o, then
d2(X7 Wr) < d2(X> WO) = d2(X> Z)

This contradicts our assumption that z is the point in B that is closest to x,

thus equation (3.2) must hold for all y € B. n
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Before we move on to the next lemma, in order to reduce the notational

complexity, we first define the convex hull of a set of N points:

Definition In R", the convex hull of N points P = {p1, pa,- -+ ,pn} is given
by

N N
Conv{p1,p2, -+ ,DN} = {Z Ajp; | Aj >0 for all j, andZ)\j =1}

Equivalently, the convex hull of the set of points P is the intersection of all

convex sets containing P.

From Lemma 3.3.2, the following can be easily proved:

Lemma 3.3.3 If A = (a;;) is an m X n matriz, then either (I) or (1I) must
hold:
(I). The point O is contained in the convex hull of the m + n points:

a = (a117a217"'aam1)

an = (a'ln7 10 T amn)

€1 = (1,07a0)

€m = (0/07 ’1)

(1I). There exists numbers xy,xq,- - , Ty Such that
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((x; >0

m
S
=1

Za,-ja:,->0 for 7=1,2,---,n

\ =1

Now we are ready to prove the Minimax Theorem:

Proof By Lemma 3.3.3, either of the following has to hold:
(i). If (I) holds, then 0 is in the convex hull of the m + n vectors. Thus, 0
can be written as a convex linear combination of a1, as, -« ,a,,e1, -+ ,€ém, i.e.

there exists real numbers sy, s9, - - | S;40, such that

n
E 5iQij + Sppi =0 for i=1,2,--+ 'm
i=1

m-+n
where s; > 0 for all 7, and g s; = 1.

Jj=1
Since ey, ey, -+ , e, are linearly independent, we cannot have s; = s9 = --- =
sp = 0 (otherwise, 0 is a convex linear combination of eq,es, -+ ,€,,). Thus,

s; > 0 for some j € 1,2,--- ,n, and we know Z;l:l s; > 0.
Let u; = 8_7'/28_7', j=1,2,---,n, and we have
j=1

n

> uj=1

j=1

n n

Zaijuj :—an/Zsj <0 i=1,2,---,m.
i=1

\ J=1
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Let u = (ug,ug, - ,u,). Therefore, vo(u) < 0 (because for any pure strategies
player 1 chooses, the payoff to 2 playing strategy u is always non-positive; so
any mixed strategies of player 1 will give the same results.) Thus, in this case,

the minimax value for player 2 satisfies vy < 0.

(ii). If (II) in Lemma 3.3.3 holds, then let x = (z1, 29, -+ ,z,,). We have

v1(x) > 0, so in this case, the maximin value for player 1 satisfies v; > 0.

Now by Lemma 3.3.3, we know that either (i) or (ii) has to be true. Therefore,
we cannot have v; < 0 < vy. Suppose now we transform this game, called A,

to game B by adding a scalar k& (k € R) to all entries a;;:
bij = k + aij
It is obvious that the minimax value for player 2 and maximin value for player

1 both increase by k. Now suppose we have v;(A) < vy (A), then it is possible

to choose k € R, such that
’U[(A) + k<0< ’UH(A) + k?,

which means that v;(B) < 0 < vy(B), but we have already shown by (i)
and (ii) that this is impossible. Thus, v;(A) > vy (A). Since A is arbitrarily
chosen, then v; > vy is true for any game. By Lemma 3.3.1, we have v; < vy;.

Thus v; = vy, and we proved the claim. [

In an ingenious proof of the existence of what is now known as the Nash
Equilibrium for non-cooperative games, John Nash showed that the Minimax
Theorem is actually a special case of the exitence theorem for 2-person zero-
sum games. The more general case for all finite non-cooperative games will be

presented in the next chapter.



Chapter 4

Non-Cooperative Games

In this chapter, we consider both zero-sum and non-zero-sum non-cooperative
games. Recall that in non-zero-sum non-cooperative games, no pre-play com-
munication is allowed among players. Therefore, the complication of coalition
formation and contract negotiation will not come until the next chapter. The
notation from the zero-sum cases are still applicable to all non-cooperative

games.

4.1 Nash Equilibrium

We first define Nash Equilibrium of a non-cooperative game.

Let a;; (j = 1,2,---,m) be a pure strategy for player i, and let s; =
m
(i1, TioQuia, - -+, Tim Qi) Where z;; > 0 and Zmij = 1, so s; represents

j=1
a mixed strategy for player 2.

29
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Let s = (s1,89, -+ ,8,). We think of s as a point in the product space of the
vector spaces containing the mixed strategies of all n players. Let p;(s) be the
payoff function for player ¢. It is a mapping from the set of all n-tuples of

mixed strategies into R.

Also we introduce the notation of (s, ;):

(sati) = (517827"' s Si1,Liy Sig1y -,Sn)

So (s, t;) is a modification of s, where player i employs a strategy ¢; instead of

s;, and the strategies of all the other players remain the same.

Definition Suppose in an n-person game, .S; is the set of strategies available

to player i. A Nash equilibrium of the game is an n-tuple s, if and only if

pi(s) = max p;(s, ;).

ri€S;

In other words, Nash equilibrium means that no player has any incentive to
change his own equilibrium strategy, given that none of the other players are
going to change strategies. If the assumptions are correct, then the game is

stable at the Nash equilibrium point.

Next we state Brouwer’s Fixed-point Theorem, based on which Nash proved
the existence of Nash Equilibrium for all finite non-cooperative games. A proof

of Brouwer’s Theorem can be found in [8].

Theorem 4.1.1 Brouwer’s Fixed-point Theorem

Suppose S™ C R™ 1s a compact convex set. Let f : S* — S" be a continuous
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function. Then there exists x € S™ such that

flz) =z

In his proof [21], Nash defined a set of continuous functions of s by
Pia(s) = max(0, pia(s) — pi(s))
where p;o(s) = pi(s, a;;).

For each component s; of s, a modification s, is defined by

o — Si + Yo Gials)
‘ 1 + Za (bia(s)

Let 8’ = (s}, 84, ,s,,). A mapping T : s — s’ is therefore constructed. Nash
showed that the fixed points of the mapping are the equilibrium points. The
central idea in his proof is that an equilibrium point s does not use «;; (i.e.
the mixed strategy s; does not use «;;), unless a;; is an optimal pure strategy

for player 1.

Using Brouwer’s Fixed-point Theorem, Nash proved the existence of a fixed
point under 7', and thus the existence of the well-known Nash equilibrium for

non-cooperative games:

Theorem 4.1.2 FEvery finite non-cooperative game has an equilibrium point.

The appeal of Nash Equilibrium lies in its intuitiveness and its correspond-
ing existence theorem for all non-cooperative games, which we will illustrate

further with some examples in the next section.
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4.2 Examples of Nash Equilibrium in Two-

person Non-cooperative (Games

In this section, we give examples of some famous 2-person games, and examine

some of their implications in the real world.

(I). Prisoner’s Dilemma.

One of the most famous non-cooperative games, Prisoner’s Dilemma is at-
tributed to A.W. Tucker and has received considerable public attention. The
payoff matrix associated with the game is as follows, where a;, b; denote strate-

gies for player i (1 = 1,2).

a9 bg
a1 ('57'5) (07'6)
by | (-6,0) | (-1-1)

The interpretation of the game is that two suspects of a crime were arrested and
interrogated separately: for both, strategy a denotes “confess” and strategy b

” The absolute value of the payoff denotes the number

denotes “not confess.

of years each prisoner will be sentenced. Clearly, no matter what the other
) 3 3 3 13 3 3 [43

person’s choice is, for each prisoner, “confess” is a dominant strategy over “not

confess.” The Nash equilibrium in this case is the pure strategy pair (—5, —5),

which collectively speaking is the worst outcome for both players.

We observe that in this case, the Nash equilibrium has nothing to do with
social efficiency. In fact, Prisoner’s Dilemma is commonly used to model en-
vironmental issues concerning negative externality, as well as pricing strategy

of firms in a duopoly (oligopoly) market. The solution can be modified if the
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game is played repeatedly (thus cooperative behavior will be rewarded), or by
allowing pre-play communication such that players can make a binding agree-
ment, usually under the supervision of a potent third party (a mafia in the
case of the prisoners, government regulation in the case of negative externality,

and a cartel in the case of an oligopoly market).

(IT). Battle of the Sexes and Chicken.

The Battle of the Sexes game got its name from the story in which the husband
and wife are deciding independently where to go on a Saturday night. While
the husband prefers a football match (strategy a) to a movie (strategy b),
and vice versa for the wife, both find it more important to have each other’s
company. Thus, in this game, there are two pure strategy Nash equilibria

(a1, a2) and (by, by), which occur when the choices of the couple are aligned.

a9 bg
a; | (3,1) | (0,0)
by | (-1,-1) | (1,3)

The conundrum arising from the non-uniqueness of Nash equilibrium is that
the couple still cannot decide which equilibrium point to choose, and it is
possible that if each person chooses altruistically, they end up at the worst-
case scenario (—1,—1). One alternative is to choose a mixed strategy Nash
equilibrium such that one’s security level is maximized. In this case, player
1, the husband, employs mixed strategy (0.8a1,0.2b;) and player 2, the wife,
chooses (0.2az,0.8b3). Since the game is symmetric, both players maximize
their security level at 0.6. Another alternative for the Battle of the Sexes
games is to find a focal point, an equilibrium that has some property that

distinguishes it from all the other equilibria. The focal point could usually be
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derived from either a social, cultural norm or family tradition.

Similar to the Battle of the Sexes game, a Chicken game also gives two pure-
strategy Nash equilibria. The difference is that in this case, the equilibria

occur when the choices of the two players are not aligned.

a9 b2
@ | (5,5) | (5-1)
by | (-1,5) | (-1,-1)

The game got its name from a popular activity in which two adolescents drive
a motorcycle towards each other, and the first to swerve loses and is humiliated
as the “chicken.” However, if nobody swerves, then serious physical damage is
likely to occur, giving both players more negative payoffs. The Nash equilibria
are (ar,bs), (b, as) and (0.6a; + 0.4b1,0.6as + 0.4by). Involved parties can
send convincing signals to show their commitment not to “swerve,” by, for
example, ostentatiously disabling the steering wheel before the game. In the
realm of international politics, nuclear brinkmanship is often modeled by a

Chicken game.

(III). Sports game.
Compared with the Battle of the Sexes and Chicken games, in which contention
follows from the multiplicity of pure strategy Nash equilibria, a sports game

has no pure strategy equilibrium points.

(03] b2
aq (0,4) (4,0)
by | (4,0) | (0,4)

In tennis, for example, player 1 can hit short (a;) or long (b;), while player

2 can go to the net (ay) or stay at the bottom line (by). A simplified payoff
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matrix for a tennis match is as shown above. It is easy to observe that there
is no pure strategy equilibrium — otherwise, mathematicians can all be great
tennis players. The mixed-strategy Nash equilibrium is when both players

employ their two strategies with equal probability.

As we have illustrated with the four types of games, to find a pure-strategy
Nash equilibrium, one just needs to do a run-through check of all the outcomes
to find the intersections of the minimax/maximin strategies. A mixed-strategy
Nash equilibrium, on the other hand, requires that a player get the same
payoff from any of his pure strategies with positive probability in his mixed
strategy. Thus, we can equate the expected payoffs from a player’s different
pure strategies to find the probability measures of a mixed strategy Nash

equilibrium.

In recent years, with the increasing power and speed of computers, linear
programming has enjoyed greater popularity as a means to solve optimization
problems. By transforming a game into sets of inequalities, we can use linear
programming to solve for Nash equilibria in n-person non-cooperative games.
See Vanderbei [34] for a detailed account of linear programming techniques

and applications of the Simplex algorithm.



Chapter 5

Cooperative Games

The study of cooperative games, in contrast to non-cooperative games, entails
much more diverse solution concepts. With pre-play communication allowed,
players can negotiate with each other and use various bargaining strategies,
such as sending signals, making credible threats and forming coalitions, which
consequently complicates the analysis of cooperative games. Different solu-
tions arise based on different assumptions, and each has its own applicability
and caveats. In this chapter, we will examine in detail and critically analyze

a number of solution concepts.

Let’s first explain explicitly the assumptions we make for cooperative games:
(i). All agreements reached by pre-play communication are binding and en-
forceable. Therefore, coalitions formed after bargaining are not to be broken
during the games.

(ii). A player’s evaluation of the outcomes of the game is not disturbed by the

36
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pre-play communication. Therefore, the payoff matrix is unaltered by these

bargaining and negotiations.

In this chapter, we first examine the Nash bargaining solution in some detail,
then move on to an elaborated discussion of the “bargaining set,” “kernel,”
“core,” and “nucleolus.” We will also briefly discuss other solution concepts,
such as the Von Neumann and Morganstern solution, -stability, and the
Shapley value. In essence, each solution rests on a number of assumptions
or requirements that are set up to reduce the number of possible solutions
to cooperative games. We will then provide some intuitive interpretations of
these solutions, evaluate their assumptions, and compare and contrast them

using some simple examples.

5.1 Nash Bargaining Solution

5.1.1 Notation and Existence Theorem

Suppose in a two-person bargaining game, F' is the feasible set of points that
the solutions can be chosen from. It is reasonable to assume that F' should
be a compact set, since in most cases the feasible points for both players are
bounded and the extreme cases are always achievable. We also assume that F
is a convex subset of R2. The convexity can be explained by allowing players
to apply randomized strategies: for example, if two feasible payoffs for player
1 are x; and y;, then pzy + (1 — p)y; where 0 < p < 1 can be interpreted as

getting payoff x; with a probability of p, and y; with a probability of 1 — p,
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which is also feasible.

Let v = (v1,v2), where v; and vy are current payoffs to player 1 and player 2,
respectively. Thus, if no bargaining takes place or no other agreement reached,

v € R? is called the status quo point.

We assume

FO{(z,z2)|zr > v and 2 > va} # &

thus there is room for bargaining that can be beneficial to both players.

Definition A bargaining problem is an essential bargaining problem if there

exists y = (y1,y2) € F such that

y1 >wv;  and  ys > vs.

Otherwise, the problem is called inessential.

In other words, there exists an allocation in the feasible set that is strictly
better than the status quo point for both players. If no such allocation y
exists, then at least one player’s payoff is already maximized, so there is no

need for bargaining.

The feasible set F' and the status quo point v can determine a bargaining game,
which we denote by (F, v). We denote the solution function by ®(F,v) =
(p1(F,v),p2(F,v)), where ¢;(F,v) is the payoff to player ¢ (i = 1,2). If
O1(F,v) > ¢\ (F,v) and ¢o(F,v) > ¢4(F,v), we say ®(F,v) > O'(F,v).

Nash proposed five axioms that a reasonable bargaining solution must satisfy:



5.1 Nash Bargaining Solution 39

1. Pareto efficiency:
If x = (z1,29) € F and x > ®(F,v), then x = ®(F,v).
This axiom requires that there is no allocation that would give both

players strictly better payoffs than the bargaining solution.

2. Individual rationality:
®(F,v) > v. We assume each player wants to maximize his payoff: no
player will bargain to get a payoff less than what he gets from his status

quo point.

3. Scale covariance:
Assume ®(F,v) is the solution to a bargaining problem with status quo
point v = (vy,v2). Choose A1, A2, 71,72 € R, with A;, Ag > 0. Let
G = {(\1r1 + 71, Aaz2 +72) | (w1, 22) € F}
W = (Av1 + 71, A2v2 + 72).
Then, the solution to the bargaining game (G, w) is
(G, w) = (M1 (F,v) + 71, A2 (F, V) +72)

Thus the solution function preserves an affine transformation.

4. Independence of irrelevant alternatives:
If G CF,and ®(F,v) € G, then ®(G,v) = ®(F,v).
This axiom is intuitively reasonable: taking out some feasible points that

are not in the solution set will not affect the bargaining solution.

5. Symmetry:
If v1 = vy and {(z2,21) | (21,22) € F} =F
then d)l(Fa V) = ¢2(Fa V)

Thus the labeling of the players doesn’t make any concrete difference.
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We can see that each of the above axioms is by itself a reasonable requirement
for an ideal solution function. Surprisingly, Nash [22] proved that there exists

a unique function that satisfies all the five axioms taken together.

Theorem 5.1.1 There ezists a unique function ® : (F,v) — (x1,22) € F
that satisfies the five axioms above. For every two-person bargaining problem

(F,v), the solution function is defined as

@(F, V) = (1'1,1’2),

where f(x1,22) = (x1 —v1)(xe —v2) is maximized, for x > v,x € F.

Such a @ is also called a Nash bargaining solution.

5.1.2 Proof of the Uniqueness of Nash Bargaining So-

lution

We first provide our proof of the uniqueness of a maximum for f(z1,zs) in
an essential game, based on which we then illustrate Myerson’s (see [19, page

379]) elegant proof of the uniqueness of the Nash Bargaining solution.

Lemma 5.1.1 In an essential game (F,v), there exists a unique vector x =
(x1,22) where x € F and x > v, such that f(z1,22) = (21 — v1)(x2 — v2) is

mazximaized.

Proof We prove by contradiction.
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Suppose we have X = (z1, 22) and x' = (2, x}), where x # x" and f(z1,z5) =
f(@y.25) > f(y1,y2) for ally = (y1,52) € F and y > v.

! !
Consider the midpoint z = (5, “212) between x and x'. Since F is a

convex set, we know that z € F. From x > v and x’ > v, it follows that
z > v. Therefore,

/ !/
T1+ ] T2+ Ty

SR ) (5.1)

f(.]?l,l'g) = f(x,hx,2> > f(

Since we have

1 — V1)L — V2 = Ty — U1 )(Tyg — V2
( )( ) = (&) —on)(7h —vy)
r; > wv; fori=1,2

x, > v fori=1,2

and we know x # x’, by symmetry, we can assume x; > z} without loss of

generality. So there are two cases:

o If o > ), then f(zq,x9) > f(z),2)), which contradicts our assumption.

o If zy < i, then

(1 —x)) (22 — 5) <0 (5.2)
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We know from equation (5.1) that

!/ /
T1+ Xy T2+ Ty

2f( 9 ) 9 ) < f($1,x2) + f(‘rllaxé)
AP (PR ) < (- )@ — ) + (0 — )@ — )
(z1 +27) (22 +25) < 2(2122 + 277))

/ ! !
1Ty + 2722 < 11X + 11Xy

0

v

(21 — ) (w2 — 25)

which is contrary to equation (5.2). Thus, we proved by contradiction that
there there is a unique vector x € F,x > v such that f(x,z;) is maximized.

]
Now we can prove the uniqueness of the Nash bargaining solution.

Proof We first examine the case in which (F,v) is an essential bargaining

problem. Let x be the unique point in F' such that f(xy,z3) is maximized.

Let \; = 1/(x; —v;) > 0 and ; = —v;/(x; —v;), for i = 1,2. Define a function
L : R? — R? such that

L(y) = (My1 + 71, Aay2 + 72).

Let G = {L(y) | y € F}. Therefore, G is an affine transformation of F, so it

is also a convex set. Let z = L(y), then we find for any y € F,
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2122 = (Myr + 1) (Aay2 +72)
= Moy —v1)(y2 — v2)

= /\1/\2f(y1,y2)

Since x maximizes f(z1,x2), SO 2122 is maximized when z = L(x). By some
simple algebra, we know that L(x) = (1,1). Now the hyperbola z;2 = 1 has
a slope of —1 at the point (1,1). Therefore, we can find the equation of the
tangent line to 2120 = 1 at (1,1): 23 + 29 = 2. Since G is convex, and (1,1) is
the unique point in GG that intersects z129 = 1, it follows that G is on one side
of z1 + 2o = 2. Since 229 is maximized at (1,1), so G has to be a subset of

E={(z1,22) | 21 + 22 < 2}.

By axiom 1 and 5, we have ®(F£, (0,0)) = (1,1).

By axiom 4, we have ®(G, (0,0)) = (1,1).

By axiom 3, we know, for ¢; = ¢;(F, V)

3G, 0,0)= (-2 M P gy

1 — U $1—U1’$2—U2 To — V2

Thus we have ¢; = x; and ¢ = x5, which means that ®(F,v) = (z1,z2)
(so axiom 2 is automatically satisfied). Therefore, we proved that the only
function @ that satisfies the five axioms selects the allocation x that maximizes
f(x1,25). By the uniqueness of x, ® is a unique solution to the essential

bargaining problem.

For the inessential case, the argument is fairly straight forward. First, we

show that if (F,v) is inessential, then either 1y —v; = 0 or 3 — v9 = 0 has
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to be true for all x > v. Because otherwise, if we have y; > vy, 29 > vy, and
y > v,z > v, then (1/2)y + (1/2)z > v, which contradicts that (F,v) is

inessential.

Without loss of generality, let us suppose z; = v; for all x > v. By assump-

tion that F' is compact, we simply choose

x = (vy,22), wherezy = max{zs: (v, 22) € F}.
Thus, this x is the only point that satisfies axioms 1 and 2. So ® is uniquely

determined in the inessential bargaining case as well. In this case, f(x1,22) =0

for all the individually rational allocations in the game. [

The existence theorem is rather easy to prove. We simply verify that ®(F,v)
as defined in Nash bargaining solution satisfies the five axioms. It is straight

forward, so we will not include it.

In assessment of the Nash bargaining solution, axiom 4, the independence
of irrelevant alternatives, has been much criticized. Suppose, for example,
the Nash bargaining solution is (z,z5) for a game (F,v). If we truncate
all the feasible sets H = {y € F' | y1 > z1}, according to the axiom, the
solution doesn’t change. However, we observe that in the revised game (H,v),
player 1 is getting his highest payoff possible even though all his better options
have been eliminated. This surely appears very “unreasonable” to player 2.
Luce and Raiffa (see [11, page 133]) gave a very neat argument with graphic

interpretation.
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5.1.3 Interpersonal Utility Comparison and Transfer-
able Utility

In Chapter 2, we mentioned that the comparison of interpersonal utility raises
the question of which utility scale for the players should be employed. In the
case of the Nash bargaining solution, two principles we consider here are “eq-
uity” and “efficiency.” The following theorem shows that the Nash bargaining

solution turns out to be a nice synthesis of the two.

Theorem 5.1.2 Let (F,v) be an essential two-person bargaining problem, and
let x be an allocation vector such that x € F and x > v. Then x is the Nash
bargaining solution to the game (F,v), if and only if there exist positive num-

bers A\ and X\, such that

AMT1 — MU = AaZg — AaUs

AMzr + Aoze = max(Myr + Aays)
yEF

A detailed proof can be found in Myerson (see [19, page 383]). Intuitively, we
can see that A\; and A\ are introduced in the utility scale for the interpersonal
comparison between player 1 and player 2. The first equation means that the
A-weighted benefit that player 1 obtains by moving from the status quo point
to the bargaining solution is the same as the benefit to player 2 from such

a move (the equity principle). The second equation is a very nice property



5.1 Nash Bargaining Solution 46

of the bargaining solution: the A-weighted sum of the payoff to the players
is maximized, so it is efficient (the efficiency principle). We call A\; and )\,

natural scale factors for the game (F,v).

The theorem states that the Nash bargaining solution is both “fair” and “ef-
ficient,” which are two of the most important notions in many social and
economic context — a very appealing property of the Nash bargaining solu-
tion. Notice that the efficiency condition here indicates that the solution is
socially efficient, which is not the same as the Pareto efficiency requirement
in axiom 1 — the former stresses on maximizing the collective payoff to both
players, whereas the latter is about individual payoffs. This property of Nash
bargaining solution strikes us with its resemblance to the “invisible hand” ar-
gument of Adam Smith, the founding concept of neoclassical economics, i.e.

what is the best for each individual will collectively be the best for the society.

Now let’s assume that the players can not only represent their utility in a
common unit, say in monetary terms, so that interpersonal comparison is
possible (A-weighted), they can also give any amount of money to any other

player. Thus, we say that (F,v) is a game with transferable utility.

Let F be the feasible set in a game with transferable utility, and let vy5 rep-
resent the maximum transferable wealth that the players can jointly achieve.

Let S; be the set of strategies available to player i (i = 1,2). Thus,

F = {yeR*|y +y2 <wvip}, where

vip = max(zi(p) + za2(p))

HES;
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In games with transferable utility, ome unit of transferred utility weights the
same for both players, therefore A\; = A\y. We can simplify the condition for

¢(F,v) from Theorem 5.1.2:

(bl(F’V) —u = ¢2(F>V) — V2

G1(F,v) 4+ ¢2(F,v) = v

which gives us the formula for the Nash bargaining solution for a 2-person

game with transferable utility:

¢1(F,v) = (vig+ v —v2)/2 (5.3)

P2(F,v) = (vig +v2 —v1)/2 (5.4)

5.1.4 Determination of the Status Quo Point

Up to this point, we have assumed the status quo point v = (v, vy) is given a
priori. In real-world games, however, we know that before two or more players
sit down at the negotiation table, there is often no such “status quo point”
that will be accepted by all parties in case the bargaining fails. Also, as we can
see in the preceding formula for a 2-person game with transferable utility, the
final Nash bargaining payoff to player 1 not only depends on his own initial
status quo point vy, it also depends on the status quo point of his opponent v,.
Therefore, it is in the interest of the players to secure a better status quo point
before the real bargaining takes place. In these circumstances, there are three
possible choices of a status quo point, which we illustrate with the following

example of a game with transferable utility.



5.1 Nash Bargaining Solution 48

Consider the following 2-person game:

a9 bg
ai (5, 3) (—1 2)
2D 4

(1). Minimax value

Each player assumes that the other player(s) are playing purely competitively,
as they would in a zero-sum game. Therefore, the players play most offensively
to drive down the payoff to their opponent as much as possible, so as to

guarantee a maximized security level.

In the above example, the game that player 1 will be playing essentially,

assuming offensive strategy of his opponent, is the following zero-sum game:

ar

(5, =5) )
bi | (2,—2) | (1,-1)

There is a pure strategy equilibrium (b, bs). Thus, the minimax value for

player 1 is 1.

Similarly, player 2 is essentially playing the following zero-sum game:

a; | (—3,3) | (—
by | (1,-1)

This game doesn’t have a pure strategy equilibrium, instead, the solution is
a mixed strategy for both players: (6/7ay + 1/7by,3/7as + 4/7by). Thus, the

minimax value for player 2 is 17/7.
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Therefore, the status quo point will be v; = (1,17/7). The maximum to-
tal payoff available to the players is 8 in this game. We calculate the Nash
bargaining solution and get ®(F,vq) = (23/7,33/7).

(2). Defensive equilibrium
Each player assumes that the other player(s) are playing purely cooperatively.
In other words, each player is only interested in his own individual payoff, and

chooses his strategy accordingly.

With the above example, we know that both (5,3) and (1,5) are Nash equi-
libria. There is also a mixed strategy equilibrium for the non-zero-sum game:
(6/Ta; + 1/7by,2/5a2 + 3/5b2). If we use the mixed defensive equilibrium, the
status quo point will be vo = (7/5,17/7), and the Nash bargaining solution is
B(F,vs) = (122/35,158/35).

(3). Threat game solution

We have made the argument that the determination of the status quo point
does have an impact on the final solution. Here we formalize this incentive
for players to act competitively to get a more favorable status quo point by

introducing a rational threat game.

In a threat game, each player can leverage his ability to drive down the pay-
off of the opponent by making threats in order to reach an advantageous
pre-bargaining position. Let S; be the set of strategies available to player ¢
(1 = 1,2). Suppose that before the negotiation begins, each player i chooses
a threat strategy 7, € S;. We assume that if the players fail to reach an

agreement during the bargaining, they are committed to carry out their re-
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spective threat. Therefore, the status quo point v is a function of the threats:
v = (v1(71, 72),v2(71, T2)). Denote by w;(71, 72) the payoff that player i gets in

the Nash bargaining solution with status quo point v, thus

wi(11, 72) = Qi F, (vi(71,72), v2(T1, T2)) |-

The ultimate purpose of making a rational threat is to maximize the payoff
in the Nash bargaining solution, rather than actually carrying out the threat.

Therefore, we define a rational threat as follows:

Definition Suppose S; is the set of strategies available to player i. The pair

(11, T2) is a rational threat if and only if

v

w1 (71, T2) wi (o1, 12), Vo € S,

wa(11,T2) > wa(m,09), Vou € Ss.

Notice the similarities of the above definition to the existence of a Nash Equi-
librium in the non-cooperative case. Thus the existence of a rational threat

can also be proved by using the fixed-point theorem.

Myerson [19, Chapter 8] showed that for a game with transferable utility,
the payoffs in the threat game are given by equations (5.3) and (5.4) in the

preceding section:

V12 + v1(T1, T2) — V2(T1, T2)
2

V12 + va(T1, T2) — v1(T1, T2)
2

w1(71,72) =

w2(71,72) =
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Thus, we transform the original game in this example into its rational threat

game:

a9 b2
a1 | (5,3) | (25,55)
b | (5.5,25) | (2,6)

This is a zero-sum game, and the unique equilibrium is (2.5,5.5). Thus the
equilibrium of the threat game is (ag,bs), so the status quo point is v =

(—1,2), and the Nash bargaining solution with rational threats is ®(F,vs) =
(2.5,5.5).

In essence, the minimax value and the defensive equilibrium theory of the
status quo point differ on their assumption of opponent behavior. While the
minimax value assumes that the opponent is antagonistic and aligns his interest
in direct opposite direction of yours, defensive equilibrium presumes that the

opponent is generous, and only cares about his own individual payoff.

The third method, the threat game solution, synthesizes the defensive and
offensive behavior into one zero-sum-game — for player 1, instead of trying to
maximize v; (as in the case of defensive equilibrium) or to minimizes vy (as
in the case of minimax value), he aims at maximizing (v;s + v; — v9) instead.
This gives the player a chance to commit to a strategy which he agrees to
carry out in the event of disagreement, and thereby increase his bargaining
power. In the meantime, the fact that threats are not actually intended to be
carried out keeps the strategies from being purely offensive. Notice that the
Nash bargaining solution with rational threats depends entirely on the relative

size of the payoffs (v; — vs) between the players, rather than each individual’s
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absolute payoff.

5.2 Bargaining Set, Kernel, Core and Nucle-

olus

The 2-person Nash bargaining solution can be easily generalized into n-person
games. However, it is not widely used for the analysis of cooperative games
when n is greater than 2, since the Nash bargaining solution doesn’t incor-
porate the possibility of coalition making among subsets of the players. An-
other set of solution concepts for cooperative games, which includes coalitional
analysis that we will present in detail, is the bargaining set, kernel, core and
nucleolus, initially proposed and studied by Aumann, Davis, Maschler and
Peleg. We will first introduce the notation involved, and then examine some
existence theorems, mainly for two solution concepts that we are particularly
interested in, the bargaining set (two types) and the nucleolus. We will also

provide some simple examples to further illustrate these solutions.

5.2.1 Notation

In an n-person game, a coalition S is a subset of the set of players N =
{1,2,--- ,n}, who have decided to act in the game as a group. For now, we
assume that any subset of N can form a coalition; later, other requirements of
a permissible coalition will be applied. The aim of coalition S is to maximize

the group payoff (the sum of the payoffs to the individual members in the
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group).

The characteristic function, v, is a mapping from the set of coalitions to the
real numbers: v : S — R. The amount v(S) is the maximum payoff that S
can guarantee itself, regardless of the strategies of the other players, and v(S)

is called the value of coalition S.

The characteristic function v is not without restrictions. For cooperative

games, it must satisfy:
e v(0)=0
The value of an empty set is equal to zero.

e If R and S are two disjoint subsets of players,
v(RUS) > v(R) +v(S)

This requirement simply means if the union of disjoint sets R and S
achieves less than the sum of what R and S can get respectively playing

by themselves, then such a coalition (R U .S) cannot be formed.

Consider an n-person cooperative game with a characteristic function v. For
simplicity, let us assume that the games are 0-normalized, i.e. for each coalition

S, v(S) > 0; and for each individual player i, v(i) = 0.

A coalition structure B = By, B, --- , B,, is a partition of the players N =

{1,2,--- ,n} into m non-empty coalitions.

Definition A payoff configuration (p.c.) is defined as
(Xa B) = (xla Loy T, Bla BQa T 7Bm)
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where, for : = 1,2,--- ,n, x; represents the payoff to each individual.
If z; > 0 and ZieB]_ z; =v(By) for j =1,2,--- ,m, then we call it an individ-
ually rational payoff configuration (i.r.p.c.).

If we make a stronger assumption about the permissible coalitions such that:

Z x; > v(B)

i€B
for each B C Bj, 5 = 1,2,--- ,m, then we call the outcome a coalitionally

rational payoff configuration (c.r.p.c.).

The rationale behind an i.r.p.c. is that the payoff to any individual in a
coalition has to be greater than or equal to what he can obtain by playing
on his own, (in this case, earning a payoff of 0), otherwise he won’t join the
coalition. A c.r.p.c. recognizes that if some members in a coalition B; can

obtain more by forming a permissible coalition among themselves, B; cannot

be formed in the first place.

The notion of “fairness” has always been an important concept in social psy-
chology. Many experiments have shown that when all things are equal, people
tend to think an equal payoff amongst all members is a most reasonable out-
come. In games where the players are not “equal,” however, it is accepted
that the stronger player should get more. For a player, one way to convince
his partners of his strength is by showing that he can have other better alter-
natives. His partners, in the meantime, can disregard such threat, by pointing
their counter alternatives that would keep their original payoff without his
help. Thus, these “threats” and “counter threats” are bases for bargaining in

a game, from which “objections” and “counter objections” are defined.
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Definition Let (x;B) be an i.r.p.c. in a game, and r and s be two distinct
players in a coalition B; C B. An objection of r against s is a vector §° whose
coordinates are {y; | £ € C}, and for which

reC and s¢C),

Yr > Ty,

yr > xp for all k € C.

Verbally, in his objection, player r claims that without the help of s, he can
get more by forming a coalition C' with some other players, whose payoffs will

be no less than what they can obtain in the original coalition structure.

Definition Let (x;B) be an i.r.p.c. in a game, and let §° be an objection of
r against s, where r, s € B;. A counter objection of s against r is a vector 2D
whose coordinates are {z; | k € D}, and for which

se€Dandr¢&D,

zi > wy, for all k € D,

2k > yp, forall k € C N D.

Verbally, in his counter objection, player s claims to form a coalition D ex-
cluding r, in which all players get at least as much as they get in the original
coalition structure; for those in coalition C' in r’s objection, s can guarantee

them a payoff no less than what they get from partnering with r.

We can extend similar definitions for a c.r.p.c. First we define the concept of

a partner of a set of players:
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For K C N and K # ¢, a player i is called a partner of K in a p.c. (x;B), if
he is a member of a coalition in B that intersects K. The set of all partners

of K in (x;B) is

PIK; (x;B)| = {i | i € B, B, K # ¢}.

Definition Let (x;8) be a c.r.p.c. in a game, and K and L be two disjoint
subsets of a coalition B; C B. An objection of K against L is a c.r.p.c.

(¥;C) = (Y1,92, 1 Yn; C1, Coy -+, ()

for which

y; > x;, for all 1 € K,

y; > z; for all i € P[K; (y;C)],

P[K; (y;C)|NL = ¢.

Definition Let (x;B) be a c.r.p.c. in a game, and (y;C) an objection of K
against L, where K, L C B;. A counter objection of L. against K is a c.r.p.c.
(z;D) = (21,29, , 2n; D1, Do, -+, Dy)

for which

z; > x;, for all i € P[L;(z; D)],

% > i, for all i € P[L; (z:D)] 1 PIK; (y;C)],

P[L;(z;D)] 2 K.

Notice that in the individual rational case, objections and counter objections
are defined as payoff vectors, whereas in the coalitional rational case, they are

defined as payoff configurations in order to capture the formation of coalitions.

An objection in an i.r.p.c. is justified if it cannot be countered. In (x;B), if

player i has a justified objection against player j, we denote this by ¢ > j. If
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1 has mo justified objection against 7, we denote it by 7 ¢ 7. If i« < j, j < k,
and k < 1, then we say that “ < ” is cyclic in this case; otherwise, it is called

acyclic.

Definition Ani.r.p.c. (x;B) is called i-stable if each objection of any member
v against another member u can be met by a counter objection of u against

v. The set of all stable i.r.p.c.’s is called the bargaining set M; of the game.

Similarly, replacing the individual rationality with coalitional rationality, we

have:

Definition A c.r.p.c. (x;B) is called c-stable if each objection of a subset K
against a disjoint subset L in (x;B) can be met by a counter objection of L

against K. The bargaining set M, of the game is the set of all stable c.r.p.c.’s.

We make the assumption that the players can bargain with perfect informa-
tion. The logic behind an objection strategy is not that some member in a
coalition would necessarily implement it; rather, because of the existence of
a counter objection as a credible counter threat, the objections never get im-
plemented. Thus, the stable p.c.’s form a set in which all players have some
potential bargaining power to form coalitions to their benefit. The actual out-
come would depend on the comparative bargaining skills and power positions

of the players.

Now we move from the coalition payoffs to individual payoffs, which is char-

acterized by the notion of an imputation:
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Definition Suppose N is the set of all n players, and v is the characteristic
function of the game. Let x = (x1, 29, -+ ,2,) be an n-tuple of real numbers,
where x; denotes the final payment to player 2. Then x is called an imputation

of the game, if it satisfies the following:

1. v(i) <z, for every ¢ in N.

2. Z z; = v(N).
iEN
Condition 1 stipulates individual rationality, and condition 2 requires group
rationality, i.e. the sum of the payoffs to all players should be equal to the the
most that the players can get by forming a grand coalition N. If, in addition,
we also apply the group rationality to all subsets of N, we obtain the core of

the game:

Definition An imputation x is in the core, Co, of a game if and only if

Z:L'i =ou(N) and o(9) < le (VS CN).

1EN 1€S
While the core is an appealing solution concept, it can be empty in many
games. Moreover, in some large games, the core may be very instable (i.e.
change dramatically due to a small perturbation in the payoff structure). Thus

we define e-core to mitigate the instability of a core:

Definition For any positive number &, an imputation x is in the e-core of a

game with characteristic function v, if and only if
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Y zi=v(N) and v(S)—¢lS| <) ; (VSCN).
iEN €S

Verbally, if x is in the e-core, then no coalition S can guarantee each of its

members a payoff more than € above what they get from x.

Next, we define the excess of a coalition, a notion that compares the coalition

payoff with payoffs for players in that coalition.

Definition The excess of a coalition S with respect to an imputation x is
e(S) =v(S) — x(S) where z(S) = >,

Thus the excess captures the attitude of coalition S towards the payoff vector
x: the bigger the excess, the more deviation the current payoff scheme is to its

optimized level, which means the stronger objection there is to the imputation
X.

Definition Suppose k and | are two players in the same coalition. The

surplus of k against | at imputation X is

Sri(z) = phax e(S).

So Sy, represents the biggest gain that £ can possibly get from departing x
and form a new coalition without [, given that all other members in that new

coalition are satisfied with their payments in x. If Sy;(x) > S x(z), we say

that k outweighs .



5.2 Bargaining Set, Kernel, Core and Nucleolus 60

Now we finally get to the definition of a kernel, first introduced by Maschler
and Peleg [15]:

Definition In a game with coalition structure B = By, B, - - B, let X (B)
be the set of permissible imputations. The kernel of the game is the set of

vectors such that for any pair of players (i, 7), i does not outweigh j:
K(B) = {X € X(B) : Sk’l(X) = Sl,k(x) l, ke B7 € B}

Finally, we introduce the nucleolus of a game (Schmeidler [28]), which neatly

ties together the above concepts.

In an n-person game, we know that there are 2" possible coalitions, thus 2"
excesses of coalitions with respect to x. We arrange them in descending order,

and let 0(x) be a vector in R?" such that

0(x) = (e(S1),e(S2), - ,e(Sen)) and
e(S1) > e(S2) > -+ > e(San)

Let 0;(x) denote the ith component of #(x). We say that 6(x) is lexicograph-
ically smaller than 6(y), denoted by 0(x) < 6(y), if there exists a positive

integer ¢, such that
0i(x) = 0i(y) if 1<q
0,(x) < Oq(y)
Keep in mind that a smaller excess is more “desirable,” thus the decision rule

between two outcomes is determined as x is more acceptable to y, if and only

if f(x) < 0(y), and A(x) <= 0(y) means that x is at least as acceptable as y.
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Definition Let X be the set of all imputations in the game with characteristic

function v. The nucleolus N (X), is

NX)={xe X :0(x) <=0(y), forally € X}

Now that we have introduced the notation, we go on to examine some impor-
tant existence theorems, as well as the inter-relationship among these solution

concepts.

5.2.2 Existence Theorem for the Bargaining Set M

The notion of M; is a very important one. It is a bargaining set under the
condition that a payoff configuration is individually rational, which as we will
see, is a lot weaker than being coalitionally rational. Individual rationality
is in line with the assumption of a “rational” person, a basis of the profit-

maximization mechanisms of capitalism in classical economics theory.

The Existence Theorem that we will prove in this section is a much stronger
statement than merely saying that M; is non-empty. We will show that for
any individually rational coalition structure, there always exists a payoff con-

figuration in the bargaining set M;.

The existence theorem is ingeniously proved by Peleg [24], who based his
proof on a number of lemmas and some results from Davis and Maschler
[7]. Some of his arguments are rather brief, so we first fill in the gaps and

prove lemmas 5.2.1, 5.2.3 and 5.2.4. For the arguments which Peleg gave a
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clear explanation, we simply quote his results. The existence theorem will be

formally stated at the end of the section.

Lemma 5.2.1 If in (x;B), player r has a justified objection § against player
s, then each coalition D, for which s € D and e(D) > e(C'), must also contain

player r.

Proof We prove the claim by contradiction. Assume in (x; B), player r has
an objection §¢ against player s. Suppose there exists a coalition D with

s€D,r ¢ D and e(D) > e(C), then we want to show that § is not justified.

First, we construct a payoff vector 2 as follows:

m=vD) = Y yi— Y,
ieCnD i€D—C—{s}

By the setup above, we know that Zzi = v(D). Thus, 27 is feasible. Now
i€D
define d, as follows:

S =v(D)—v(C)— 3 m+ > w

i€eD—-C i€eC—D

With some algebra, we can show that
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Now, we rewrite e(D) — e(C') as

e(D) —e(C)
= (v(D)— Z x;) — (v(C) — Z x;) (by definition of excess)
ieD ieC
= Z(zi —Z) — Z(Z/i — ;)
ieD ieC
= Y -zt Y. (m—w) () =Y (i — )
ieCnD ieD—C—{s} ieC
= Z (yi — i) + Z (zi — @) + Z (Z/i—xi)+53—2(yi—rz‘)
ieCnD ieD—C—{s} ieC—D ieC
— 5,

By assumption e(D) > e(C), we have §, > 0. Also, since §¢ is an objection

of r against s, we know y; > x; (for i € C). Thus, we have

We thus showed that 27 is a counter objection of s against r’s objection §¢.
Therefore, ¢ is not justified, which contradicts the original assumption. So

the claim is proved. [

Lemma 5.2.2 Let (x;B) be an i.r.p.c., then the relationship “~" as defined

in the previous section, is acyclic.

Proof We prove by contradiction. Suppose “>" is cyclic, then we have for
some t players, 1 > 2,2 > 3,--- ;t —1>t,t>1(1,2,---,t € B; € B). Then

by definition, we know that there exists a justified objection §°* of player k
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against player k+1 (mod t), for all k = 1,2,--- ,t. Since the set of excesses of
coalition in (x; B) is finite, we let C}, be the maximum excess among all the
Cy’s. Now §%k-1 is a justified objection of ky — 1 against kq; by Lemma 5.2.1,
we know that Cj, must also contain ky — 1. By induction, we know that C},
must then contain all the players, 1,2, --- ,t. However, since §%*o is a justified
objection of kg against kg + 1, it cannot contain player kg + 1 (mod ¢). Thus

the contradiction, and we proved the original claim. [

Lemma 5.2.3 The piece-wise mazimum (minimum) of a finite number of
continuous real-valued functions with a common domain D C R™ s contin-

Uous.

Proof We will prove that the maximum of two continuous functions is also
continuous. The case with n functions can be easily justified by induction.

The minimum case also follows by exactly the same argument.

Suppose f(x) and g(z) are both continuous real functions, with a common
domain D.

Let h(z) = max(f(z), g(z)). We want to show that h(z) is also continuous.

Choose a € D and let z,, be a sequence whose limit is a: z,, — a. By sequen-
tial continuity theorem, we know that since both f(z) and g(x) are continuous,

given € > 0, there exists Ny > 0, Ny > 0, such that

if n> DNy, then |f(z,) — f(a)|<e¢

if n> N, then |g(z,)—g(a)|]<e.
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We know h(a) = max(f(a),g(a)). There are three cases we need to consider:

1. f(a) = g(a) = m, thus h(a) = m.
We know if n > max(Ny, Ny), then we have |f(z,) —m| < € and |g(z,) —
m| < e. Thus,
m—e < f(zn),9(z,) <m-+e
=m—e < max(f(z,),g9(x,)) <m+e

=m-—¢c < h(z,) <m-+e

Thus, |h(z,) — h(a)| < € for n > max(Ny, Na).

2. f(a) > g(a), thus h(a) = f(a).
Since f(z,) — f(a) and g(z,) — g(a), we know there exists N3 > 0
such that if n > Nj, then f(z,) > ¢g(z,), thus, h(z,) = f(z,). Let

n > max(Ny, N3), we know
() = ha)| = [f(zn) — fla)] <€

3. f(a) < g(a), thus h(a) = g(a)

Use the same argument as in the second case.

Hence, we know that for a given ¢, there exists N > 0 such that for n > N,
|h(z,,) —h(a)| < e. Thus, h(z) is continuous at a. Since a is chosen arbitrarily

in D, h(x) is a continuous function on D. Thus, the claim is proved. [

Lemma 5.2.4 Let B be a c.s. andi € B € B. Let X(B) be the set of

permissible imputations with c.s. B. Define E; as
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Ei={x|xe X(B), iAj, VjeB}
Then E; is compact and E; D {x | x € X(B),z; = 0}.

Proof We know that each individual payoff z; is bounded: v(i) < z; < v(N),
while the end points are attainable. Thus, X (B) is compact. Since E; is a
subset of X (B), it is also bounded. Instead of showing that E; is closed, we
will prove that its complement, X (B) — E;, is open, which we show by proving
that for any x € X (B) — E;, there exists £ > 0, such that if |x — z| < &, then

We fix i € B € Band let x € X(B)— E;. Choose j € B—{i}, j has a justified

objection §? against 7 in (x;B). Thus

{ykZﬂ%, ke
y]>$],

Let y; —x; = ¢, > 0.

Denote by D;; the set of all the coalitions that contain player 7 but not player
Jj:Diy={D|DC N,ie D, j¢&D}.

Define f(z) for all z € X (B) as

f(z) = z; + max (v(D) — Z Y — Z 21)

DeD;;
keDNQ keD-Q
Thus f(x) is the maximum that ¢ can get when he tries to counter ob-
ject g¥. Since j? is a justified objection, we know that f(x) < z;. Let

€y = I; —f(X) > 0.
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Since v(D) — g Yk — g xy is a linear function of x, it is continuous

keDNQ keD-Q
with respect to x. By Lemma 5.2.3, we know f(x) is continuous. Thus, let

€3 = 263 > 0, there exists e3 > § > 0, such that if z € X(B) and |z — x| < 4,

then |f(z) — f(x)| < e3.

We know that |z — x| < § implies |z; — x;| < . After some simple algebra,

we have

f(z)—z < f(x)—z;+d+e3
= —€+0+ €3

< —62+62/2+62/2:0
Now let € = min(ey, d), we know if z € X (B) and |z — x| < ¢, then
f(z) — 2z < 0and y; > z;.

Thus, §9 is a justified objection of j against i in (z;B). Therefore, z €
X (B) — E;, and we conclude that X (B) — E; is open. Thus, the first claim of

the proposition is proved.

The second claim of the proposition is fairly straightforward: any player ¢
whose final payoff is 0 always has a counter objection to any objection against
him, which he achieves by forming a single-person coalition. Therefore, FE;

always contains those whose payoff equals to zero. [

Using Lemma 5.2.2 and 5.2.4, the following can be easily shown:
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Lemma 5.2.5 For each x € X(B) and B € B, there exists i € B such that

XGE,j.

Based on the above two lemmas, Peleg constructed a set of ingenious functions
¢;(n) and used the Brouwer fixed-point theorem (Theorem 4.1.1) to prove the
following propositions. Since the proofs were thoroughly presented in [24], we

will merely state the results here.

Lemma 5.2.6 Let ¢1(x),---,c,(X) be n non-negative continuous real func-
tions defined on X (B). If for each x € X (B), there is ani € B € B, such that

¢i(x) > x;, then there is an x € X (B) such that c;(X) > Xx;, forj =1,2,--- ,n.

Lemma 5.2.7 Let Ay, As, - - A, be compact subsets of X(B). If A; D {x|x €
X(B),z; = 0,5 = 1,2,--- ,n}, and for each B € B,|J,c.5 Ai = X(B), then
ﬂieN Ai # ¢.

Finally, we state the existence theorem for a bargaining set M; in an n-person

game, the proof of which is based on the preceding lemmas.

Theorem 5.2.1 Existence Theorem for Bargaining Set M,
In an n-person game with characteristic function v, for each coalition structure

B, there exists an n-vector x € X (B), such that the i.r.p.c. (x;B) € M.

Proof As defined in Lemma 5.2.4, Ey, Fs,--- , E,, are compact subsets of
X (B). By Lemma 5.2.4 and 5.2.5, we know that Fi, Fs,--- | E,, satisfy the

conditions in Lemma 5.2.7. Hence, ﬂ E; # ¢. Let xq € ﬂ E;. Therefore,
ieN ieN
(x0; B) is a stable i.r.p.c. that belongs to M;. n
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5.2.3 Discussion of the Bargaining Set M,

The bargaining set M., in contrast to M;, is defined based on coalitional ratio-
nality, which is a stricter requirement than individual rationality. Therefore, it
naturally follows that M, C M;. It is also quite obvious that M, is non-empty,
since in an n-person game, the p.c. (0,0,---,0;1,2,---  n) always belongs to
M.,. Then it follows that M; is a non-empty set. Notice, again, Theorem 5.2.1
is a much stronger statement than the non-emptiness of M;: it states that M;

contains a stable p.c. for every individually rational coalition structure.

Aumann and Maschler [4] discussed the bargaining sets M, (which they call
M) for all 2- and 3- person games, as well as some cases in 4-person games.
Even in the case of 4-person games, without imposing any restrictions on coali-
tion formation, derivation of the solution in a general form can be very difficult.
Thus we will mainly focus on games where only 1-, 2-; and 3-person coalitions
are allowed. First, we extend the arguments in [4] and give a full proof of
Theorem 5.2.2. Then, we provide an alternative proof of Theorem 5.2.3, an
existence theorem of M, in a 4-person game with 1— and 2—person permissible

coalitions.

Lemma 5.2.8 Assume in an n-person game, {12} is a permissible coalition.
Let B=12,Bs, Bs,--- , B, be a fized partition of N.

Let (x;B) = (x1,x2, -+ ,x,; B) be a c.r.p.c., and let J be the set of all numbers
0,0 < o <v(12), such that player 1 has a justified objection against player 2

in (o,v(12) — 0,23, -+ ,x,;B). Then J is an open set relative to the closed
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interval' [0,v(12)].

Proof We know that (zy, 29, ,x,;12, By, Bs, -+, B,,) is a c.r.p.c. For any

¢ such that —zq <e <v(12) — x; = o, let

(XI;B) = ($11,IIT,2,CL‘3,--- 7$n;1zaBQaB37"' ’Bm)

= (1’1+57$2757$37'”axn;12aB27B3a"'aBm)a

Since 1 +¢ > 0 and 23 — ¢ > 0, we know (x; B) is also a c.r.p.c.

Suppose z; € J, and let § = v(12) — x1, then we know ¢ > 0 since otherwise,

player 2 can have a counter objection to any objection of 1 by playing alone.

Let (y;C) = (y1,92, - ,yn;C) be a justified objection of player 1 against
player 2. We know y; > z;. Let 2o be the maximum that player 2 may get
by forming a coalition without 1 in a way similar to a counter objection (c.f.
f(z) in the proof of Lemma 5.2.4). Since the game is finite, the number of
possible coalitions 2 might form is also finite. Thus such a maximum exists

and 2o < 5 (otherwise, player 2 has a counter objection).

Choose ¢ such that
—r1 <0<e<min(d,y — 1,22 — 29) <v(12) — x4

Thus, we have y; > z1 + ¢ = 2} and 29 < 23 — ¢ = 2}, then (y;C) is also a

justified objection of player 1 against player 2 in (x’; B). Therefore, z1+¢ € J.

'We say a set J is open relative to a closed interval [a,b], if given # € J, there exists

e > 0, such that if |y — 2| < € and y € [a,b], then y € J.
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Choose €, such that 0 < &’ < . Since 1 € J, we will show that if [p—x;| < &',

and p € [0,v(12)], then p € J.
We know
O<zi—e<mm—c <p<z+e <z +e<v(12)

thus,

Y1 > +e>p
2o <ITyg—e=v(12) —x1 —e <v(12) —p (since p <z +¢)

which means that p € J.

Thus we proved that J is an open set relative to [0,v(12)]. n

Theorem 5.2.2 In an n-person game, assume all permissible coalitions are
either 1-, 2- or 3-person coalitions, and {12} is permissible. Let B = 12, By, -+ , B,.

If (x;B) = (x1, 29, -+ ,x,; B) is a c.r.p.c., then there exists a c.r.p.c.
(X/; B) = (017 02,T3," ", Tn; 12, B2a e /Bm)
such that neither player 1 nor player 2 has any justified objection.

Proof By Lemma 5.2.8, the payoffs x; such that player 1 has a justified
objection against player 2 form an open set J; relative to [0,v(12)]. By sym-
metry, the payoffs x; such that player 2 has a justified objection against player
1 form an open set J, relative to [0,v(12)]. The claim above is equivalent to
saying that there exists a c.r.p.c. in which z; € [0,v(12)] falls outside both J;
and Js.

First, we prove that J; (| Jo = ¢ by contradiction. Suppose
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(XI;B) = (0'1,0'2,1'3,“‘ ,Tp; 12, Bo, - ;Bm) € JlﬂJg.

In other words, (x'; B) is a c.r.p.c. such that player 1 and 2 each has justified
objection against the other. Let C be the coalition that 1 forms in a justified
objection (y;C) against player 2, and let Dy be the coalition that 2 forms
in a justified objection (z;D) against player 1. Since only 1—, 2—, 3-person
coalitions are allowed, we know that C'; and D, each can contain at most
three players. Let C1[) Dy = E. We know E can contain 0, 1 or 2 players.

We examine each possibility:

1. E=¢
In this case, player 2’s objection (z; D) is a valid counter objection against

player 1’s objection (y;C). Thus, (y;C) is not justified.

2. E={i},ie{1,2,-- ,n}
Let v;(E) denotes the payoff to players in E in player i’s objection (i =
1,2). Without loss of generality, suppose that v;(E) < vg(E). In this
case, we have v;(i) < v9(i). Again, player 2’s objection (z; D) is a valid

counter objection. Thus, (y;C) is not justified.

3. E= {Za.]},zaj € {1a2a 7n}
Assume v1(E) < v9(FE), so we have v1(i) + v1(j) < va(i) + va(7). There

are two possibilities:

(a)
{ v1(2) < wa(i)

v1(J) < 2(j)

In this case, again (z; D) is a counter objection against (y;C).
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(b)
{ vy (i) > va(4)

v1(j) < v2(j)

or

v1(f) > v2(J)

By symmetry, we only need to deal with the first set of two inequalities.

{ v1(4) < va(4)

Let x5 denote the payoff to player 2 in (z; D). Now for Dy = {2,4,j},

v(Dy) = 3+ v9(i) +v2(j) ((2;D) is a cr.p.c.)
> a4 vi(i) +vi(j) (by assumption, vi(E) < va(E))
> o9+ (i) +v1(j) ((2;D) is an objection by player 2)
Let € = v(Dy) — v1(i) — v1(j) — o9 > 0. Construct a payoff vector for
players 2,4, j: (09,v1(i) + €/2,v1(j) + €/2). Thus, player 2 can modify
(z;D) to (z';D), by changing the payoffs to player 2,7,j in z, and it

follows that (z'; D) is a counter objection to (y;C).

We thus proved that in all three cases, (y;C) can be countered, which contra-

dicts the assumption that (y;C) is justified. Thus, J; () J2 = ¢.

Now since both J; and Jy are open sets relative to a closed interval [0, v(12)],
Ji1 is a union of intervals that are right open, while J; is a union of intervals

that are left open. Since v(12) ¢ J; and 0 & J,, there exists ¢t € (0,v(12)),

t ¢ J; and €; > 0, such that for 0 < € < €,
t’:t—GEJl.

We will show that ¢t € J;. Suppose t € Jo. Since Js is a union of left open

intervals, we know there exists €5 > 0, such that for 0 < € < €,
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tI:t—GEJQ.

Therefore, let €3 = min (e1,€). For 0 < € < €3, we have t' =t — e € J; and
t' =t — e € Jy, thus, contradicting J; (| J» = ¢ that we just proved. Hence,
we showed that ¢t € J; and t & Jy, so (t,v(12) —¢,--- ,2,;12, By, -+ , By,) is

the c.r.p.c. that we are looking for. Thereby, the original claim is proved. =

In their paper, Aumann and Maschler went on to give an existence proof in a
4-person game with only 1- or 2-person coalitions permissible, by elaborating
on a number of complicated cases. We noticed, however, that a rather short

argument based on Theorem 5.2.2 would indeed suffice.

Theorem 5.2.3 For a 4-person game, in which only 1- and 2-person coali-

tions are permissible,

4
4):f7 a7bﬂcﬂd’e7f20’

there always ezists a c.r.p.c. (x1,Ta, x3,74;12,34) € M,.

Proof For a p.c. (1,9, 3, 24;12,34), we first show that it is a c.r.p.c.

Let By = {12},By = {34}. There are only two nontrivial subsets of By,
B = {1} or B = {2}. Thus, by definition of c.r.p.c., if 21 > v(1) = 0, and z5 >
v(2) = 0, then B satisfies the coalitional rationality requirement. Similarly,
we know that B, is also coalitionally rational. Therefore, (z1, 22, 3, 24; 12, 34)

where x; > 0, is a c.r.p.c.

First we fix x3,24. By Theorem 5.2.2, we know that there exists a c.r.p.c.

(&1, &9, w3, 24512, By) such that By = {12} is stable.
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Now we fix &1, &, and apply Theorem 5.2.2 again to (&1, &, 23, x4; 12, 34). By

exactly the same argument, By = {34} is stable.
Therefore, there exists (&1, &2, &3,84;12,34) € M... n

In fact, we can generalize the above statement to n-person games partitioned

into couples. By induction, it is easy to show that there always exists an

imputation x such that (x;B) appear in M,.

There are some interesting similarities and differences between the bargaining
set M, and other solutions, such as w-stability and Von Neumann and Mor-
ganstern’s solution. We will discuss some of the inter-relationships in section

5.4.

5.2.4 Existence and Uniqueness of the Nucleolus

Maschler and Peleg [15] proved the existence of the kernel which is a subset
of the bargaining set M;. Schmeidler [28] showed that the nucleolus is in fact
the intersection of the kernel and the non-empty e-core of a game. Thus, the
nucleolus is the third stage in the development of the bargaining set theory
of Aumann and Maschler. We will prove the existence and uniqueness of the

nucleolus here.

Theorem 5.2.4 Existence Theorem of Nucleolus Every nonempty com-

pact subset of R™ has a nonempty nucleolus.



5.2 Bargaining Set, Kernel, Core and Nucleolus 76

Proof Recall that 6°(z) is the i-th largest excess of S with respect to impu-
tation x, where S is a subset of N. By definition, e(S) = v(S) — z(S). Since
v(S) is determined independent of x, and z(S) is a linear (thus continuous)
function of x, so e(S) is also a continuous function of x. By Lemma 5.2.3,

0%(x) is a continuous function of x, for i = 1,2,--- , 2",

Let Y be a nonempty compact subset of R”. We define

Vi = {xeV|[0'(x)<0'(y), VyeY}

Y, = {x€eY, | Qi(x) < Qi(y), VyeY, 1} i=23,---,2"
Since Y is a nonempty compact set, it follows from the Sequential compactness
theorem? that Y is also sequentially compact. Thus every sequence in Y has a

subsequence converging to a point in Y. We first show that Y] is also nonempty

and compact.

Since #' : Y — R is a continuous function, Y; is nonempty, because a contin-

uous function on a nonempty compact set has a minimum.

To show Y] is compact, let {x,} be a sequence in Yj. Since {x,} CY; C Y,
there exists a subsequence {xy, } that converges to yo € Y. We want to show

Yo € 1.

We know 6! is a continuous function and {x,,} — yo, thus

{0"(x0)} — 0" (y0)

Choose y C Y. Since {x,} € Y7, 6'(x,) < 6'(y) for all n. Because {xy, } is a

subsequence of {x,}, we know 0'(x,, ) < '(y). By limit location theorem,

2Sequential compactness theorem states that a compact set is sequentially compact.



5.2 Bargaining Set, Kernel, Core and Nucleolus 7

0'(yo) < 60'(y)

Since y is an arbitrary vector in Y, we conclude yq € Y;. So Y] is a nonempty
and compact subset of Y. By induction, it is easy to show that Y; is also

nonempty and compact for i = 2,3,--- ,2".
It is obvious that Y5» = N(Y). Therefore, we proved that a nonempty compact

set has a nonempty nucleolus. [

Theorem 5.2.5 Uniqueness Theorem of Nucleolus The nucleolus of a

nonempty compact set contains a unique vector.

Lemma 5.2.9 Definen: R" — R" by n(z) = (n1(2z),1n2(2), -+ ) where

m(z) = max{z} =z,

m(z) = max{z |t# 1} =z,

ni-l—l(z) = max{zt | t %jlaj%' o a]z}

Then

nx+y) <= n(x) +n(y)

Proof By definition, 7 is a lexicographic order of the components of z. Let

ne(x) = iy, 0e(Y) = Yjo, m(X+y) = 2p, +yp, fort =1,2,--- 7.

Obviously, when ¢ = 1, then z;, < z;,, and yi, < y;,. Thus we have

Ty + Yk, < Ly + Y
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From the equation above, we have two cases:

1. if 2, +yr, < 24y +yj,, then by definition, we have n(x +y) < n(x)+n(y).

2. it xp, + Yy, = x;, + y;,, then we must have z;, = x;,, and y, = yj,.
We move on and look at the second component. Following the same

reasoning as in the first case, we know z, +yx, < x;, +y;,. By induction,

we know that if and only if

$it_l‘kt
Yie = Yk, t:1,2,“‘,’l“

we have
n(x+y) =n(x) +n(y). (5.5)
Otherwise, we always have
nx+y) <nx)+n(y).
Thus,

n(x+y) <= n(x)+n(y)

Based on Lemma 5.2.9, we prove the uniqueness theorem.

Proof We will use proof by contradiction, and show that if x,y € N(X), i.e.
0(x) = 0(y) and x # y, then

9<;x+w> < 6(x) or

e(;x+w) < 0(y)-
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Which contradicts that both x and y are in the nucleolus.

Let {v(S)—x(S)}scn be a vector, whose components are v(Sy)—z(S1),v(S2)—
x(Sz), -+ ,v(San)—x(San) where Sy, Sy, - -+, Son are all subsets of N. Similarly,
{v(S) —y(S)}scn, and {2v(S) — z(S) — y(S)}scn are also vectors in RZ". We

observe the following relationship between 6 and 7:

o) = n({u(S) — 2(S)}scw)
oY) = n({u(S) 1) bsen)
20 (30x+3)) = 00x+y) = n({20(5) = 2(5) ~ (S} scx)

Be Lemma 5.2.9, we know that

20 <%(x + y)) <= 0(x) +0(y)

Thus, either we have

2 @(x . y)) < 0(x) +0(y),

which directly leads to the claimed contradiction, or we have

20 <%(x + y)) — 0(x) + 0(y).

In the second case, for t =1,2,---2"

0 (3x+9)) = olS) —alSi) +u(S) -u(s) 69
— P+ 0(y) 5.7

= v(Si,) — =(5:,) + v(S;) — y(5;) (5.8)
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By equation (5.5), we know

{ v(Sy,) — x(Sk,) = v(S;,) — x
U(Skt) - y(Skt) = U(Sjt) - y(Sjt)

By assumption 0(x) = 6(y), we also have
v(Si,) — 2(Si,) = v(S;,) — y(S;,)
Thus, from equation (5.6) and (5.8),
v(Sk,) — x(Sk,) = v(Sk,) — y(Sk,) fort=1,2,...,2"

which means z(S) = y(S) for all S C N. Therefore, x = y which contradicts
our original assumption. Therefore, we proved by contradiction the uniqueness

of the nucleolus in a nonempty compact set. [

5.2.5 Examples

In this section, we give some examples to illustrate and review the various

solution concepts introduced so far.

Example 5.2.1 Assume a 3-person game with characteristic function v. The

payoff to all coalitions are as follows:

v(123) = v(12) =3
v(13) =v(23) =0
v(l)=v(2)=v(3)=0

In this game, the coalitional rationality doesn’t put any restrictions on the

p.c.’s, so M; = M, =

{(0,0,0;1,2,3), (a3 — a,0;12,3), (0,0,0;13,2), (0,0,0; 1,23), (a,3 — a, 0; 123)}
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where 0 < g < 3.
Co={(a,3—4a,0)} (0<a<3).

K(1,2,3) ={0,0,0} and K(12,3) = {3/2,3/2,0}. We can verify, for example,

the second element:

S12 =max(v(l) — z(1),v(13) — 2(13)) = max(—3/2,-3/2) = =3/2 = Sy ;.

Finally, N(X) = (3/2,3/2,0). The nucleolus is quite intuitive. From the
game setup, we can see that player 1 and 2 are symmetric, while player 3 has
no bargaining power. Thus, the solution reflects such power status, and also

conforms to the fairness principle.

Next, we give an example to demonstrate the difference between an individ-
ually rational bargaining set M;, and a coalitionally rational bargaining set

M..

Example 5.2.2 Suppose in a 4-person game with characteristic function v,

all non-trivial coalitions are as follows:

v(12) = 10,v(13) = 19, v(34) = 20, v(234) = 25

Show that (2,8,0,0;12,3,4) is a p.c. in M;, but not in M..

Proof We first show that (x;B) = (2,8,0,0;12,3,4) ¢ M,.. Consider an
objection by player 1 to player 2, (y;C) = (2.5,0,16.5,0;13,2,4). Suppose

player 2 wants to counter object to (y;C) by (z; D). We know by the definition
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of a counter objection, the following has to be true:

Z9 Z 8
24 Z 0
2o+ 23+ 24 = ’U(234) =25

Thus, we can see that max(z3+24) < 17. However, since {34} C {234}, by the
definition of c.r.p.c. we know v(34) < z3+2z4. Thus, we have 20 < 23424 < 17,

which is obviously erroneous. This means (y;C) is justified and we conclude

(x;B) & M..

From the preceding argument, we can see that the contradiction results from
the coalitional rational condition ) . ,x; > v(B), for all B C B; € B. Thus
if we remove that condition, it can be easily shown that (x;B) € M;. The

following is a brief explanation:

For every objection (y;C) that player 1 has against player 2, we know that
y1 > 2,800 < y3 < 17. Thus, player 2 always has a counter objection
(z;C) = (0,8,y3,17 — y3;1,234) against 1. It is easy to check that (z;C)
satisfies all the requirement for an i.r.p.c. A similar argument would apply to

any objections by player 2. Therefore, (x; B) € M;. n

An interesting 6-person game was studied by both Von Neumann and Mor-
genstern (see [36, page 464]) and Aumann and Maschler [4]. By a rather
lengthy and intricate argument, Von Neumann and Morgenstern showed that

this simple game only has a trivial solution in M.. The game setup is as
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follows:
((v(120) =1, b=3,4,5,6
v(lab) =1, a=3,4,b=5,6
] v2pg) =1, p=3,q=40r p=54=6
v(3456) = 1,
v(B) =1, B contains at least one of the above coalitions
[ v(B) =0, otherwise.

If we Ioosen the restrictions and consider M;, it can be shown that some other
p.c.’s, such as (1/3,1/3,1/3,0,0,0;123,4,5,6), will also become i-stable.

5.3 Other Solution Concepts

Apart from the cooperative solutions we have introduced in the preceding sec-
tion, there are some other important and useful concepts, namely, 1-stability,
the Von Neumann and Morgenstern solution and the Shapley value. We will

give a brief introduction to each of them in this section.

In the above discussion, we presume that a coalition is stable if no justified
changes can be proposed. We have not made any restrictions on what kind of
changes is possible. In the real world, there are often times many restraints
on the permissible changes in coalition structures. For example, lack of com-
munication between players, irrational behavior or psychological factors, can
all be potential reasons why certain changes in collaborative agreements could
not happen. The notion of “i-stability” (see [11, Chapter 10]), therefore, is

based on a rule ¢ that determines admissible coalition changes in a game.

Definition Assume a game with characteristic function v, an imputation x,

and a coalition structure B. The function v : B — B determines the possible
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changes of coalition structure. The p.c. (x;B) is ¢-stable if
(a). v(S) <Y icq i, for every coalition S in (B).
(b). If x; = v(i), then in the coalition structure B, player i is not in a coalition

with any other players, i.e. {i} € B.

In zero-sum games, a way to easily throw out unfeasible outcomes and shrink
the size of the game is by eliminating dominated strategies. Von Neumann
and Morgenstern (see [36, page 264]) argued that a stable solution set in
cooperative games should also have the property of not being “dominated,”

which they defined as follows:

Definition An imputation y = (y1,%2, - ,¥,) dominates an imputation
x = (1,9, -+ ,x,) with respect to a nonempty coalition S, if

(a). v(S) > Zies Yi
(b). y; > z; for any ¢ € S.

Thus, the first condition determines that y is a feasible condition, and the

second condition says that y is preferred to x by every player in coalition S.

Definition The Von Neumann and Morgenstern solution of a game is a set
A of imputations such that
(a). if x € A, y € A, then neither x nor y dominates the other.

(b). if z ¢ A, then there exists x € A, such that x dominates z.

It should be noticed that the definition of the solution does not preclude the
existence of an imputation outside A that dominates one or more imputations
in A. Rather, the focus is on the fact that every imputation outside the

solution is dominated by one in it. Thus the solution constructs a dynamic
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stability: any defector will be punished if he seeks a better individual payoff

by deviating away from the solution.

In non-cooperative games, we have seen that by applying the Minimax The-
orem, there always exists a unique valuation of the game for each player. If
we want to apply a similar idea to cooperative games, we may think of using
v(1) as a value for player i. However, as we have shown already, the purpose of
coalition making and bargaining is indeed to achieve a higher value than v(7)
(which, in most part of this paper, we have assigned to be 0). Thus we need
a different procedure to obtain a value for each player. Shapley [30] came up
with three reasonable requirements, and proved that if all three conditions are
met, there exists a unique evaluation function, which is now referred to as the

Shapley value of the game for a player.

Let ¢;(v) denote the value for player i in the game with characteristic function

v. Shapley’s conditions are

1. In an n-person game, let 7 : N — N, such that 7 is a one-on-one and

onto function, so 7v is a game permutated from v. Then we have

mo({m(i)|i € S}) =v(S) forall S C N,

that is, the ¢;(v) is independent of a permutation of the players.

2. The individual values of the game forms an additive partition of the

value of the grand coalition, i.e.

¢1(v) + @2(v) + -+ + ¢ (v) = v(N)
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3. For two different games with characteristic functions v and w, ¢ is a

linear function:
¢i(pv + (1 — p)w) = pds(v) + (1 — p)ps(w).

If all three conditions are met, then a unique function can be derived:

Definition The Shapley value of player 7 in a game v is:

swy= 3 BHINIZISIZ Il 5 (g — o(s)) (5.9)

. [N!
SCN—{i}

Despite the formidable appearance of the function, in essence, ¢;(v) is the
expected marginal contribution of player ¢ when he enters a coalition, which
makes intuitive sense — how much you get depends on how much you are able

to contribute.

5.4 Comparison and Evaluation of Different

Solutions

The reader may get somewhat confused at this point after being bombarded
with numerous notations for different solution concepts. However, it should
be noted that these solutions are interrelated in many ways, and it is rare
that the reader would find in the literature a paper written on one solution
concept without at least mentioning some others. Therefore, we think our

effort spent introducing and explaining all these solutions is worthwhile. Given
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the intricacy of these solutions, in this section, we will compare their rationale,

assumptions, and show their respective range of applicability.

We will take a look at the notion of ¥-stability first, as it is more of a normative
concept, due to its lack of a concrete functional form. We then proceed with
the evaluation in two groups, the bargaining set family (the bargaining set, the
kernel, the nucleolus) and the non-coalition-structure based notions (the core,
the Von Neumann and Morgenstern solution, the Shapley value). We end this

section by discussing results from some experiments and empirical studies.

5.4.1 On vy-stability

A close look at the definition of 1-stability reminds us of the core of a game.
Indeed, the core is a special (stronger) case of the 1-stability concept — the
core requires v(S) < > . g x; for every subset S of N, whereas a -stable
p.c. only requires S as a subset of the permissible changes of the coalition
structure. If x is in the core, then the p.c. (x;1,2,--- ,n) is ¢-stable for every
. Similar to the core, the coalitional bargaining set M, is also a special case
of the v-stability requirement, that is, when each coalition in ¢ (B) is a subset

of a coalition in B.

The problem with -stability lies in the vagueness of the function . In most
cases, it cannot take an explicit form. While it might be possible to quali-
tatively estimate some features of v, there is no guarantee that the players
may conform to the estimates. Luce and Raiffa [11, page 226] suggested re-

placing the rules of permissible changes by “probabilistic statements.” Facing
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the current cs. B, we can assign a certain probability to the likelihood of a
change to coalition S by some players, and such probability can incorporate
the restrictions on communication and negotiation skills of the players, which

the ¢ function was initially introduced to address.

5.4.2 On the Bargaining Set Family

The set of solutions, which we refer to as the “bargaining set family,” i.e.
the bargaining set, kernel and nucleolus, build upon one another nicely. In
contrast to the Nash bargaining solution, we do require transferably utility
for the bargaining set family, because these solutions are not covariant with

respect to utility transformations.

The theory of the bargaining set takes the formation of coalition structures as
a priort determined. It addresses the question of “how should players divide
their payoffs, given a coalition structure B is formed?” For example, the
bargaining set® M contains stable p.c.’s for each feasible coalitional structure.
As we have seen in Example 5.2.1, many can be trivial and quite unrealistic.
However, we are not arguing that one point in M is superior to another —
the motivation for defining a bargaining set is to exclude points outside M
because they are unstable. Thus, like the other solutions, the bargaining set
helps to narrow down the set of payoff configurations that we can accept as
solutions. The solution set is further narrowed down by a subset of M, the

kernel, which in turn was proved to contain a unique point, the nucleolus [28].

3In some part of this section where the difference between M; and M, doesn’t make any

material difference, we refer to both types of bargaining sets as M for notational convenience.
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As we have mentioned before, the purpose of having the objections and
counter-objections is not to actually carry them out. The bargaining crys-
talizes at a stage when people do actually want to stay in the coalition they
have formed, but want to negotiate their respective shares by leveraging the

possibility for them to potentially deviate from the current c.s.

Since the individually rational bargaining set M; always contains the core
(since there are no objections at the core imputations, let alone justified ob-
jections), which can be empty for many games, one advantage that M; has
over the core is its non-emptiness for any c.s., as proved in Theorem 5.2.1. On
the other hand, the definition of a bargaining set is not without its drawbacks.
For example, the definition of an i.r.p.c. (c.r.p.c.) stipulates that only players
within a coalition can make objections, which leaves the players who start
out alone in a passive position. This again goes back to the question of how
coalition structures are formed in the first place, which is not addressed by the
theory. We will come back to a brief discussion of this question a little later

in this section.

To find a bargaining set for any generic game requires an enormous amount
of computation. Maschler [12] has proved that “M; consists of a finite union
of compact convex polyhedra,” thus can be determined by solving a system
of linear inequalities involving “and” and “or.” The number of systems one
needs to examine, however, grows exponentially with N. To help solve the
computational difficulty of a bargaining set, the kernel was introduced, which
considerably reduces the number of inequalities needed. A subset of the bar-

gaining set, the kernel was proved to be an important solution concept on its
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own, with some desirable mathematical properties (Maschler and Peleg [15]).

Compared with the bargaining set and the kernel, the mathematical definition
of the nucleolus is quite complicated. Here we give an intuitive meaning of
the solution, borrowed from Maschler, Peleg and Shapley [17]. The excess of
a coalition e(.S) with respect to the imputation x is considered as a measure-
ment of dissatisfaction. Thus, locating the nucleolus is an attempt to reduce
the biggest dissatisfaction as much as possible (and in the case of a tie, pro-
ceed to minimize the second largest dissatisfaction, and so on). While the
motivation of this lexicographic order is subject to question (why should we
minimize the largest dissatisfaction, instead of, for example, minimizing the
average dissatisfaction for all coalitions), we find the nucleolus an appealing
concept with its mathematical rigor, its interrelationship with the other con-
cepts (intersection of the kernel and the e-core when e-core is not empty), and

more importantly, its uniqueness, as proved in Theorem 5.2.5.

The rationale behind the nucleolus is in essence a succession of minimization
problems. Applying the same idea, Potters and Tijs [26] did an interesting in-
vestigation of “the nucleolus of the zero-sum game,” and found some analogous

properties to its counterpart for cooperative games.

5.4.3 On Non-Coalition-Structure Based Solutions

In comparison with the bargaining set and the kernel, concepts like the core,
Von Neumann and Morgenstern solution and Shapley value are only concerned

with imputations, but not coalition structures, which is why we refer to them
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as “non-c.s. based solutions.” It may seem a quite inadequate portrait of the

solution of a game, since many times, for example in the case of cartel creation,
coalition formation precedes the negotiation within specific coalitions about

individual payoffs.

The core is a very straightforward and yet powerful solution concept. There
are no objections for the imputations in the core. Because of its simplicity and
computational superiority, many consider the bargaining set or the nucleolus
as a complementary solution when the core is empty, although Maschler [13]
has argued and provided examples in which other points in M; makes more
sense than the core. We will see more of the application of the core in the

following chapter.

The Von Neumann and Morgenstern solution is centered on the notion of
dominance. The reader might have noticed that condition (a) of the defini-
tion of dominance contradicts that of the core (and likewise, of a c.r.p.c.). In
non-cooperative games, since the interests of the parties involved are strictly
opposed to each other, the complement of a coalition S, N — S, will try to
drive the payoff of S as low as possible. Therefore, the feasibility condition,
Y ics Ti < v(S) is reasonable. In cooperative games, however, it is hard to
justify why coalition S has to limit its payoff to v(S), since there is no guar-
antee that the rest of the players will be able to form a coalition, or to act
competitively even if the coalition N — S is formed. Therefore, we find it
hard to justify the feasibility condition in the Von Neumann and Morgenstern

solution for cooperative games.

Like the nucleolus, the Shapley value gives a unique solution to the game. On
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the other hand, the notion of the Shapley value of a player seems to fall into a
different arena than the other solutions — it is not so much a scheme to solve
the game and find the equilibrium coalition and payoff vector; rather, since
the Shapley value is a weighted average of the incremental additions by player
1 to all the coalitions 7 is part of, the value is analogous to an expected return
associated with a probability vector, which gives the “value” of a player. Just
as the expected value of rolling a fair die is 3.5, a number that would never
occur, we do not expect that the Shapley value would necessarily fall in any

of the solution concepts we discussed so far.

Finally, we mention a class of games that tie together all the important solu-
tion concepts we have studied. Introduced by Shapley [31], the convex games
are games with characteristic function v, such that for all pairs of coalitions S

and T
v(S)+u(T) <v(SUT)+v(SNT).

For convex games, both the Von Neumann and Morgenstern solution and the
bargaining set coincide with the core; the kernel is contained in the core, and
coincides with the nucleolus; the Shapley value is the center of gravity of the

core (see Shapley [31], Maschler, Peleg and Shapley [16]).

5.4.4 On Coalition Structure

While historically, notions of the core, the Von Neumann and Morgenstern,
and the Shapley value are defined without reference to a coalition structure,

Aumann and Dreze [3] connected a given coalition structure B to these so-
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lutions, and made them comparable to the bargaining set family. They were
able to find a single function that plays a central role in the theorems for all
the solutions except the Shapley value. We found this result quite amazing,

in that it is rare in the literature to find a game theoretic function that fits a

wide class of solutions.

In the same paper, Aumann and Dreze addressed the question of how a coali-
tion structure B might form, which is important for the understanding of the
solutions that take the formation of a c.s. as given a priori. We find their
explanation illuminating, and will give a brief summary of their reasoning

here.

Aumann and Dreze refuted the traditional arguments for the formation of
coalition structures concerning, “the difficulties of communication,” “legal bar-
riers such as anti-trust laws” and “personal, family, patriotic, geographical
or professional relationships” (p. 128). The authors pointed out that if one
were to take these factors into consideration when forming a c.s., they should
also be taken into account while the players are comparing their opportunities
during the bargaining process. Instead, Aumann and Dreze provided a subtle
argument on the reasons for coalition formation: some reasons can be difficult
to “measure” and “communicate,” and are sometimes “consciously excluded”
by the players in the bargaining processes (p. 130). For some players, it might
be to their advantage to bargain within the framework of a smaller coalition
B, rather than the grand coalition N. Aumann and Dreze illustrated their ar-
guments by an explanatory example of a partition of the academic community

into different countries.
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5.4.5 Experimental and Empirical Results

Laboratory experiments have been conducted to test under what conditions
people adopt the underlying assumptions of the various solutions. An earlier
experiment conducted by Kalisch, Milnor, Nash and Nering in 1954 was ana-

lyzed in detail by Luce and Raiffa [11]. A more recent series of experiments

by Rapoport and Kahan was supportive of the bargaining set and its relevant
modifications. The reader is referred to Maschler [13] for a comprehensive

reference list of controlled experiments conducted.

Because of the complexity in evaluating characteristic functions and model-
ing real-life conflicts, evaluations of the applicability of these solutions have
been fairly difficult, and relatively scarce. A number of empirical studies on
coalitions in various parliaments have resulted in some interesting fits with

modified bargaining sets and the nucleolus (Scholfield [29], Peleg [25]).



Chapter 6

Application of Game Theory

In this chapter, we look at how the solution concepts that we have studied
so far can be applied to economics contexts to solve real world problems.
Our literature review here is not intended to be a comprehensive overview of
the conditions under which one solution is more applicable than the others;
instead, we will concentrate on a few concepts and see the major areas to which
they are applicable. As before, we will keep our focus on the applications in
cooperative games. For the purpose of comprehensiveness, we also include a
brief discussion on applications of non-cooperative game theory. We will then
provide a case study of the airline industry to further illustrate the differences

among various cooperative solutions.

95
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6.1 Literature Review

The Nash bargaining solution has been extensively used to model wage nego-

tiations between firms and unions. Alexander and Ledermann [1] analyzed the
shapes of the solutions in two cases: when the bargaining is over wages alone,
and when it is over both wages and employment. They observed that since the
existence of Nash bargaining solutions is defined for two or higher dimensions,
when negotiations are over wages only, strict monotonicity conditions need to
be imposed to ensure the uniqueness of the solution. The method Alexander
and Ledermann developed can be applied to investigate the shape of the Nash

bargaining solution for any type of revenue and utility function.

The bargaining set, which takes into consideration the repercussions triggered
by a potential objection, has been modified according to different specific sit-
uations. Mas-Colell [18] proposed a simplification of the bargaining set and
defined it in the continuous case. He was able to prove that under certain

1

conditions, the bargaining set and the set of Walrasian allocations® coincide.

Based on Mas-Colell’s paper, Vind [35] modified the definition of the bargain-

ing set and focused on an atomless® exchange economy.

One criticism of the bargaining set is why should we stop at the counter ob-

L A Walrasian allocation equilibrium is an allocation pair that is both feasible and optimal

given the budget constraints.
2An atomless economy means an economy without “big” players, so it can be modeled

in continuum. Standard assumptions of an atomless exchange economy include complete-
ness, transitivity, continuity and local non-satiability of preference relations and the strict

positivity of the initial endowment to each player.
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jections, and not consider the justification of counter- counter objections and
so on? To do so, we would need a dynamic system, and hope for some con-
vergence of such a process to the bargaining set. Stearns [33] considered each
justified objection as a “demand of definite size” and established a “transfer
sequence” accordingly. He proved that “every maximal transfer sequence con-
verges to a point” in the bargaining set, and thus provided a dynamic backup

for this important solution concept.

Two major areas of application for the bargaining set family are cost allocation
and revenue allocation. Cost allocation games usually deal with the allocation
of the cost of shared resource, such as building a bridge, a tunnel or an airport.
For these games, the nucleolus seems to be a popular recommendation. While
the nucleolus provides a singular solution, it always requires an exponential
number of computations. In solving the problem of building an airport runway,
Littlechild [10] provided an algorithm that considerably reduced the needed
computation. In a more recent paper, Reinhardt [27] further showed that for a
large class of congestion cost allocation games, the computational complexities

can be entirely bypassed.

Revenue allocation problems typically concern the division of a specific amount
of money, such as the worth of a cooperative enterprise after bankruptcy
(Maschler [14]). The most prominent solutions to these problems are the
Shapley value and the nucleolus. Surprisingly, in three bankruptcy problems
prescribed in the 2000 year-old Babylonian Talmud, the nucleoli coincided pre-

cisely with the prescribed solutions. Aumann and Maschler [5] proved that the
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solution was derived under the criteria of coalition consistency?.

In addition to concentrating on a few solutions, a number of specific mar-
kets have been modeled as cooperative games. In particular, studies on the
oligopoly market (Kaneko [9]) and the glove-market (Apartsin and Holzman

[2]) have given rise to some interesting results.

Finally, we recognize that non-cooperative game theoretic study has made
tremendous contributions to economics, in particular to the development of
industrial organization. In fact, game theory has almost become the standard
language of industrial organization. Topics for which game theory has proven
extremely useful include entry deterrence, predation, collusion and price wars.
In addition to providing a general framework for the study of industrial or-
ganizations, non-cooperative game theory also forces the modelers to specify
assumptions, parameters and relevant information sets, so as to establish a
more quantitatively precise model. A thorough discussion of the impact of

game theory on industrial organization can be found in Bagwell and Wolinsky

[6].

6.2 Case Study on the Airliner Market

In this section, we model the airliner market as a three-person cooperative
game. After the merger between Boeing and McDonnell Douglas in 1997, the

global market of airplane manufacturing, both for commercial and military

3See Aumann and Maschler’s paper for the definition and a detailed discussion of “con-

sistency.”
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use, has become a duopoly market between Boeing and Airbus. While in re-
ality many airline companies may lease, instead of own, some of the aircraft
they operate in order to cut down fixed costs, in our model, we simplify the
situation, and let all airlines form a grand cartel and act as a monopsony* of
commercial aircraft. Thus, the three players in the game are Airbus (A), Boe-
ing (B), and this hypothetical cartel of commercial airlines (C). We will give
some background information on the market, based on which we set up our
model and derive the characteristic functions for different permissible coali-
tions. We will calculate the core, the bargaining set, the kernel, the nucleolus
and the Shapley value of this game, and compare the results to see what

implications they have in the real-world market.

6.2.1 Industry Background

Founded in 1926 and currently headquartered in Chicago, the Boeing Company
is the largest aircraft manufacturer in the world, with an annual revenue over
50 billion USD. In 2005, Boeing had 55 percent of the total market value of
aircraft orders globally. Its B747, B777, and the upcoming B787 Dreamliner

are among the most popular models for long-range commercial aircraft.

Airbus, formerly known as Airbus Intustrie, began as a consortium of Euro-
pean aviation firms, originally the Aerospatiale (France), Deutsche Aerospace
(Germany) and CASA (Spain), in order to compete with the American com-

panies. Right now, Airbus trails Boeing in aircraft manufacturing with a 45

4A market situation in which the product or service of several sellers is sought by only

one buyer, also referred to as the buyer’s monopoly.
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percent of market value share, and over 30 billion USD in revenue. In the
market for long-range commercial aircraft, the A340 family and the newly in-
troduced A380 have become strong competitors of their counterparts produced

by Boeing.

The airline industry in the U.S. has gone through tremendous changes due
to government deregulation and the emergence of low-cost airliners. Recently,
many of the major airline companies, including the popular carriers such as
United Airlines, US Airways, Delta Airlines and Northwest Airlines, have all
filed for bankruptcy. Faced with increasing competition and soaring oil prices,
these bankrupt and other narrowly escaped airline companies stand at a crucial
juncture now, as they make strategic investment decisions to improve efficiency
and cut down costs, in the meantime trying to cater to growing customer needs

for more terminal points and direct flights.

Any duopoly (oligopoly) market poses the potential risk of cartel formation
and implicit collusion among the players. In the case of aircraft manufac-
turing, if Boeing and Airbus collectively decide to increase prices, the airline
companies would have no choice but to bear the increase in cost. Historically,
the FTC (Federal Trade Commission) has conducted some investigations into
possible collusion between the two companies when both increased aircraft
prices®, although nothing has ever been proved or brought to court. On the

other hand, if we assume that all the commercial airlines form a cartel and

5For instance, in November 1998, when Boeing revealed plans to increase list prices for
new orders by 5 percent, and Airbus by 3 percent, the FTC stepped in to investigate whether

it was a result of collusion to fix prices.
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act as ome unit, then this cartel can deter the potential collusion between the
two manufactures by bilateral dealings, or play off one manufacturer against
the other. Our model will look at these possibilities using the theories for

cooperative games we have developed so far.

6.2.2 Model Setup

There are three players in the game: player A (Airbus), player B (Boeing),
and player C (commercial airline cartel). Players A and B are the only manu-
facturers of long-range commercial aircraft. To simplify the model, we assume
that the products are homogeneous, so for C, the marginal utility it obtains

from one more airplane is identical regardless of whether the purchase is from

A or B.

Player A can decide the price it charges for an aircraft, denoted as p4. Simi-
larly, player B decides pg. Player C determines how many aircraft to purchase
from each manufacturer respectively, denoted as x4 and xp, where x4, zp are
non-negative integers. We assume that the total number of aircraft needed by
C is capped at M, which we interpret as the number of long-range aircraft

needed to meet the maximum demand by its customers. Therefore, we have:
Assumption 1: 0 < z4+ 25 < M.

We denote the manufacturing capacity of player i as m;, for 2 = A, B. Since
Boeing has a larger balance sheet and bigger market share than Airbus, we

assume that the manufacturing capacity of player B is at least as big as that
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of player A. We further assume that the maximum demand of C exceeds the
capacity constraint of each manufacturer, but can be satisfied by the total

industry production capacity. Thus,

Assumption 2: 0 <z4 <my and 0 < xp < mgpg.

Assumption 3: my < mp < M < my+ mp.

Let ¢4 and cp be the average cost of producing an aircraft for player A and B
respectively. We acknowledge economies of scale in production, therefore, we
assume player A is more cost efficient than player B. Let ¢ be the present value
of the net profit that an airplane brings to the airline, thus ¢ is exogenously
determined. Essentially, we think of £ as the sum of a stream of discounted
net cash flows generated by an airplane from the date of purchase to its retire-
ment. Notice that t is defined as a net value, so operating costs of an airplane

including maintenance and repair have already been deducted.

Obviously, from the manufacturers’ point of view, an airplane has to be sold
at a higher price than its production cost; from a societal point of view, the
production cost of an airplane also has be smaller than its utility value. Thus,

we have the last two assumptions:

Assumption 4: 0 <cy <py and 0 < cp < pp.

Assumption 5: cgp < cy < t.

Given these assumptions and setup above, we have the payoff function f; for
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each player 7:

fa = f(pa) = (pa—ca)za
fs = f(ps) = (pB —cB)rs

fe = f(wa,xp) =t(xa+2B) —paTa — PBTB

Finally, we assume that the players are allowed to have pre-play communica-
tion and can form coalitions with one another before they make simultaneous

decisions on what prices to charge and what quantities to purchase.

Now we are ready to find the characteristic function, and the value of different
coalitions. Recall from the previous chapter that the value of a coalition is the
maximum that the coalition can guarantee itself, regardless of what the players
outside the coalition will do. Therefore, in this 3-person game, based on our
assumptions and the payoff functions, we define and compute the characteristic

functions as follows:

v(g) = 0
v(A) = v(B)=v(C)=0
v(AC) = _nax {t(xa + xp) —paxa —pprp+ (pa —ca)Ta}t
= (t — cA)mA
v(BC) = <mi1x {t(xa + xB) — paxa —pprp + (P — CB)TB}
= (t — cB)mB
v(AB) = max {(pa —ca)za+ (pp—cp)r} =0

ca<pa,cB<pPB
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v(ABC) = max {(pa—ca)za+ (pp —cp)rp+t(xa+ Tp) — paTa — ppTB}
= (t—cB)mB+(t—cA)(M—mB)
Since we have already calculated the value of the coalitions {AC}, {BC},

{ABC}, we can reduce the messiness of the writing by denoting the following:

v(AC) = (t—ca)ma =«
’U(BC) = (t—cB)mB Zﬂ
v(ABC) = (t—cg)mp+ (t —ca)(M —mp) =7

From assumptions 3 and 5, we observe the order of magnitude of the values

of the characteristic functions:
0=v(AB) < v(AC) < v(BC) < v(ABC)
Thus we have simplified and modeled the 3-person cooperative game with two

duopoly producers and a monopsony buyer of long-range commercial aircraft

into the following 0-normalized game where N = 3:

v(A) = v(B) = v(C) = 0
W(AB) =0

W(AC) = a

W(BC) = B

W(ABC) = 4

where o, 5,y ERand 0 < a < 3 < 7.
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6.2.3 Solutions to the Game

In this section, we will study the core, the bargaining set, the kernel, the nucle-

olus and the Shapley value of this game, and discuss the intuitive implications

of each solution. The derivations of these solutions are messy but fairly easy

algebra, so we omit the computations and provide the results directly.

1. Core Co
Following the definition of the core, we know that if x4, x5, xc are the payoffs
to players A, B and C, then the following conditions have to be satisfied:
Ta+2Ixpt+2ax0 =7
za+ax >0

rp+xc > f3
Ta+ a0 >

Recall that the core consists of a set of imputations, which in the current case
isx = (z4,xp,2c). The core Co is not directly related to any specific coalition

structure, and in this game it is computed as

Conv{(0,0,’y),(7—5,0,5),(0,7— 05705)7(0577 _a70)7(’7_67670)}
if y>a+p

CO’I’L’U{(0,0,’)’),(’Y—,B,O,,B),(O,’Y—Q,O),(’Y—ﬁ,')/—a,a‘l‘ﬁ_'}/)}
if y<a+p

Co =

A careful observation of the core indicates that player B has a slight advantage
over player A (notice in both cases, the maximum payoff that player B can get,
7 — «, is greater than the maximum payoff player A can get, v — (), which is in
accordance with our expectation. Since Boeing has a larger market share and
lower cost compared with Airbus, it consequently obtains a better bargaining

position than Airbus.
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I1. Bargaining set M.
The complete formula for a coalitionally rational bargaining set M, for a 3-

person game is derived in [4]. For our game, the bargaining set M, is computed

as:
(0,0,0; A, B,C)
(076 —$c,$C;A,BC) 0< T < B
M, = { (0,0,a; AC, B)
(0,0,0; AB,C)
(Co; ABC)

Notice that in the case when all players form a grand coalition, the imputation
is the same as the core, as computed above. We observe that except for the
last case, all other i.r.p.c.’s give player A a final payoff of 0. Therefore, it
is in the interest of Airbus to avoid unilateral dealing with the cartel of the
commercial airlines — a somewhat counter-intuitive result — but instead, try

to facilitate three-sided talks and form a grand coalition.

I1l. Kernel K

Recall that the kernel is a subset of the set of permissible imputations with
coalition structure B. In the kernel, the surpluses of any two members in the
same coalition against each other always have to be equal. Since the kernel is
a subset of the bargaining set, we check each solution in the bargaining set to

determine the kernel.

Also recall from section 5.4.3 that for convex games, the kernel coincides with
the nucleolus N (v). In this game, for the grand coalition B = {ABC'}, when
v > a + 3, the game turns out to be a convex game. Therefore, the kernel is

given by:
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K(A,B,C) =(0,0,0)

K(A7 BC) = (07 (ﬁ - O_/)/Q, (Of + B)/Q)

K(ABC) = ((v—B)/2,(y —)/2,(a+ ()/2) when a+[>7y

K(ABC) = N(v) when a+ (<7
We observe that the kernel K eliminates two stable p.c.’s in the bargaining set,
which are constructed based on the coalition structures {AC'} and {AB}. This
indicates that the commercial airline cartel has such huge monopsony power
that it doesn’t even pay for the two duopoly producers to form a coalition to
fix prices — the enticement from C to B is big enough to render the coalition

{AB} unstable. When B and C do make a coalition, it is obvious that C' has

an upper hand, which guarantees it a much better payoff.

1V. Nucleolus N
The nucleolus N is the unique intersection of the kernel K and the core Co
(which in the current game is nonempty). Based on the algorithm derived in

[10], the nucleolus of this game is as follows (cf. Shenoy [32]):

(v/3,7/3,7/3) when v > 33
(v=8)/2,(v+B)/4,(y+B)/4) when [+ 2a <y <33
(y=8)/2,(v=B)/2,(a+B)/2) when a+p <7< B+ 2a
(v=8)/2,(v—)/2,(a+B)/2) when f<y<a+f

We notice that when ~, the value of coalition { ABC'}, substantially outweighs

=

B, the value of coalition { BC'} (i.e. v > 3(), the payoffs to the three players are
identical. This is because it is in the mutual interest of all the players to form a
grand coalition, so C’s bargaining advantage cannot actually be demonstrated.
As v and [ get closer, however, the relative payoff to C increases, since C has
to be compensated for preferring coalition {ABC?} to coalition {BC'}. The

closer v is to (3, the more obvious is C’s bargaining advantage.
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V. Shapley value ¢;(v)

We compute the Shapley value to each player according to equation (5.9):

o2 = (2y+a—25)/6
¢ = (27 —2a+0)/6

pc = (2y+a+p)/6

We observe that ¢4+ ¢p+dc = v and ¢4 < ¢ < ¢¢. The Shapley value also
dictates that the commercial airline cartel has an advantage over Boeing, which
in turn has an advantage over Airbus. As we have discussed in section 5.4.3,
the Shapley value is entirely based on the characteristic function v rather than
the bargaining power of the players in the process of coalition formation. Thus,
we interpret the Shapley value as a “normative” solution, a value that rational
players should accept on the ground of some fairness principle — how much
you are entitled to obtain should depend on how much you can contribute to

a coalition.

6.2.4 Limitations of the Model

Our model of the long-range aircraft market is undoubtedly highly simplified.
The biggest disputable assumption we made is that all commercial airlines form
a cartel in the bargaining process. This is obviously impossible to achieve in
the real world, although with 4 out of the 7 major U.S. airlines already filed
for Chapter 11 bankruptcy and taken over by the government, it is not entirely
unrealistic that some form of government re-regulation of the airline industry

might happen soon.
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Another strong assumption we made is the homogeneity of the products. Al-
though long-range aircraft constitute a rather specific and inelastic segment of
the airliner market, we are not familiar with the decision procedure of airlin-
ers when they make aircraft purchases. We believe that criteria in addition to
price play an indispensable role in the purchase decision on airplane models,
but our limited knowledge of the industry prevents us from quantifying the

other relevant factors.

Despite the above caveats for our model, this case study gives us a chance
to study different solution concepts for cooperative games in a real-world set-
ting. We have obtained a number of useful, and sometimes counter-intuitive,
observations, and gained a deeper understanding of the applied value of these
solutions. We hope modifications of our model, for example into an n-person

cooperative game, will more accurately reflect the real situation.



Chapter 7

Conclusion

With a focus on cooperative games, this paper is by no means intended to be
a comprehensive study of game theory, although I do try to include some of
the most important theorems (e.g. Minimax Theorem) and well-known solu-
tions (e.g. Nash Equilibrium) for non-cooperative games. Within cooperative
games, I studied in detail the Nash bargaining solution and the bargaining set
family, again with a focus on the latter. I gave some intuitive explanations
of the rationale behind each solution in the bargaining set family, evaluated
the assumptions of different cooperative solutions, and compared them quali-
tatively based on a few numerical examples as well as a mathematical model
I constructed in a case study of the airliner industry. To this end, I hope the
reader will obtain, by now, an overview of the broad structure of game theory,
and a general understanding of the intricate interrelationship and differences
among the solution concepts for cooperative games, and their respective range

of application.
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In response to the basic question I raised in the beginning, “Under what cir-
cumstances would some solutions we have studied be preferred to others?”,
I do not want to give the impression that either the bargaining set, or the

nucleolus is superior to any other solutions in any particular case. We have

seen that each solution sheds some light on one aspect of the real world prob-
lem, and by examining all these solutions, we can gef a better picture of the
issues involved. Admittedly, however, as I have mentioned, the computational
difficulty gets in the way as soon as the number of players gets larger. I feel
that even though some solutions cannot be fully computed, certain properties
may still bring interesting insights on applications. Just as the computation
of the nucleolus has been radically simplified over the years (Littlechild [10],
Reinhardt [27]), I hope better algorithms will be developed to enable more

efficient computation of the other solutions.

It appears to me that non-cooperative game theory has already become a
fairly developed tool for economic application, and recent major progress on
the mathematical end falls mostly into the area of cooperative games. In
addition to the improvement of computational efficiency, current research is
focusing on developing theorems for specific types of games and markets, as |
briefly described in section 6.1. As Rubinstein pointed out in his afterword for
the sixtieth anniversary edition of the landmark work by Von Neumann and
Morgenstern [36], “the last decade has seen few new ideas in game theory ...
the stage is set for a new unconventional work,” I hope that new concepts like
that of Nash equilibrium will come up as additional pillars in the arena of co-

operative games, and game theory will continue to enjoy remarkable expansion
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as it did since its inception sixty years ago.
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