
LIGHTS OUT: DETERMINING SOLVABILITY ON
RECTANGULAR BOARDS

TAMAR ELISE WILSON

A THESIS PRESENTED TO THE FACULTY OF MOUNT HOLYOKE COLLEGE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF ARTS WITH HONORS.

DEPARTMENT OF MATHEMATICS

SOUTH HADLEY, MASSACHUSETTS

MAY 8, 2009



I give permission for public access to my thesis and for any copying to be

done at the discretion of the archives librarian and/or the College librarian.

Tamar E. Wilson June 24, 2009



Acknowledgements

I would like to thank my advisor, Jillian McLeod, for her support, guid-

ance, and encouragement throughout the last two years. I would also like to

acknowledge my readers, Bob Weaver and Harriet Pollatsek for their time and

advice and finally, Laura, Ingrid, Celine, and Nicole, for helping with long

nights of matrix multiplication and many games of pool.



Abstract

Lights Out is a game produced by Tiger Electronics consisting of a 5 by 5

grid of buttons, each of which can be either lit up or turned off. Each game

begins with some ofthe buttons turned on, or lit. Pressing a button changes

the status of that button- i.e., off to on or on to off- as well as the status of

each its neighbors. The goal of the game is to systematically push some of

the buttons until every light is turned off, winning the game. In the 5 by 5

grid, however, not every initial light pattern is solvable. In order to determine

the solvability of some initial set of lights, we can convert the game into a

system of linear equations given by a matrix R, which describes the effect

of pushing any of the buttons, a strategy vector, ~s, which will give us the

solution if one exists, and an initial state vector, ~x. Considering the game as a

linear system allows us to easily generalize any solution methods to other sizes

of game boards. Through the application of various solution methods and

Fibonacci Polynomials, we classify rectangular game boards by the fraction of

initial states that are solvable.
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1. Introduction

1.1. Introduction to the Game. Lights Out is a game produced by Tiger

Electronics consisting of a 5 × 5 board of buttons, each of which can be lit

or unlit. Pressing any button changes that button’s state - lit or unlit - and

also the states of the button’s neighbors, or the buttons immediately above,

below, and to the left and right. Buttons in the corners or on the side of the

board change only the neighbors they touch; the effects do not wrap around

the game board to the other side. Game play begins with some initial set of

the buttons lit; the goal is to selectively press buttons until all of the lights

are off. A few plays of the game lead to a general observation and strategy:

the only way to turn off a light in a row without potentially turning on its

neighbors is to push the button directly below it. Pressing that button will, of

course, also change the buttons on its left and right as well as the one below,

but if we consider just one row at a time, pressing the buttons below the lit

buttons will allow us to get an all-off configuration in that row.

Example 1. For example, consider the following initial set up, with lit buttons

marked with an O.

O O O
O

O
O O O
O O

Pressing the first, second, and fifth buttons in the second row leads to
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O O
O O O O

O O O
O O

effectively clearing the first row. Continuing to clear the subsequent rows in

the same manner yields

O O O O O
O O O
O O

→
O O

O O O

→

O O O O

Thus, any board can be condensed down into some configuration of lit but-

tons in the bottom row. Since each button has only two states, there are 25

possible configurations of these buttons. In order to solve the board from here,

one can memorize sequences of button pushes that may clear the bottom row.

Not every configuration of bottom row buttons, however, can be cleared, so

not every initial configuration is winnable. Determining which configurations

are winnable and what sequences of button pushes are needed to win can be

done, albeit somewhat impractically, through trial and error. To determine

solutions more easily, we can represent the game as a linear system and use

linear algebraic methods to test if initial configurations are winnable.

1.2. Converting to a Linear System. Before we translate the game to a

linear system, we need a couple of observations. First, since a button can

only be on or off, pushing a button twice is the same as not pushing it at all.
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Thus, the entries of our matrix and vectors will all be taken from the binary

field and all operations will be performed modulo 2. Also, if some sequence of

button pushes changes the all-off board to some other configuration, repeating

the same sequence will clear the board. Thus, some initial configuration is

solvable if and only if we can find a sequence of pushes that lead from an

all-off game board to the configuration.

To express the game as a linear system, first, number each button as follows:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

An initial configuration can then be expressed as a 25× 1 column vector with

the ith entry 1 if the ith button is lit and a 0 otherwise.

Example 2. The initial configuration in the previous example,

O O O
O

O
O O O
O O

could be expressed as [1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 ]′

We will write the game as a linear system of equations R~s = ~x, where ~x is

the initial configuration written as a vector, ~s is the solution vector, and R is

the button push matrix, which expresses the effects of each button push. R is

a 25×25 matrix, where each row corresponds to a button on the board. In the

ith row, there is a one in every entry corresponding to a button that changes
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state when the ith button is pushed. The row vector for the first button is

[1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ],

while the row vector for the seventh button is

[0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ].

The resulting R can be written more simply as a block matrix
A I O O O
I A I O O
O I A I 0
O O I A I
O O O I A


where O is the 5× 5 zero matrix, I is the 5× 5 identity matrix and

A =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 .

Example 3. To see the utility of the button push matrix, consider the vector

~s = [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]′.

If we compute R ∗ ~s, we see

R~s = [0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ]′,

the vector representing the initial state produced by pressing just the 7th button.
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We can write any ~s as the sum of at most 25 si vectors, where each si has

only one non-zero entry. Each R∗si will be the vector representing the buttons

that change state when the button corresponding to the non-zero entry of si is

pressed. Then R ∗ ~s will be the sum of all those products- or, the cumulative

effects of each button push indicated by a non-zero ith entry. Based on this,

our solution vector will dictate the game strategy played; if there is a 1 in

the ith entry, the ith button should be pushed. Thus, given some initial state

vector ~x, we can determine if the system is solvable by testing for the existence

of some vector ~s such that R~s = ~x. If such a vector exists, we can translate

that into a solution on the game board by pressing each button with a 1 in

the corresponding entry in ~s.

An advantage of writing the game written as a linear system is that it allows

us to easily consider other sized boards or games with slightly different rules.

Research has been done on larger square boards and rectangular boards of

various dimensions. In the next section, we will present previous work on

both the 5 × 5 game board as well as rectangular boards. In section 3, we

will extend the solution methods given in section 2 and present results on the

solvability of some sizes of rectangular game boards. We will also discuss the

proportion of solvable initial states. We will give suggestions for further work

in section 4.
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2. Survey of Previous Approaches

Once the game is translated to a system of equations, there are a number

of ways to work towards finding a solution to the game. For our purposes,

a solution for some board size will be a complete classification of the board’s

solvability. We say a game is entirely solvable if every initial state of lit but-

tons can be transformed to an all-off state. Otherwise, we can consider the

dimension of the null-space of the matrix as a measure of the solvability, since

we will show that the dimension of the null space gives the proportion of initial

states that are solvable. In the following sections, we discuss a few possible

solution methods and their applicability to further questions.

2.1. Direct Row Reduction. The most straightforward solution method is,

of course, row reduction on R, the button push matrix. For the 5 × 5 game

board, R is 25× 25. Generally, for an k × n board, R will be nk × nk. Thus,

these matrices can be somewhat unwieldy, although the row reduction is easily

accomplished with Matlab. Direct row reduction is perhaps the easiest way

to determine solvability for any given game board. It also provides a basis for

the null space, which has been used in the 5 × 5 case to create an algorithm

for determining the solution vector ~s needed to win a game.

Anderson and Feil [1] use direct row reduction to describe a winning strategy

in terms of an orthogonal basis for the null space. They first note that some
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initial state ~x will be winnable if and only if ~x is orthogonal to all the vectors

in the basis. The 5 board, which has a null space of dimension 2, has basis

vectors

n1 = [0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 ],

n2 = [1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 ].

Then for any given ~x with solution ~s, we can find 3 other solutions: ~s + ~n1,

~s + ~n2, and ~s + ~n1 + ~n2.

In order to actually find the solutions, let E be a row-reduced form of R, so

that the first 23 rows and columns form the 23× 23 identity matrix. Also, let

F be the 25 × 25 matrix such that FR = E and take ~x to be some winnable

initial state. Then we can re-write the system R~s = ~x as E~s = F~x. We know

that there are four possible vectors ~s that will satisfy this equation. Note that

we can always choose an ~s such that the last two elements of ~s are zero- since

we are working modulo 2, our choice of n1 and n2 guarantees that one of ~s,

~s + ~n1, ~s + ~n2, and ~s + ~n1 + ~n2 will have zeros as the final two entries. In this

case, however, E~s will just be ~s itself, since E is fully reduced. Therefore, we

have ~s = F~x as our first solution and we can generate the other 3 by adding

the basis vectors.

Creating an algorithm that finds solutions is a clear goal for the 5× 5 case,

since the problem is a direct translation of an actual game board. As we extend
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the problem to other dimensions, however, we will not continue to consider

algorithms for finding ~s; rather, we will attempt to determine when such an ~s

will exist. The method presented by [1] would certainly apply to other sizes of

game boards, but without the motivation of actual game boards, the solution

algorithms provide little interest. Direct row reduction is, however, the most

efficient way to find the solvability for a given board size using Matlab.

One of the drawbacks of the direct method is that it makes generalization dif-

ficult. The row reduction must be performed again for each new size of board,

so patterns may be obscured and the effort may become prohibitive. Also,

although Matlab simplifies computations, the very large R matrices produced

by larger game boards can again obscure the causes of patterns in solvability .

Mart́ın-Sánchez and Pareja-Flores [5] give a solution method that corrects the

second concern by reducing the large nk×nk system into an equivalent n×n

system and eventually allows us to determine solvability using a polynomial

function of A.

2.2. Mart́ın-Sánchez and Pareja-Flores. Mart́ın-Sánchez and Pareja-Flores

[5] consider the Lights Out game as both a logical problem and a linear al-

gebra problem. In treating it as a logical problem, they explain condensing

the board down to the bottom row. From there, they find the redundant or

neutral solutions, finally developing an algorithm to first reduce any starting

state to a problem involving only the bottom row and then to predict what
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buttons need to be pressed to solve the last row.

In treating the game as a linear algebra problem, [5] attempts to mimic

this condensing method mathematically. The approach begins with our sys-

tem, R~s = ~x. By observing that for any 25 × 25 matrix J, the equation

J~s = (R + J)~s + ~x is equivalent to R~s = ~x and by judicious choice of J to be
O I O O O
O O I O O
O O O I O
O O O O I
O O O O O


where O represents the 5 × 5 zero matrix and I is the 5 × 5 identity matrix,

we can develop a new system that is easily simplified. If we consider ~s to be
s1

s2

s3

s4

s5


where each si is a 5× 1 subvector, then J~s = (R + J)~s + ~x becomes

s2

s3

s4

s5

0

 =


A 0 0 0 0
I A 0 0 0
0 I A 0 0
0 0 I A 0
0 0 0 I A

 ∗


s1

s2

s3

s4

s5

+


x1

x2

x3

x4

x5


where ~x is written similarly to ~s. Performing the operations on the right side

of the equation gives 
s2

s3

s4

s5

0

 =


A ∗ s1 + x1

s1 + A ∗ s2 + x2

s2 + A ∗ s3 + x3

s3 + A ∗ s4 + x4

s4 + A ∗ s5 + x4

 .
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Thus, s2 can be written in terms of s1 and x1. Continuing this substitution

gives us solutions to s3, s4 and s5 entirely in terms of s1 and ~x. We are given

~x, so we can solve the larger system by solving for s1. Note that finding a

vector s1 that solves this system and finding such an ~s for the full system

are truly equivalent, since any s1 can be used to re-build the corresponding ~s

by reversing the substitution. Conversely, clearly any ~s gives an s1, since s1

is simply the first 5 components of ~s. We can see that this correspondence

is unique by noting that ~s only exists if it satisfies the relationships given in

the above matrix. Thus, there cannot be 2 distinct ~s with the same first five

components.

If we perform the substitution and simplify, we can build a new system of

equations that will allow us to solve for s1,


s2

s3

s4

s5

0

 =


B1 B0 0 0 0 0
B2 B1 B0 0 0 0
B3 B2 B1 B0 0 0
B4 B3 B2 B1 B0 0
B5 B4 B3 B2 B1 B0

 ∗


s1

x1

x2

x3

x4

x5

 .

Where the Bi’s are derived from the substitutions and can be given by B0 = I,

B1 = A, and Bi = Bi−2 + A ∗ Bi−1 for i ≥ 2. Note that these Bi are just

polynomials of A. The final row of the system, 0 = B5 ∗ s1 + B4 ∗ x1 + B3 ∗

x2 + B2 ∗ x3 + B1 ∗ x4 + B0 ∗ x5 will give us the solution to s1. The entries of
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all matrices are in Z2, so this equation is equivalent to

B5 ∗ s1 = B4 ∗ x1 + B3 ∗ x2 + B2 ∗ x3 + B1 ∗ x4 + B0 ∗ x5.

[5] refer to the right side of the equation above as the gathers of ~x. Since we

are given ~x for any particular system, gathers(~x) is just a 5 × 1 vector. By

condensing the original system down to B5 ∗ s1 = gathers(~x), we have a 5× 5

system that is far easier to reduce. Row reduction on B5 gives us that the null

space of B5 has dimension 2.

Since B5 is a symmetric matrix, gathers(~x) must be orthogonal to the null

space of B5 in order to be solvable. Actually finding the solution entails noting

first that any solution can generate three other solutions, by adding one or both

of the vectors in a basis for the null space. A basis for the null space is
0
1
1
1
0




1
0
1
0
1

 ,

so at least one of the possible solutions will have zeros as the last two entries.

Therefore, if E is the row reduced form of B5, with the 3× 3 identity matrix

as the first three rows and columns of E, and X is the 5× 5 matrix such that

E = X ∗ B5, we can consider the system E ∗ s1 = X ∗ gathers(~x). If we

assume that s1 represents the solution with zeros as the 4th and 5th entries,

then E ∗ s1 = s1, so the first solution is simply X ∗ gathers(~x) and the others
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can be generated by adding the vectors in the null space.

The solution to the 5 × 5 lights out game given by [5] is far simpler than

working with the complete system. It also provides a more intuitive method,

since the linear algebra aligns with the actual game strategy of gathering the

lights down to the 5th row and finding a final solution based on those 5 lights.

Moreover, it gives a simple algorithm for computing the dimension of the null

space, and thus the number of solvable states, for larger games. Although find-

ing the dimension of the null space of a given board is simple using Matlab, we

will at times need more detailed information about the button push matrices.

The approach given in [5] reduces the nk × nk button push matrix generated

by an k×n board into an n×n system, which is easier to work with by hand.

This allows for exploration of patterns in the dimensions of the null space and

subsequent generalizations to solvability. In particular, the n× n matrix used

in the gathers formula depends only on A, the n× n matrix representing the

effects of pushing each button in a row on the other buttons in the row. By

considering multiple iterations of the formula for the Bi matrices, we can be-

gin to examine the general solvability of games of size k× n, with fixed n and

varying k.
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Although the solution given by [5] may make it easier to find the solvabil-

ity of an k × n system, there is a major disadvantage. For any k × n game

board, we need to compute Bk. Without an explicit formula, this must be

done iteratively, which is time consuming for larger values of k. It is possible

to find an expression for Bk using Matlab, but this provides information only

for specific cases. An explicit formula, however, would allow for some general-

ization in conclusions on which values of k form solvable game boards. Work

done by Goldwasser et al. [2], [3] on an analogous problem in computer science

has produced some results which, when applied to the Bi matrices, give an

explicit formula and some opportunities for generalization.

2.3. Goldwasser et al. Goldwasser et al. take another approach to the k×n

board. Their first paper [2] considers the Lights Out problem from a computer

science perspective; the original motivation for the work is the nine tails prob-

lem, which is analogous to the 3 × 3 case. They show that in the 3 × 3 case

every initial configuration is solvable by noting that for each individual button

i, there is a set of button pushes that change button i’s state without changing

any of the other buttons. By combining these sets of button pushes, any initial

configuration can be solved.

A number of results and theorems are then presented in [2] concerning the

null-space of a general nk × nk button push matrix— that is, a button push

matrix for any k × n board. Many of these results are fairly specific to their



LIGHTS OUT: DETERMINING SOLVABILITY ON RECTANGULAR BOARDS 19

method, which we discuss only briefly. The following, however, concerning the

number of solvable initial states, will be used later.

Theorem 1. If the dimension of the null space of R is j, then 1
2j of the possible

configurations are solvable.

Proof. We are working on an k×n board, so each initial configuration is a nk−

dimensional vector. Each entry can be either 1 or 0, so there are 2nk possible

initial configurations. The dimension of the row space is nk − j, so there are

2nk−j solvable configurations. Thus, 2nk−j

2nk or 1
2j of possible configurations are

solvable.

�

In [2] the authors also present a method for finding the dimension of the

null space of an k × n board. We begin by defining a null space matrix as

the k × n matrix formed from a vector ~x in the null space of R, the button

push matrix.In a null space matrix, the first row corresponds to the first n

components of ~x, while the second row corresponds to the next n components.

In terms of the game, starting from a blank game board, if one pressed every

button with a one as its corresponding matrix entry, the game board would

again have all the lights off. If no such matrix exists, the null space is empty

and the board is completely solvable. Finding these matrices, then, is one way

to test the solvability of any given size board.
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To find the null space matrices, we first fix the number of rows, n, and look

for the values of k, the number of columns, for which there is at least one non-

trivial nullspace matrix. This is done by selecting a 1×n vector ~w with entries

in the binary field from any of the 2n possible vectors, using ~w as the first row

of a potential nullspace matrix N and then using substitution— similarly to

the method given in [5] — to find subsequent rows. If, for some k, the kth row

is all zeros, the matrix consisting of ~w and the following rows is a null space

matrix for the n × (k − 1) case. Although we will not use this method for

rectangular boards, finding the null space matrices led the authors to write

the equation for each row of a potential null space matrix as a sequence of

Fibonacci polynomials. The results given in [3] on Fibonacci polynomials can

be applied to the Bi matrices from [5].

Fibonacci polynomials are series of polynomials defined recursively as f0(x) =

0, f1(x) = 1, and fi(x) = xfi−1(x) + fi−2(x). Since all operations in [3] are all

performed modulo 2, the following results hold in the binary field.

First, [3] gives an explicit formula for fn+1:

fn+1(x) =

bn/2c∑
i=0

(
n− i

i

)
xn−2i

We will also use the following lemma:

Lemma 1. Let f0, f1, f2, ... be the sequence of Fibonacci polynomials over

GF (2). Then



LIGHTS OUT: DETERMINING SOLVABILITY ON RECTANGULAR BOARDS 21

(1) fi is an odd function for i even and an even function not divisible by x

for i odd, i > 0.

(2) fn−t + fn+t = xfnft for 0 ≤ t ≤ n

(3) f2n = xf 2
n, n ≥ 0

(4) f2n+1 = f 2
n + f 2

n+1

(5) fmn(x) = fm(x)fn(xfm(x))

(6) f2mn−p = xfmnfmn−p + fp

(7) f2mn+p = xfmnfmn+p + fp

We will prove only the first three parts.

Proof. The first statement follows inductively from the recursive of the fi poly-

nomials. We will show an analogous result in Lemma 2 below. To prove (2),

fix some n. If t = 0, we have fn + fn = 2 ∗ fn = 0 = xfnf0. For t = 1,

fn+1 + fn−1 = xfn = xfnf1, so the base case holds. Now, assume that the

relationship holds for all t ≤ m− 1 < n, for some m. Then we have

fn+m + fn−m = (xfn+m−1 + fn+m−2) + (xfn−m+1 + fn−m+2)

where the second half, fn−m = xfn−m+1 + fn−m+2 follows from fn−m+2 =

xfn−m+1 + fn−m. Then we have

fn+m + fn−m = x(fn+(m−1) + fn−(m−1)) + (fn+(m−2) + fn−(m−2))

fn+m + fn−m = x(xfnfm−1) + (xfnfm−2) = xfnfm.
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Finally, the third statement is simply the case where n = t, so

f2n = fn+n + fn−n = xf 2
n.

�

Given the drawbacks to using direct row reduction to determine solvability of

an k×n board, we are primarily interested in extending the method presented

by [5] to other sizes of game boards. In order to overcome the difficulties

of computing the Bi matrices recursively, we will eventually use results from

[2], [3] to simplify the computation of the Bi matrices and to allow for easy

generalization on the solvability of an k × n board for varying k.

3. Generalizations to Arbitrary k× n Boards

For specific values of n and k, it is straightforward to use the method outlined

by [5] to determine the solvability of the k×n board. Recall that the A matrices

depend only on n, since the A matrix represents the effects of pushing each

button in a row only on the other buttons in the row. Each row will have n

buttons, so A will be n×n. In R, the A matrix will then appear k times, down

the main diagonal. We can then use the second system, J~s = (R + J)~s + ~x,

where J has n× n identity matrices just above the main diagonal, with n× n

zero matrices everywhere else. This simplified system leads to the definition of

the Bi matrices as polynomials of A, defined recursively by B0 = I, B1 = A,
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and Bi = Bi−2 + A ∗ Bi−1 for i ≥ 2. The last row of the system then gives

us Bk ∗ ~s1 = gathers(~x), so in order to determine the solvability, we need to

compute the null space of Bk.

Our goal, however, is to categorize solvability for fixed n columns and vary-

ing k rows. In this case, we need to determine the dimension of the null space

of Bi(An) for many values i. This step towards generalizing the Bi matrices

usually requires writing the Bi matrices as Fibonacci polynomials. The k × 2

case, however, simplifies nicely, so we will first consider k × 2 game boards as

an example of the application of Mart́ın-Sánchez’s approach for rectangular

boards.

3.1. k × 2 Boards. First, we will specifically consider the 4 × 2 case, repre-

senting a game board with 8 buttons. If we number the buttons as follows,

1 2
3 4
5 6
7 8

we can create the 8× 8 button push matrix.

R =



1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1


.
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We can write this in its simplified form as
A I 0 0
I A I 0
0 I A I
0 0 I A

 , A =

[
1 1
1 1

]

Now, we proceed in exactly the same way as in the 5 × 5 case. We need to

solve the system R~s = ~x or, equivalently, J~s = (R + J)~s + ~x. By choosing J

as
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0

 , we get the system


s2

s3

s4

0

 =


A 0 0 0
I A 0 0
0 I A 0
0 0 I A

 ∗


s1

s2

s3

s4

+


x1

x2

x3

x4

 .

Recall that this system allows us to write the components s2, s3, and s4 in

terms of s1 and ~x which in turn gives the equation B4 ∗ s1 = gathers(~x).

The B matrices are defined in exactly the same way as in the 5 × 5 case,

so B4 = A4 + A2 + I . Note, however, that A2 is the 2 × 2 zero matrix, so

B4 = I. Thus, the dimension of the null space is 0 and every starting position

is solvable. From this result, we can generalize to the 2k × 2 case.

Theorem 2. On a 2k × 2 board, k ∈ Z, every initial state is solvable.

Before we prove this we need the following lemma.

Lemma 2. For all k ∈ Z, B2k will be a sum of even powers of A and the

identity matrix, while B2k+1 will be a sum of odd powers of A.
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Proof. We will prove this by induction; if k=0, B0 and B1 have been defined

to be I and A respectively. Every Bi is defined to be the sum of B(i−2) and

A ∗B(i−1). Thus, B2 = A2 + I and B3 = A3 + A and the base case is satisfied.

Now, assume that for some k ∈ Z, B2k can be written as the sum of even powers

of A and I and B2k+1 is the sum of odd powers of A. B2(k+1) = B2k +A∗B2k+1,

so the exponent of every term of B2k+1 will become even, while the identity

matrix and even powers of A in B2k will remain unchanged. Similarly, B2k+3

will be the sum of B2k+1, which contains only odd powers, and A ∗ B2(k+1)

which will also be only odd powers of A. �

Using this lemma, the proof of the theorem is straightforward.

Proof of Theorem 2. For any 2k × 2 game board, the solvability will be given

by B2k. By the previous lemma, B2k will be the sum of even powers of A and

the identity matrix; we have already noted that A2
2 = 02, so B2k = I and every

initial state is solvable. �

Corollary 1. On a (2k + 1)× 2 board, the B2k+1 matrix will not be invertible,

so some initial states will have no solution.

The proof of this corollary follows directly from Theorem 2 and Lemma 2.

If B2k+1 includes an A, the dimension of the null space will be 1. Otherwise,

B2k+1 = 02, so the dimension of the null space will be 2.
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The k × 2 board is easy to categorize because of the simplicity of A2 and

its powers. Larger values of n lead to more complex An matrices that do not

simplify as easily. Writing the Bi matrices as Fibonacci polynomials of A,

however, allows us to apply the results given by [2], [3] to the Bi matrices.

3.2. Fibonacci Polynomials and Bi. Recall that Fibonacci Polynomials

are defined recursively as f0(x) = 0, f1(x) = 1, and fi(x) = xfi−1(x)+fi−2(x).

We have defined Bi matrices as B0 = I, B1 = A and Bi = Bi−2 + A ∗Bi−1, so

we see that the Bi matrices are indeed Fibonacci polynomials with Bi = fi+1.

Then, using the explicit formula given by [3], we can write each Bk as

Bk(A) =

bk/2c∑
i=0

(
k − i

i

)
Ak−2i

n

where An is the A matrix corresponding to the k×n case. The parity of
(

n−i
i

)
determines which terms will appear, since if it is even, the term will disappear

and if it is odd, the coefficient of An−2i will be 1. Thus, we can write:

Bn(A) =

bn/2c∑
i=0

J(n− i, i)An−2i

where

J(n, k) =

 1 :
(

n
k

)
odd

0 :
(

n
k

)
even

n, k ∈ Z+, n ≥ k
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This formula greatly expedites determining the solvability for a given n and

k, since it removes the recursive quality of the definition and allows for com-

putation in one step. We will also use Lemma 1. Recall that if f0, f1, f2, ... is

a sequence of Fibonacci polynomials over GF (2), then

(1) fi is an odd function for i even and an even function not divisible by x

for i odd.

(2) fn−t + fn+t = xfnft for 0 ≤ t ≤ n

(3) f2n = xf 2
n, n ≥ 0.

Example 4. The Fibonacci polynomials we will be concerned with are, of

course, our Bi matrices. Thus, consider B3 = A3 + 2A = A3. Recall that if

we write B3 as a Fibonacci polynomial, we have B3 = f4. By (3), f4 = x ∗ f 2
2 .

Translating this back to the Bi matrices gives B3 = A ∗ (A2) = A3.

Using the lemma, we can begin to generalize solvability for fixed n and

varying k.

3.3. k× n Boards. In determining solvability, we are most concerned with

whether the Bk matrix is invertible. Knowing the invertibility of any Ai, how-

ever, will not necessarily impact whether Bk will be invertible, since the sum

of invertible matrices may not be invertible. Lemma 1 , however, gives us f2n

as the product of A and fn, since our Fibonacci polynomials are polynomi-

als of A. We know that the product of invertible matrices will be invertible,
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which allows us to apply this to our Bi matrices. First, we need to be able to

categorize An by invertibility in order to use it in the f2n formula.

Lemma 3. An is invertible if and only if n 6≡ 2 mod 3.

Proof. We will show this by induction. For the base case, the lemma is easily

tested for n = 1, n = 2 and n = 3. For our induction step, we will show that if,

for some n, A3n−3 and A3n−2 are invertible while A3n−1 is not, then |A3n| = 1,

|A3n+1| = 1, and |A3n+2| = 0. First, consider |A3n|.

First, using cofactor expansion on the first row for any m, we can write

|Am| = |Am−1| + |Am−2|. Thus, |A3n| = |A3n−1| + |A3n−2|. We have 3n− 1 ≡

2 mod 3 and 3n− 2 ≡ 1 mod 3, so by assumption, |A3n| = 0 + 1 = 1 and A3n

is invertible. Similarly,

|A3n+1| = |A3n|+ |A3n−1| = 1 + 0 = 1,

|A3n+2| = |A3n+1|+ |A3n| = 1 + 1 = 0,

and therefore, A3n+1 is invertible while A3n+2 is not. �

Note that if An is invertible, then Ai
n is invertible for all i. Therefore, in any

case where we know An is invertible, we can apply the relationship f2n = xf 2
n

to generate an infinite number of entirely solvable k × n boards.

Theorem 3. If, for some n and k, the k × n case is entirely solvable and An

is invertible, then the (2k + 1)× n case is also entirely solvable.
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Proof. We know that Bk(An) is invertible, by assumption. Note that with our

labeling, Bk(An) = fk+1(An). By Lemma 1 (3) f2k+2 = Anfk+1fk+1. This,

however, is equivalent to An ∗ Bk ∗ Bk. Thus, B2k+1 = f2k+2 = An ∗ Bk ∗ Bk.

A and Bk are invertible by assumption, so B2k+1 is invertible by assumption

and therefore, the (2k + 1)× n case is entirely solvable. �

By continuing to double the number of columns, we see that if the k × n

case is entirely solvable and An is invertible, then the (4k + 2 + 1)× n, (8k +

4 + 2 + 1)× n, and, in general, boards of size (2jk +
∑j−1

i=0 2i)× n, j ≥ 1 cases

are also solvable.

Although this theorem gives us relatively select information for any fixed n,

we can also apply it more usefully by fixing k, with the following lemma.

Lemma 4. The k × n case has the same solvability as the n× k case.

Proof. Recall that we generated R, the button push matrix by considering

the effect of pushing each button. Our labeling of the buttons, however, was

essentially arbitrary. The k × n board is really just a rotated n× k board, so

the corresponding R matrix will be generated by relabeling the buttons; the

relationships between them, however, will remain the same. We can move from

Rn, the button push matrix for the k× n case to Rk, the matrix for the n× k

case through a series of row and column exchanges. Thus, both matrices will
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have the same null space and therefore will represent systems with identical

solvability. �

Example 5. The 3× 2 board can be numbered as

1 2
3 4
5 6

yielding the button push matrix.

R2 =


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 1 0
0 1 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

 .

Rotating the board, however, gives the following relabeling:

1 → 1 3→2 5→ 3
2→ 4 4→ 5 6 → 6

These translate into the following column (and similarly, row) exchanges

R2 =
[
~c1 ~c2 ~c3 ~c4 ~c5 ~c6

]
→
[
~c1 ~c3 ~c5 ~c2 ~c4 ~c6

]
.

We can perform the given exchanges, first on the columns of R2,


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 1 1 0
0 1 1 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

→


1 1 0 1 0 0
1 0 0 1 1 0
1 1 1 0 1 0
0 1 0 1 1 1
0 1 1 0 0 1
0 0 1 0 1 1

 ,
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and then, on the rows:
1 1 0 1 0 0
1 0 0 1 1 0
1 1 1 0 1 0
0 1 0 1 1 1
0 1 1 0 0 1
0 0 1 0 1 1

→


1 1 0 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1
1 0 0 1 1 0
0 1 0 1 1 1
0 0 1 0 1 1

 .

This final matrix is exactly the button push matrix generated by the 2×3 case.

With this lemma, we can use the sequences of solvable cases generated in

the last theorem to make broader statements about the solvability of game

boards for some values of n.

Theorem 4. For j ≥ 0, the n × (
∑j

i=0 2i) game board is solvable for n 6≡

2 mod 3

Proof. We know that for n 6≡ 2 mod 3, An is invertible. Recall that An =

B1(An). Thus, for n 6≡ 2 mod 3, the 1 × n board is entirely solvable. By

the previous theorem, the (
∑j

i=0 2i) × n board will be entirely solvable for

j ≥ 1. This, however, is equivalent to the n × (
∑j

i=0 2i) case being entirely

solvable. �

This theorem gives us, among other results, that the n× 3 board is entirely

solvable whenever n 6≡ 2 mod 3

3.4. Solvability Patterns for n ≥ 4. In addition to using Fibonacci poly-

nomials to determine patterns in solvability, we can calculate the solvability
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n k × n solvable for:
4 k 6≡ 4 mod 5
5 k ≡ 0, 4 mod 6,
6 k 6≡ 8 mod 9
7 k 6≡ 2 mod 3
8 k 6≡ 6 mod 14
9 k ≡ 0, 1, 3, 6, 7, 10, 12, 13 mod 15
10 all k
11 k ≡ 0, 4 mod 6
12 all k
13 k 6≡ 2 mod 3
14 k ≡ 0, 2, 6, 8 mod 10, k 6≡ 16 mod 17
15 k 6≡ 2 mod 3
16 all k
18 all k
19 k ≡ 0, 1, 3, 6, 7, 10, 12, 13 mod 15
20 k ≡ 0 mod 2, k 6≡ 8 mod 9, k 6≡ 44 mod 64
21 k 6≡ 2 mod 3
22 all k
23 k ≡ 0, 4 mod 6
24 k 6≡ 4 mod 5
25 k 6≡ 2 mod 3
26 k ≡ 0, 2, 4, 8, 10, 12 mod 14
27 k 6≡ 2 mod 3
28 all k
30 k 6≡ 10 mod 11, k 6≡ 30 mod 31

Figure 1. Entirely solvable boards for various values of n

for fixed n and various values of k using Matlab. The program used is given

in Appendix B. This has led to conjectures about when the k × n board will

be solvable. These results are summarized in Figure 1. Some of these cases,

such as n = 7 and n = 15 follow from the theorem on Fibonacci polynomials.

Other cases are far more complex. In order to determine these patterns, we

have found the dimension of the null space for the first 200 values of k, starting
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with k = 0. For n = 14, these values are

0 1 0 2 4 1 0 2 0 5 0 2 0 1 4 2 8 1 0 6
0 1 0 2 4 1 0 2 0 5 0 2 0 9 4 2 0 1 0 6
0 1 0 2 4 1 0 2 0 5 8 2 0 1 4 2 0 1 0 6
0 1 0 2 4 1 0 10 0 5 0 2 0 1 4 2 0 1 0 6
0 1 0 2 12 1 0 2 0 5 0 2 0 1 4 2 0 1 0 6
0 9 0 2 4 1 0 2 0 5 0 2 0 1 4 2 0 1 8 6
0 1 0 2 4 1 0 2 0 5 0 2 0 1 4 10 0 1 0 6
0 1 0 2 4 1 0 2 0 5 0 2 8 1 4 2 0 1 0 6
0 1 0 2 4 1 0 2 0 13 0 2 0 1 4 2 0 1 0 6
0 1 0 2 4 1 8 2 0 5 0 2 0 1 4 2 0 1 0 6

Based on this, we predict that for k ≡ 0, 2, 6, 8 mod 10, k 6≡ 16 mod 17, the

k × n board will be entirely solvable. The patterns of solvability for n = 14,

however, turn out to be relatively simple. If n = 29, we see that the dimensions

of the null spaces follow a pattern that repeats in sets of 120, except for

elements congruent to 15 and 16 mod17, which differ between the repeated

sets. In other words, a k×29 board has the same solvability as a (k+120)×29

board, k 6≡ 15, 16, mod17. Within each set of 120 values of k, however, the

values for which the null space has dimension zero do not follow a clear pattern.

Taking n = 17 produces similar results, with the dimensions of the null spaces

appearing to repeat in sets of 167.

There is also a great deal of variance in the actual dimensions of the null

spaces for k × n. Using the dimension of the null space, we will examine the

proportion of solvable initial states for various game boards. [2] gives Theorem

1 on the proportion of solvable initial states. We can derive the same result,
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however, by considering the number of unique strategies. By definition, an

initial state ~x is solvable if and only if there exists some ~s such that R~s = ~x.

Thus, the number of solvable ~x is less than or equal to the number of ~s, since we

do not know that each R~s is unique. Therefore, an upper bound on the number

of solvable initial states for an k × n board is 2nk, since ~s has nk elements in

Z2. In order to find the exact number of solvable initial configurations, ~x, we

need to determine how many of these ~s vectors are unique.

If j is the dimension of the null space of the nk × nk button push matrix,

we can find an orthogonal basis for the null space, {~r1, ~r2, ..., ~rj}. Using this

basis, we can proceed similarly to the solution algorithm given by [1]. If we

choose some ~s, we know that R~s gives us a solvable initial state ~x. We can

then compute

R(~s + ~ri) = R~s + R~ri = R~s +~0 = ~x.

So adding any one of the basis vectors to ~s produces another strategy vector

that solves the same initial state, ~x. This holds, of course, for multiple basis

vectors — for example, R(~s + ~r1 + ~r2 + · · · + ~rj) = ~x. Thus, any linear

combination of the basis vectors added to ~s produces a non-distinct strategy

vector. To count the number of these non-distinct vectors, note that we have

~s itself, j vectors of the form ~s + ~ri,
(

j
2

)
vectors of the form ~s + ~ri + ~rk and

so on. Therefore, given any ~s, there are
∑j

i=1

(
j
i

)
other non-distinct strategy
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vectors, or, if we include ~s, a collection of

j∑
i=0

(
j

i

)

vectors, all of which solve the same initial configuration.

Finally, consider two strategy vectors, ~s and ~t such that there is no com-

bination of null space basis vectors such that ~s +
∑k

i=1 ~ri = ~t. We wish to

show that ~s and ~t are distinct. Since we have an orthogonal basis for the null

space, we know that we can choose some combination of basis vectors such

that when added to ~s, the sum is a non-distinct vector ~s′ with zeros as the last

j entries. We can find another such combination that produces ~t′ with zeros

as the last j entries. By definition, ~s′ 6= ~t′. Then, if E is the fully row-reduced

matrix equivalent to R, with F the nk × nk matrix such that FR = E, we

have R~s′ = E~s′ = ~s′ and R~t′ = E~t′ = ~t′. Therefore, R~s = R~s′ 6= R~t′ = R~t, so

~t and ~s are distinct.

We have shown that the set of all strategy vectors, ~s can be partitioned

into groups of
∑j

i=0

(
j
i

)
strategy vectors, where each group corresponds to a

distinct solvable initial state. Therefore, there are

2nk∑j
i=0

(
j
i

)
solvable initial states and

1∑j
i=0

(
j
i

)
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of the possible initial states are solvable. Of course,
∑j

i=0

(
j
i

)
= 2j, so these

results agree with those presented in [2]. We can now quantify the solvabil-

ity of a board as the fraction of initial states which are solvable, with a 1

corresponding to an entirely solvable board.

Recall that we have previously shown that on an k × n game board, the

null spaces of Bk and R will have the same dimension. Using this, and Matlab

programs to compute the dimensions of the null space of Bk for various values

of k × n, we have produced the following results on the number of solutions

on some sizes of game board.

One question that has come up frequently in previous work is which square

boards will be solvable. Using the program given in Appendix A, we have

found the results given in Figure 2 for solvability on square boards. We can

create similar charts for fixed values of n and varying k. Some values, such as

n = 2 display clear patterns, as in Figure 3.

This pattern in solvability follows from our original theorem on the k × 2

cases. Clearly, for 2k×2, the board is entirely solvable, so our solvability value

is 1. For 2k + 1× 2, we have the following theorem.

Theorem 5. The 4k + 1× 2 game board has solvability 1
2

while the 4k − 1× 2

game board has solvability 1
4
.
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n Dim(null space) Solvability:
2 0 1
3 0 1
4 4 1/16
5 2 1/4
6 0 1
7 0 1
8 0 1
9 8 1/256
10 0 1
11 6 1/64
12 0 1
13 0 1
14 4 1/16
15 0 1
16 8 1/256
17 2 1/4
18 0 1
19 16 1/65536
20 0 1

Figure 2. Solvability of n× n boards

k Dim(null space) Solvability:
1 1 1/2
2 0 1
3 2 1/4
4 0 1
5 1 1/2
6 0 1
7 2 1/4
8 0 1
9 1 1/2
10 0 1
11 2 1/4

Figure 3. Solvability on k × 2 boards
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Proof. The base cases follow from the chart above, with k = 0 and k = 1.

Now, assume the theorem holds for all k ≤ n − 1 for some n. B4n−1 =

A∗B4n−2 +B4n−3 by definition; recall from previous theorems and calculations

that B4n−2 = I and B4n−3 will either be A or 0. Since B4n−3 = B4(n−1)+1 by

assumption, we know B4n−3 has solvability 1
2

and therefore, a null space of

dimension 1. Thus, B4n−3 = A. We now have B4n−1 = A + A = 02, so B4n−1

has a 2 dimensional null space, giving 4k − 1×2 solvability 1
4
. Similarly, we can

write B4n+1 = A ∗B4n + B4n−1 = A + 02 = A, so B4n+1 has a one dimensional

null space and the 4k + 1× 2 has solvability 1
2
. �

There are similar patterns for other values of n, including 3 and 4. In some

cases, however, the solvability is difficult to predict. We summarize solvability

for many values of n and k in Figure 4.

4. Future Directions

There are a number of areas of future work, both in determining the solv-

ability of k × n rectangular game boards and also in other areas of the Lights

Out game. As is indicated by Figure 4 and Figure 1, many values of n produce

very complicated patterns of solvability. Applications of Fibonacci polynomi-

als may well be able to clarify those cases. In this work, we have used only

one result from research on Fibonacci polynomials, to prove the relationship

between the k×n and 2k + 1×2 cases. Doubtless, there are other results that
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k n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 11
2 1/4 1 1/2 1 1/4 1 1/2 1/4
3 1 1 1/8 1 1 1/4 1 1/8
4 1 1/16 1 1 1 1 1/16 1
5 1/8 1 1/4 1 1/16 1/2 1/2 1/16
6 1 1 1 1 1 1/64 1 1
7 1 1 1/16 1 1 1/4 1 1/128
8 1/4 1 1/2 1/64 1/4 1 1/2 1/4
9 1 1/16 1/2 1 1 1/2 1/256 1/2
10 1 1 1 1 1 1 1 1
11 1/8 1 1/16 1 1/128 1/4 1/2 1/64
12 1 1 1 1 1 1 1 1
13 1 1 1/2 1 1 1/128 1 1/2
14 1/4 1/16 1/2 1 1/4 1 1/32 1/4
15 1 1 1/16 1 1 1/4 1 1/256
16 1 1 1 1 1 1 1 1
17 1/8 1 1/4 1/64 1/16 1/2 1/2 1/16
18 1 1 1 1 1 1 1 1
19 1 1/16 1/8 1 1 1/4 1/256 1/8
20 1/4 1 1/2 1 1/4 1/64 1/2 1/4
21 1 1 1/2 1 1 1/2 1 1/2
22 1 1 1 1 1 1 1 1
23 1/8 1 1/32 1 1/128 1/4 1/2 1/1024
24 1 1/16 1 1 1 1 1/16 1
25 1 1 1/2 1 1 1/2 1 1/2
26 1/4 1 1/2 1/64 1/4 1 1/2 1/4
27 1 1 1/8 1 1 1/256 1 1/8
28 1 1 1 1 1 1 1 1
29 1/8 1/16 1/4 1 1/16 1/2 1/512 1/16
30 1 1 1 1 1 1 1 1

Figure 4. Solvability for various values of n

could be applied to the Bi matrices. The fraction of solvable initial states also

indicates a need for further research. Fibonacci polynomials may not apply

here, although the fraction can be determined using the Bi matrices. The

difficulty here rests in the formation of the Bi matrices. Since each is the
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sum of various powers of A, we cannot determine the dimension of the null

space purely by looking at the Am
n matrices. Finding other expressions for the

Bi matrices may be important to proving the patterns seen in the fraction of

solvable states. Another possibility is using the button push matrices instead

of the smaller B′is. This may be computationally more difficult, but would

remove the problem of sums.

Another variation on Lights Out is considering different rules, rather than

different game board sizes. For example, if the game board was a torus,

pushing a button on one edge would change the state of a button on the other

edge. This would result in a slightly different button push matrix, but would

allow for very similar solution methods. Alternatively, one could consider a

game where the buttons had more than two possible states- for example, if the

buttons could be off, red, blue, or green. This case is less analogous in terms

of solution methods, because the additional state means that operations must

be performed modulo 4. Z4, however, is not a field, complicating the matrix

operations. In this case, Smith Normal Form decomposition might be useful,

since it relies on the matrices having elements from principle ideal domains,

rather than fields.
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Appendices

Appendix A. Square Boards

This program determines the dimension of the null space for the first p n×n

boards, starting with n = 1. It does so by computing the Bn and reducing it

mod2.

p=100;

NULL=zeros(2,p);

for m=1:p

n=m;

X= eye(n,n);

W=eye(n-1,n-1);

z=zeros(1, n); %row vector

q=zeros(n-1,1); %column vector

Y= [ z ; W q] ;

T= [q W; z] ;

A= X + Y + T ;

D=zeros(n,n^2+n); % D will store the B matrices

D(:,1:n)=X;

D(:,(n+1):2*n)=A;

D(:,(2*n+1):3*n)=mod(X+(A*A), 2);
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for i=3:(n)

D(:,(i*n +1):(i+1)*n)=

mod( D(:,((i-2)*n +1):(i-1)*n)+ A*D(:,((i-1)*n +1):(i)*n), 2) ;

end

B=D(:,((n)*n +1):n^2+n); %defines B_n as the last n columns of D

R=zeros(n,n);

R=B;

E=eye(n,n);

H=eye(n,n);

for j=1:n % This loop performs row reduction modulo 2

[C,I] = max(R(j:n,j));

F=eye(n,n);

F(j,:)=E((I+j-1),:);

F((I+j-1),:)=E(j,:);

R=mod(R*F,2);

H=mod(H*F,2);

for i=(j+1):n

if R(i,j)>0,

R(i,:)=mod(R(j,:)+R(i,:),2);

H(i,:)=mod(H(j,:)+H(i,:),2);
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end

end

end

R; % R is the fully reduced matrix equivalent to B

H; % H is a matrix such that HB=R

V=null(R);

size(V);

NULL(1,m)=m;

NULL(2,m)=m-rank(R);

end

NULL

Appendix B. Fixed n Solvability

This program fixes n and varies k from 1 to p, printing the dimension of the

null space as well as the value of k in the matrix NULL. Again, in order to

determine the dimension of the null space, for each k, the program finds Bk

and then reduces mod2.

p=100;

n=11;

NULL=zeros(2,p);
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D=zeros(n,n*p+n); % D stores the B matrices

X= eye(n,n);

W=eye(n-1,n-1);

z=zeros(1, n);

q=zeros(n-1,1);

Y= [ z ; W q] ;

T= [q W; z] ;

A= X + Y + T ; % these steps form the A matrix

D(:,1:n)=X;

D(:,(n+1):2*n)=A; D(:,(2*n+1):3*n)=mod(X+(A*A), 2);

for i=3:p

D(:,(i*n +1):(i+1)*n)=

mod( D(:,((i-2)*n +1):(i-1)*n)

+ A*D(:,((i-1)*n +1):(i)*n), 2);

end

for m=1:p

B=D(:,((m-1)*n +1):(m*n));

R=zeros(n,n);

R=B;

E=eye(n,n);

H=eye(n,n);
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for j=1:n % performs row reduction modulo 2

[C,I] = max(R(j:n,j));

F=eye(n,n);

F(j,:)=E((I+j-1),:);

F((I+j-1),:)=E(j,:);

R=mod(R*F,2);

H=mod(H*F,2);

for i=(j+1):n

if R(i,j)>0,

R(i,:)=mod(R(j,:)+R(i,:),2);

H(i,:)=mod(H(j,:)+H(i,:),2);

end

end

end

R; %R here is the fully reduced matrix equivalent to B_n

H; % H is a matrix that satisfies H*B= R

V=null(R);

size(V);

NULL(1,m)=m-1;

NULL(2,m)=n-rank(R);
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end

NULL
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