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Abstract

Tuberculosis (TB) is a disease of global epidemiological concern. It is estimated
that one-third of the world’s population (including 11 million people in the US)
are currently infected with TB [11]. Insufficient or irresponsible treatment of TB
with antibiotics can select for drug-resistant bacteria, which are much more difficult
to treat [9]. In particular, Multi-Drug-Resistant (MDR) and Extensively-Drug-
Resistant (XDR) cases of TB require treatment regimens that are expensive, long
lasting, toxic, and often unsuccessful [24]. Despite the importance of drug-resistance
to understanding the current state of TB epidemiology, many published models of
TB do not take resistance into account.

In this project, a compartmental mathematical model of TB epidemiology is
presented. The model consists of four strains of TB, including one drug-susceptible
strain, two strains that are each resistant to a single drug, and one MDR strain.
This model fits accurately to several sets of relevant data collected by the CDC in
the years 2000-2013, improving upon some previous predictions for the transmission
of TB in the US. It also predicts the efficacy of various interventions with the goal
of reducing the incidence of TB and MDR TB in particular.

The effects of interventions on TB epidemiology are modeled by modifying
relevant parameter values starting at the year 2015 and comparing the projected
incidence of TB. The most promising interventions for reducing TB and MDR TB
incidence are decreasing treatment time, decreasing the potential for new infections
via quarantine, and decreasing LTBI cases in the immigrant population. However,
complete elimination of TB is not feasible for the foreseeable future.
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INTRODUCTION

0.1 TB in the US

Tuberculosis (TB) is caused by Mycobacterium tuberculosis, which usually affects the

lungs, though infection is also possible in the brain, kidneys, or spine [9–11]. TB is

spread by bacteria in the air; when a person with active TB coughs, sneezes, shouts,

or sings, the bacteria from their lungs or throat are expelled and can infect others

who breathe them in [9–12]. Symptoms of TB include weakness, decreased appetite,

weight loss, fatigue, fever, night sweats, chest pain, coughing, and hemoptysis [9–12].

According to the most recent data, in the US, there were 9,421 reported cases of TB

in 2014 and 555 TB deaths in 2013 [14].

One-third of the world’s population is estimated to be infected with TB, in-

cluding 11 million in the US, making it an important concern of public health [11].

Most of these individuals have Latent TB Infection (LTBI), which is caused by

TB bacteria existing at low levels in the body without causing symptoms or other

physical evidence of TB disease; these individuals are not infectious [10,11]. Out of

all individuals with LTBI, only 5-10% will progress to active TB disease if left un-

treated, though treatment (which lasts between three and nine months) can prevent
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progression to active disease [10,11].

Active TB results from either reactivation or exogenous infection. Reactivation

occurs when an individual with LTBI progresses to active disease. Exogenous infec-

tion occurs when an individual (who may be uninfected or already latently infected)

is newly infected with TB and immediately progresses to active disease with a trivial

latent period.

Active (symptomatic) TB is usually treated with a combination of antibi-

otic drugs, including Isoniazid and Rifampin [29]. The World Health Organization

(WHO) recommends a program called DOTS (Directly Observed Therapy - Short-

course strategy), which requires the patient to be supervised by a healthcare worker

while taking antibiotics in order to ensure adherence to the regimen [29]. Treatment

can last for six to twelve months, but may be extended beyond this timeframe for

various reasons [11]

There are three priorities for controlling TB in the US that are generally agreed

upon: 1) Individuals with active disease must be identified and treated to prevent

further transmission; 2) Those at risk for exogenous infection due to proximity to

an active patient must be treated for either active or latent TB; 3) Treatment for

LTBI must be made available in order to prevent LTBI cases from progressing to

active disease, which requires effective testing [1, 5, 6, 8, 27].

In 2014, two-thirds of new cases of TB in the US occurred in the foreign-

born population [14]. In fact, generally most US cases of TB occur in foreign-

born individuals; cases in foreign-born individuals are also more likely to be due to

reactivation than those in US-born individuals (83.7% of foreign-born cases are due

to reactivation), which suggests that individuals may become latently infected in
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their home country and progress to active disease after they have relocated to the

US [5, 13,27,28].

Currently, all prospective permanent entrants to the US are tested for active

TB via a chest X-ray and a skin or blood test to detect immune response to M.

tuberculosis [23]. If the chest X-ray is normal but the skin or blood test indicates

the presence of bacteria, the results are indicative of LTBI. In this case, further

treatment is recommended but not required, and the individual is cleared for entry

to the US [23]. In order to decrease LTBI rates in the US, Cain et al. recommend

screening specifically for LTBI in foreign-born entrants from countries with high

levels of endemic TB and providing preventative treatment before entry to the US [5].

If such a test were to be implemented, it would have to be done with rigorous

cultural sensitivity, as it has been argued that such screening is ultimately both

ineffective and discriminatory [4, 6]. Cain et al. conclude, however, that it will be

impossible to eliminate TB in the US until the LTBI burden in the foreign-born

population is confronted [6].

0.2 Drug-Resistance

Drug-susceptible TB is treated with a combination of four antibiotics: Isoniazid,

Rifampin, Ethambutol, and Pyrazinamide; these first-line drugs are the least toxic

and most effective of anti-TB drugs [24]. If these drugs are administered incorrectly;

that is, if the patient does not take all the medicine, the doctor prescribes it incor-

rectly, the patient’s access to the drugs is unreliable, or the drugs themselves are of

poor quality, then the patient may acquire drug-resistance [9].
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If a patient has drug-resistant TB, additional drugs will be administered that

may be more toxic, less effective, more expensive, and have longer treatment times

[24]. Generally, as drug-resistance increases, the survival and cure rates for TB

strains decrease considerably [22]. Despite accounting for a small number of total

cases of TB, drug-resistant strains are much more difficult and costly to treat [17].

Multi-Drug-Resistant (MDR) TB is resistant to Isoniazid and Rifampin, which

are the two most powerful drugs used to treat TB [9,12]. In 2014, 1.3% of TB cases

in the US were MDR [14].

Extensively-Drug-Resistant (XDR) TB is a very rare type of MDR TB [9,12].

XDR TB is resistant to Isoniazid, Rifampin, at least one fluoroquinolone (a type of

antibiotic), and at least one injectable second-line drug [9, 12]. Treating XDR TB

therefore requires the use of other drugs that are not as effective, have greater risk of

side effects, and cost more [12]. These drugs are also generally harder to administer;

for example, they may be injectable rather than taken orally [30]. Between 1993

and 2011, there have been 63 reported cases of XDR TB in the US [12].

Out of worldwide new TB cases, it is estimated that 3.3% are MDR, of which

9.7% are XDR [24]. Alarmingly, among cases that have received prior treatment for

TB, 20% are MDR, which indicates that unsuccessful treatments are associated with

drug-resistance [24]. In the US, resistant strains are more common in foreign-born

than US-born individuals [5].

Some strains of XDR TB are resistant to even more drugs, and it has been

proposed to extend the classification system to include these "Extremely" or "To-

tally" drug-resistant strains; however, no classification beyond XDR TB has yet

been defined by the international community [21].
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One study in Iran found fifteen cases of XDR TB that were resistant to all drugs

tested and could not be successfully treated; they defined these cases as Totally

drug-resistant (TDR) [34]. All of the TDR cases occurred in individuals who had

previously received treatment for TB and were genetically unrelated to any of the

other TDR cases. Since the cases of TDR TB were unrelated, it is unlikely that they

resulted from a few original TDR strains that were then transmitted to the other

patients. Rather, these highly resistant cases likely arose independently in each of

the fifteen cases; that is, failed treatment resulted in the evolution of TDR bacteria

in fifteen separate cases. Velayati et al. suggest that the prevalence of these TDR

TB cases could be a result of the common use of anti-TB drugs for other respiratory

diseases in Iran [34].

This project focuses on resistance to Isoniazid and Rifampin, as these are the

most common anti-TB drugs, and resistance to Isoniazid is the most common form

of drug-resistance; however, it is important to note that MDR TB may include

resistance to many more drugs beyond these [25]. A study at Hospital Pulido Valente

(a hospital in Portugal that focuses on pulmonary medicine) found that on average,

MDR TB cases exhibited resistance to seven anti-TB drugs, not just the two required

to define MDR cases [35].

The M. tuberculosis genome spontaneously accumulates mutations that cause

drug-resistance [16]. However, the mutation rate is slow enough that multiple muta-

tions for drug-resistance would almost certainly not arise in the same bacterium by

chance in order to produce MDR TB; rather, MDR TB evolves by a bottlenecking

process upon unsuccessful antibiotic treatment [17]. Indeed, it has been observed

clinically that TB strains initially resistant to a single drug can acquire resistance
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to other drugs during treatment [20].

Even with excellent adherence to treatment regimens, however, MDR can still

occur [29]. Srivastava et al. hypothesized that this is due to pharmacokinetic vari-

ability, that is, the inconsistent rates at which individual patients will absorb anti-TB

drugs [29]. Patients are given combinations of anti-TB drugs with the goal of avoid-

ing monotherapy, or treatment by a single drug, which is likely to lead to resistance.

However, if a patient absorbs some drugs unexpectedly quickly, the treatment may

not be in effect for the predicted timeframe. If a group of patients is given a combina-

tion of anti-TB drugs on the same dosage and schedule, some subset of patients will

absorb the drugs at a more rapid rate [38], and so for an unintended period of time

will be exposed to only one type of drug (monotherapy) or be effectively untreated,

creating an environment conducive to the acquisition of drug-resistance [29].

0.3 Hill Model

I have used the compartmental differential equations model of TB transmission

developed by Hill et al. in 2012 as a basic template for my model of TB. A com-

partmental model separates a population into groups, called compartments, based

on their disease state and other descriptive factors. The Hill model divides the US

population into US-born (USB) and foreign-born (FB) subpopulations, which have

different rates of LTBI prevalence and other relevant factors. These two groups also

exhibit preferred mixing; that is, USB and FB individuals are more likely to con-

tact other USB and FB individuals, respectively. This means that most exogenous

infections occur within these groups, rather than across them [19].
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An outline of their model is as follows, and the schematic is shown in Figure

1. Most individuals reside in the Susceptible compartment. Upon exogenous infec-

tion, an individual may move to a compartment for Acute LTBI or Chronic LTBI.

Acute LTBI progresses to active disease within two years, while Chronic LTBI pro-

gresses more slowly. An individual in the Chronic LTBI compartment can also be

re-infected and move to the Acute LTBI compartment. Individuals in both LTBI

compartments may progress to either Infectious TB or Non-Infectious TB, at which

point their TB is active. Treatment or self-cure can result in movement back into

the Susceptible compartment from either of the LTBI or active TB compartments.

All births enter the Susceptible compartment; FB arrivals may enter the Susceptible

or LTBI compartments. Individuals exit from every compartment due to unrelated

death; TB death only affects the active TB compartments [19].

Figure 1: Schematic of the Hill model from their 2012 paper [19]
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In their analysis, Hill et al. fit their model to data collected by the CDC on

the incidence of active cases in each subpopulation for the years 2000-2008. They

focused primarily on the possibility of eliminating TB from the US by the year 2100,

where elimination is defined as an annual incidence of fewer than one case per million

of population. They found that elimination by this date would be possible for the

USB population, but not for the FB population, and therefore, not for the overall US

population. Even if transmission of TB were completely halted, elimination would

not be reached by 2100, because the influx of LTBI cases from immigration is too

great [19].

There are two main areas in which I have extended the Hill model. The first

concerns the addition of drug-resistance. Drug-resistance is a critical component of

TB epidemiology and dynamics. Resistant cases have different rates of treatment

and cure than drug-susceptible strains, and the Hill model does not yet account for

these qualities. The second is the method of fitting the model. Hill et al. fit only to

data for incidence of active TB [19]. I fit my model to these data, as well as other

data from the CDC, including cumulative TB death. In Section 6.1, I will compare

the Hill model’s prediction to these data and show that the model overestimates

the death rate due to TB. Therefore, its predictions could be potentially unreliable,

though defense of the Hill model’s TB death rate is possible. In contrast, my model

was fit to the TB death data, which may increase accuracy.
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0.4 Resistance Models

In contrast to the model presented by Hill et al., some published mathematical mod-

els of TB transmission have included dynamics of drug-resistance. Several significant

models and their findings are presented below.

Cohen et al. 2004: This model takes into account three strains of TB:

Drug-susceptible, fit MDR, and unfit MDR. The fitness of a strain describes the

bacteria’s ability to survive and infect new hosts, among other characteristics. It

is hypothesized that MDR bacteria undergo a fitness cost when they acquire re-

sistance, so Cohen et al. investigate whether even an unfit MDR strain could be

epidemiologically dangerous. They conclude that even with such a cost, an MDR

strain would still sufficiently outcompete drug-susceptible strains to be a public

health danger [15].

Basu et al. 2007: This model focuses on TB in and around South African

hospitals, where many cases of TB are exogenously acquired. The model takes

into account three strains of TB: Drug-susceptible, MDR, and XDR. Basu et al.

conclude that without serious changes to the strategies used to combat TB, XDR

TB will become a major public health threat. However, the model does indicate

that some strategies to prevent infections within hospitals could drastically improve

this outlook [2].

Bhunu 2011: Like Basu et al., this model includes drug-susceptible, MDR,

and XDR TB [2,3]. Bhunu introduces the possibility of a Quarantine compartment

for XDR cases, as well as different treatment plans. He finds that quarantining XDR

cases reduces transmission, but acknowledges that this has practical and ethical
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conflicts [3].

Generally, these models assume a direct change from drug-susceptible TB to

MDR TB. However, it is known that resistance is acquired discretely, starting with

resistance to a single drug [20]. My model takes this into account by including

strains that are resistant only to a single antibiotic anti-TB drug, which may then

progress to MDR TB with additional acquisition of resistance.
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Chapter 1

SINGLE-STRAIN MODEL

1.1 Model

I begin by constructing a model for a single strain of drug-susceptible TB. This model

takes the form of a simple SEI (Susceptible, Exposed, Infectious) compartmental

model. The single-strain model consists of a series of ordinary differential equations

coded in RStudio. I will not include the equations for the single-strain model;

however, the equations for the four-strain model are included in Section 3.3.

This model does not yet take drug-resistance into account. A schematic dia-

gram of this model is shown in Figure 1.1.

There is a single Susceptible compartment, which contains all uninfected indi-

viduals. This compartment includes all individuals who have never been infected as

well as all individuals who have completely recovered from an infection.

There is a single Exposed compartment, which contains all individuals with

LTBI. These individuals harbor M. tuberculosis in their lungs, but they are neither
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Figure 1.1: Schematic of the single-strain compartmental model
1 : Individuals enter the Susceptible compartment through birth and immigration.
2 : Immigrants who have LTBI enter the Exposed compartment directly. Individu-
als with active TB are not permitted to immigrate to the US, so immigration does
not directly affect the Infectious compartment. 3 : Individuals leave the Susceptible
compartment to enter the Exposed compartment when they become latently in-
fected by contact with an Infectious individual. 4 : Individuals leave the Susceptible
compartment to enter the Infectious compartment when they become immediately
actively infected through contact with an Infectious individual. 5 : Individuals with
LTBI progress to active disease after some period of time and enter the Infectious
compartment. 6 : If treatment is successful, Infectious individuals return to the Sus-
ceptible compartment. 7 : If treatment is unsuccessful, Infectious individuals have
not been cured and therefore return to the Exposed compartment. 8 : Individuals
exit the Susceptible and Exposed compartments due to unrelated deaths. 9 : Indi-
viduals exit the Infectious compartment due to unrelated deaths as well as deaths
from TB.

symptomatic nor infectious.

There is a single Infectious compartment, which contains all actively infected

individuals. These individuals are symptomatic and infectious. Since this model

concerns the US population, it is assumed that all of these individuals are currently

receiving treatment. It is also assumed that patients are actually infectious only for

the early portion of their treatment.

Note that going forward, "Infectious" will specifically denote individuals in an



13

Infectious compartment. The lowercase "infectious" will denote the quality of being

able to infect others. All infectious individuals are within an Infectious compart-

ment, but not all individuals in an Infectious compartment are infectious. There are

some individuals who are actively infected (and therefore, placed in the Infectious

compartment), but are not able to infect others. Therefore they are Infectious but

not infectious.

It is assumed that there is homogeneous mixing within the US population. This

is important because it dictates that each individual is equally likely to make contact

with any other individual in the population. Therefore, the rate of new infections is

directly proportional to the proportions of Susceptible and Infectious individuals in

the population. This departs from the Hill model, which assumed preferred mixing

within the groups of US-born and Foreign-born [19]. Since my model does not make

this distinction, I assume that there is no such preference.

1.2 Fit

Using an algorithm in RStudio that generates randomized sets of parameters within

some realistic range, I fit this model to two sets of data collected by the CDC for

the years 2000-2013 [14]. As shown in Figure 1.2, the incidence of TB per year and

cumulative TB death fit well with the model’s prediction.
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Figure 1.2: Single-strain model fit to CDC data for total incidence of active cases
and cumulative TB death for the years 2000-2013

Open circles represent CDC data points [13], while solid lines represent the model’s
prediction.
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Chapter 2

TWO-STRAIN MODEL

2.1 Model

Next, I construct a model that incorporates two strains of TB. For simplicity, one

strain is assumed to be entirely drug-susceptible, while the other is assumed to be

MDR, that is, resistant to both Isoniazid and Rifampin. This model also follows the

format of an SEI compartmental model, but with additional Exposed and Infectious

compartments. The two-strain model consists of a series of ordinary differential

equations coded in RStudio. I will not include the equations for the two-strain

model; however, the equations for the four-strain model are included in Section 3.3.

A diagram of this model is shown in Figure 2.1.

There is a single Susceptible compartment, similar to the single-strain model.

There are two Exposed compartments, which together contain all individuals

with LTBI. The TB of individuals in the Exposed (Drug-susceptible) compartment

is not resistant to any antibiotic drugs, while the TB of individuals in the Exposed
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Figure 2.1: Schematic of the two-strain compartmental model
1 : Individuals enter the Susceptible compartment through birth and immigration.
2 : Immigrants who have LTBI enter one of the Exposed compartments directly. 3 :
Individuals leave the Susceptible compartment to enter an Exposed compartment
when they become latently infected through contact with an Infectious individual.
Exogenously infected individuals always enter the compartment of the same strain
as the individual who infected them. 4 : Individuals leave the Susceptible compart-
ment to enter an Infectious compartment when they become immediately actively
infected through contact with an Infectious individual. Again, these individuals
always enter the compartment of the same strain as the individual who infected
them. 5 : Individuals with LTBI progress to active disease after some period of time
and enter the corresponding Infectious compartment. 6 : If treatment is success-
ful, Infectious individuals return to the Susceptible compartment. 7 : If treatment
is unsuccessful, but resistance is not acquired, Infectious individuals return to the
corresponding Exposed compartment. 8 : Individuals who fail treatment for active
drug-susceptible TB may acquire resistance. In this case, they will exit the Infec-
tious (Drug-susceptible) compartment and enter the Exposed (MDR) compartment.
9 : Individuals exit the Susceptible and both Exposed compartments due to unre-
lated deaths. 10 : Individuals exit both Infectious compartments due to unrelated
deaths as well as deaths from TB.

(MDR) compartment is resistant to at least Isoniazid and Rifampin.

This does not account for all possible cases. For example, in reality, an in-

dividual could exist who is infected with TB that is resistant to Isoniazid but not

Rifampin. This model ignores the presence of these individuals as a necessary sim-

plification; this will be rectified in the four-strain model presented in Chapter 3.
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There are two Infectious compartments, divided similarly to the Exposed com-

partments.

The main difference in dynamics between the single-strain and two-strain mod-

els is in the acquisition of resistance. An individual in the Infectious (Drug-susceptible)

compartment is assumed to be receiving treatment. The treatment, once completed,

will have been either successful or unsuccessful. If treatment fails, the individual

is still infected with TB, but the infection is no longer active. In some such cases,

the ineffective treatment can select for drug-resistant bacteria. At this point, the

individual enters the Exposed (MDR) compartment (See Figure 2.1, 8 ).

2.2 Fit

Using a randomization algorithm in RStudio similar to that used for the single-

strain model, I fit this model to three sets of data collected by the CDC for the

years 2000-2013 [14]. As shown in Figure 2.2, the total incidence of active cases of

TB per year, incidence of MDR cases per year, and cumulative TB death fit well

with the model’s prediction.
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Figure 2.2: Two-strain model fit to CDC data for total incidence of active cases,
MDR cases, and cumulative TB death for the years 2000-2013

Open circles represent CDC data points [13], while solid lines represent the model’s
prediction. Note that the right-hand axis applies to MDR cases, which occur at
much lower quantities than total active cases and TB death do.
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Chapter 3

FOUR-STRAIN MODEL

3.1 Model

Finally, I construct a four-strain model, which will be the main focus for the re-

mainder of the project. My model incorporates four strains of TB. The first strain

is entirely drug-susceptible. The H-resistant strain is resistant to Isoniazid but not

Rifampin; the R-resistant strain is resistant to Rifampin but not Isoniazid. The

fourth strain is resistant to both Isoniazid and Rifampin, making it MDR. Cases of

TB that are resistant to these two drugs as well as additional antibiotic drugs will

also be placed in the MDR category. Thus, in this model, all possible combinations

of resistance are accounted for. The four-strain model consists of a series of ordinary

differential equations coded in RStudio. These equations are included in Section 3.3.

A diagram of this model is shown in Figure 3.1.

As before, there is a single Susceptible compartment.

There are four Exposed compartments that collectively contain all individuals
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Figure 3.1: Schematic of the four-strain compartmental model
In this schematic, birth and death arrows are omitted for simplicity. As in the pre-
vious models, all births enter the Susceptible compartment. Immigrants enter the
Susceptible or one of the Exposed compartments, depending on whether they have
LTBI, and the strain with which they are infected. Individuals exit all compartments
due to unrelated death, and exit the Infectious compartments due to death from TB.
1 : Individuals leave the Susceptible compartment to enter an Exposed compartment
when they become latently infected through contact with an Infectious individual.
Exogenously infected individuals always enter the compartment of the same strain
as the individual who infected them. 2 : Individuals leave the Susceptible compart-
ment to enter an Infectious compartment when they become immediately actively
infected through contact with an Infectious individual. Again, these individuals
always enter the compartment of the same strain as the individual who infected
them. 3 : Individuals with LTBI progress to active disease after some period of time
and enter the corresponding Infectious compartment. 4 : If treatment is success-
ful, Infectious individuals return to the Susceptible compartment. 5 : If treatment
is unsuccessful, but resistance is not acquired, Infectious individuals return to the
corresponding Exposed compartment. 6 : Individuals who fail treatment for active
drug-susceptible TB may acquire resistance. In this case, an individual exits the
Infectious (Drug-susceptible) compartment and enter the Exposed (H-resistant) or
(R-resistant) compartment. 7 : Individuals who fail treatment for active H-resistant
or R-resistant TB may acquire additional resistance to become MDR. In this case,
they will exit the Infectious (H-resistant) or (R-resistant) compartment and enter
the Exposed (MDR) compartment.

with LTBI. They are divided into these four compartments by the level of resistance

against the two main anti-TB drugs, Isoniazid and Rifampin.
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Similarly, there are four Infectious compartments divided in the same manner.

The dynamics of resistance acquisition are similar to those of the two-strain

model, but with more complexity. As before, an individual in the Infectious (Drug-

susceptible) compartment is assumed to be receiving treatment, which may be un-

successful. In some cases, ineffective treatment may select for bacteria that are

resistant to one anti-TB drug. Resistance to only one drug may be acquired at a

time, so the individual can move from the Infectious (Drug-susceptible) compart-

ment to the Exposed (H-resistant) or Exposed (R-resistant) compartments, but not

to the Exposed (MDR) compartment (See Figure 3.1, 6 ). However, an individual

in either the Infectious (H-resistant) or (R-resistant) compartments may, in the cur-

rent round of treatment, acquire resistance to a second drug, and progress to the

Exposed (MDR) compartment (See Figure 3.1, 7 ).

This model differs from the Hill model in several key ways, which will now be

discussed.

One deviation from the Hill model is in the progression from the Exposed to

Infectious compartments. The Hill model includes two Exposed compartments, one

for Chronic LTBI and one for Acute LTBI. After being exogenously infected, an

individual may enter the Chronic LTBI compartment, which progresses to active

disease very slowly, or they may enter the Acute LTBI compartment, which pro-

gresses to active disease more quickly [19]. In my model, there is only one Exposed

compartment, and it corresponds roughly to the Hill model’s Chronic LTBI compart-

ment, in that it allows only slow progression. An individual whose TB progresses

quickly moves directly from the Susceptible compartment to an Infectious compart-

ment in my model, without passing through an Exposed compartment. This change
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allows my model to contain four fewer compartments, which is an extremely useful

simplification.

Similarly, Hill’s model includes two compartments for active disease. Both

compartments contain individuals with active TB, but only one is actually infec-

tious; the other contains individuals with non-infectious TB [19]. In my model, I

have instead included a parameter q to represent the proportion of active cases that

are capable of infecting others, which gives an effectively similar result. This simpli-

fication again reduces the number of necessary compartments, which increases the

model’s efficiency.

Hill’s model also includes dynamics of self-cure [19], which my model does not.

At low rates, an infected individual’s immune system may cure their TB without

any outside treatment [31]. However, this occurs at rates that are so small as to be

trivial, so their dynamics can be included in other aspects of the model, rather than

explicitly stated, while maintaining accuracy.

While my model does not explicitly account for self-cure, much of this behavior

is, in fact, included within the scope of the model. For example, individuals who self-

cure from the active disease state are counted among those who receive successful

treatment.

Individuals may also self-cure from the latent disease state, in which case they

will not be counted as ever being latently infected in my model. There is little

accurate data for the number of LTBI cases at any given time, since asymptomatic

individuals are unlikely to be tested for TB infection. It is probable that more

individuals than are accounted for in my model have LTBI, but some of them self-

cure before progressing to active disease. In any case, they have a negligible effect
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on the dynamics of Infectious TB upon which I am focusing, so they may be safely

uncounted.

The Hill model also includes the possibility of re-infection [19], which my model

excludes. Re-infection occurs when an individual with LTBI becomes exogenously

infected again by an Infectious individual, which causes them to progress to active

disease. In the Hill model, this is represented as movement from the Chronic to

Acute LTBI compartment [19]. In my model, I do not distinguish between Chronic

and Acute LTBI, so the progression from latent to active disease is indistinguish-

able whether it is due to natural disease progression or a new exogenous infection.

Therefore, the possibility of re-infection need not be explicitly taken into account.

My model makes additional assumptions that will now be discussed.

It is assumed that after successful treatment and cure, individuals receive no

immunity to TB. There is conflicting evidence for whether such immunity occurs in

reality. Therefore, in this model, cured individuals reenter the Susceptible compart-

ment and have an equal likelihood of being exogenously infected as individuals who

have never had TB.

Finally, the model assumes that no individuals are vaccinated for TB. The

Bacille Calmette-Guérin (BCG) vaccine may be used to prevent TB, but it is gener-

ally only administered to children in some countries outside the US [12]. In the US,

the CDC does not recommend the use of BCG due to its limited effectiveness [12].

Therefore, it is reasonable to assume that no individuals in the US have been vacci-

nated against TB. Individuals who immigrate to the US may have been vaccinated,

but since the vaccine is largely ineffective in adults, their transmission dynamics can

be assumed to be unaffected by the vaccine.
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As discussed, these assumptions do not decrease the accuracy of my model, but

contribute to simplifying the transmission dynamics expressed in this simulation.

3.2 Fit

Using a similar randomization algorithm in RStudio to those used in the single-

strain and two-strain models, I fit this model to four sets of data collected by the

CDC for the years 2000-2013 [14]. As shown in Figure 3.2, the total incidence of

active cases of TB per year, incidence of active H-resistant cases per year, incidence

of active MDR cases per year, and cumulative TB death fit well with the model’s

prediction.

The process of obtaining this fit will be discussed in more detail in Chapter 4.

3.3 Differential Equations

The equations used to produce the four-strain model are below. The parameters

used in these equations are listed in Table 3.1 with their descriptions and ranges.

The parameter values for this model were constrained within certain acceptable

ranges based on reasonable epidemiological assumptions.

S denotes the Susceptible compartment. E and I denote the Exposed and

Infectious compartments, respectively. These compartments are indexed from 1 to

4 to describe the level of drug-resistance of the strain. That is, E1 and I1 refer to

the Exposed and Infectious compartments of drug-susceptible TB; E2 and I2 refer

to these compartments for H-resistant TB; E3 and I3 refer to R-resistant TB; E4
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Figure 3.2: Four-strain model fit to CDC data for total incidence of active cases,
H-resistant cases, MDR cases, and cumulative TB death for the years

2000-2013 [13].
Open circles represent CDC data points, while solid lines represent the model’s
prediction. Note that the right-hand axis applies to H-resistant and MDR cases,
which occur at much lower quantities than total active cases and TB death do.

and I4 refer to MDR TB. D represents a compartment for individuals that die of

TB. This compartment is cumulative; unlike other compartments, individuals enter

but do not leave. Finally, N denotes the total population of the US.

S ′ = ρN − qt1λ
SI1
N
− qt2λ

SI2
N
− qt3λ

SI3
N
− qt4λ

SI4
N

+ z1φ1I1 + z2φ2I2 + z3φ3I3

+ z4φ4I4 + (1− l)αN − µ0S

E ′
1 = (1− p) qt1λ

SI1
N
− vLE1 + (1− y1) (1− z1)φ1I1 + lα (1− r2 − r3 − r4)N − µ0E1

I ′1 = pqt1λ
SI1
N

+ vLE1 − φ1I1 − µI1 − µ0I1
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E ′
2 = (1− p) qt2λ

SI2
N
− vLE2 + (1− y2) (1− z2)φ2I2 + γ (1− z1) y1φ1I1 + lαr2N

− µ0E2

I ′2 = pqt2λ
SI2
N

+ vLE2 − φ2I2 − µI2 − µ0I2

E ′
3 = (1− p) qt3λ

SI3
N
− vLE3 + (1− y2) (1− z3)φ3I3 + (1− γ) (1− z1) y1φ1I1 + lαr3N

− µ0E3

I ′3 = pqt3λ
SI3
N

+ vLE3 − φ3I3 − µI3 − µ0I3

E ′
4 = (1− p) qt4λ

SI4
N
− vLE4 + y2 (1− z2)φ2I2 + y2 (1− z3)φ3I3 + (1− z4)φ4I4

+ lαr4N − µ0E4

I ′4 = pqt4λ
SI4
N

+ vLE4 − φ4I4 − µI4 − µ0I4

D′ = µ (I1 + I2 + I3 + I4)

N ′ = ρN + αN − µ (I1 + I2 + I3 + I4)− µ0N

(3.1)
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Table 3.1: Parameters

Parameter Description Range
a2 Proportion of initial LTBI cases that are H-

resistant
(0, 0.2)

a3 Proportion of initial LTBI cases that are R-
resistant

(0, 0.2)

a4 Proportion of initial LTBI cases that are MDR (0, 0.2)
α Immigration rate 0.00425
b Of initial active cases that are neither MDR nor H-

resistant, the proportion that are drug-susceptible
(0.5, 1)

γ Proportion of cases of single resistance acquisition
where H-resistance is acquired

(0, 1)

l Proportion of immigrants that have LTBI (0, 0.3)
λ Effective contact rate (0, 50)
µ TB mortality rate (0, 0.5)
µ0 Mortality rate unrelated to TB 0.013
p Proportion of exogenous infections that are acute (0, 0.3)
φ1 Rate at which Infectious (Drug-susceptible) indi-

viduals end treatment
(0.6, 0.9)

φ2 Rate at which Infectious (H-resistant) individuals
end treatment

(0.5, 0.9)

φ3 Rate at which Infectious (R-resistant) individuals
end treatment

(0.3, 0.9)

φ4 Rate at which Infectious (MDR) individuals end
treatment

(0.3, 0.5)

q Proportion of active cases that have the potential
to be infectious

(0, 1)

r2 Proportion of immigrant LTBI cases that are H-
resistant

(0, 0.2)

r3 Proportion of immigrant LTBI cases that are R-
resistant

(0, 0.2)

r4 Proportion of immigrant LTBI cases that are MDR (0, 0.2)
ρ US birth rate 0.0179
t1 Proportion of treatment time when individuals are

infectious - Drug-susceptible
(0, 0.1)

t2 Proportion of treatment time when individuals are
infectious - H-resistant

(0, 0.1)
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t3 Proportion of treatment time when individuals are
infectious - R-resistant

(0, 0.1)

t4 Proportion of treatment time when individuals are
infectious - MDR

(0, 0.1)

vL Progression rate from latent to active infection (0, 0.01)
y1 Proportion of failed treatments for drug-

susceptible TB that result in H- or R-resistance
(0, 1)

y2 Proportion of failed treatments for H- or R-
resistant TB that result in MDR

(0, 1)

z1 Proportion of treatment courses for Drug-
susceptible TB that are successful

(0.6, 0.9)

z2 Proportion of treatment courses for H-resistant TB
that are successful

(0.5, 0.9)

z3 Proportion of treatment courses for R-resistant TB
that are successful

(0.5, 0.9)

z4 Proportion of treatment courses for MDR TB that
are successful

(0.1, 0.8)
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Chapter 4

MODEL FITTING

4.1 Algorithm

The randomization algorithm coded in RStudio (see Appendix A for the full code)

was used to fit the four-strain model. It takes in epidemiological data from the CDC

and acceptable parameter ranges and returns a parameter set that approximately

fits the simulation to these data.

To produce a realistic fit, I first assured that the model maintained an accu-

rate total population by setting constant values for ρ (birth rate), µ0 (death rate

unrelated to TB), and α (immigration rate). These are the main parameters that

control the differential equation for N ′, that is, the rate of change of the US popula-

tion as a whole. These parameters are set to constant, realistic values that produce

an accurate total population for the years 2000-2015, as shown in Figure 4.1.

The randomization algorithm fits the model’s simulation to four sets of data

for the years 2000-2013. These datasets are the total incidence of active cases of
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Figure 4.1: Four-strain model fit to census data for total US population, 2000-2015
Open circles represent total population data points [18], while solid lines represent
the model’s prediction.

TB, active H-resistant cases, active MDR cases, and cumulative TB death in the

US. The algorithm generates hundreds of sets of parameters by randomly choosing

parameter values within their acceptable ranges.

The fit of the simulation generated by these sets of parameters is quantified

using a sum-of-squares method to compare the model’s outcome to each of the four

datasets from the CDC. As shown in the following equations, for each of the four

datasets, the value predicted by the simulation is compared to the actual value from

the CDC data at each year. These four difference values are then summed to obtain

a measurement of the total fit of the simulation to these datasets.
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Differencej =
2013∑

i=2000

(
Simulationi − CDCi

CDCi

)2

forj ∈ {1, 2, 3, 4}, representing the four datasets

Total Difference =
4∑

j=1

Differencej

(4.1)

To support my randomization algorithm, I performed control trials to prove

that the algorithm was effective. In these trials, I generated a randomized set of

parameters and used the simulation produced by these parameters in the years 2000-

2013 as the datasets to which the randomization would fit. From this original set of

parameters, I generated four datasets corresponding to the CDC data I used in the

experimental trials. That is, one value per year for 2000-2013 for total incidence of

active cases, H-resistant cases, MDR cases, and cumulative TB death.

Using these as my datasets, I ran the randomization algorithm three times to

determine whether it could produce qualitative fit and return the known parameter

values. A representative trial is shown in Figure 4.2.

The trials all produced good fit to the original data. However, the three sets

of parameter values generated by the randomization algorithm did not match each

other, and did not match the original values for many parameters. This shows that

fitting qualitatively is not sufficient to ensure accurate parameters, which makes

it especially important to establish epidemiologically realistic ranges for parameter

values.
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Figure 4.2: Control trial of the randomization algorithm
The fit produced by randomization in four datasets is plotted (left). When the
control trials are extended to the year 2100 (right), the total number of active cases
is variable. Open circles represent data generated by a random set of parameters.
Solid lines represent simulations generated by fitting to these data.

Further, despite the close fit to the data for 2000-2013, the control trials showed

notable qualitative variation when their predictions were extended to the year 2100,

as shown in Figure 4.2.

While the three trials showed good fit for the interval 2000-2013 to which they

were fit, their long-term behavior is quite variable. This reiterates the importance

of limiting parameter values to realistic ranges. Since the long-term behavior may

vary, when generating simulations for this project, I produced twenty reasonable

parameter sets and chose a final simulation based on the consensus of long-term

qualitative behavior.



33

4.2 Parameter Observations

After generating twenty reasonable parameter sets, I compared the values gener-

ated for each parameter. For several parameters, an approximately equal value was

produced in the majority of trials. These parameters are as follows:

• b, the proportion of unaccounted active cases that are drug-susceptible. This

is not a parameter that is used in the differential equations; rather, it is used to

set the initial conditions of the simulation. According to data from the CDC

[14], there is a known quantity of total active cases in the US, which includes

known quantities of H-resistant cases and MDR cases. However, my model also

divides total active cases into R-resistant and drug-susceptible cases. Cases

reported to the CDC that are neither H-resistant nor MDR may be drug-

susceptible or R-resistant, at some proportion b.

• γ, the proportion of cases of acquisition of resistance to a single drug where

H-resistance is acquired.

• p, the proportion of exogenous infections that are acute, that is, the proportion

of infections that are immediately active.

• φ1, the rate at which Infectious (Drug-susceptible) individuals end treatment

for TB.

• φ2, the rate at which Infectious (H-resistant) individuals end treatment for

TB.

• φ4, the rate at which Infectious (MDR) individuals end treatment for TB.
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• r2, the proportion of LTBI cases in immigrants that are H-resistant.

• t3, the proportion of time during the treatment of R-resistant TB during which

individuals are actually infectious.

• z1, the proportion of successful treatments of drug-susceptible TB.

• z2, the proportion of successful treatments of H-resistant TB.

• z3, the proportion of successful treatments of R-resistant TB.

• z4, the proportion of successful treatments of MDR TB.

Note that these parameters are not necessarily the most important in terms of

sensitivity analysis (this will be addressed in Section 7.2), but are rather the most

consistent over the twenty randomization trials.

Setting these parameters constant to their consensus values and repeating ran-

domization continues to produce good fit, as shown in Figure 4.3, indicating that

these values are indeed reasonable.

4.3 Final Parameter Values

The final, consensus set of parameter values that will be used for subsequent analysis

are given in Table 4.1. Their fit to CDC data for the years 2000-2013 is shown in

Figure 4.4.

These parameters are consistent with epidemiological data or intuition in sev-

eral respects.
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Figure 4.3: Plot of simulation with constant parameters fit to CDC data (open
circles) [13]

Note that the right-hand axis applies to drug-resistant cases, which occur at much
lower quantities than total active cases and TB death do.

The a parameters represent the proportion of LTBI cases in the initial condition

of the model which are H-resistant, R-resistant, and MDR, respectively. Since the

presence of LTBI cases and their level of drug-resistance are generally unknown,

these values cannot be confirmed. However, it is reasonable that most cases of LTBI

are drug-susceptible, which is reflected in the parameter values, since the sum of

these terms is much less than 0.5. According to the CDC, there are more active

cases of H-resistant TB than MDR TB [14]. It is reasonable to suppose that this

trend is reflected in the amounts of LTBI cases. This is true for these parameters,

since a2 > a4.

The constant α represents the rate of immigration into the US, and is calculated

directly from immigration statistics [40].

b represents the proportion of initial active cases that are drug-susceptible out
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Table 4.1: Parameter Values

Parameter a2 a3 a4 α b γ l
Value 0.06 0.04 0.005 0.00425 0.95 0.5 0.01

λ µ µ0 p φ1 φ2 φ3 φ4

30 0.04 0.013 0.3 0.85 0.3 0.3 0.1

q r2 r3 r4 ρ t1 t2 t3
0.7 0.06 0.05 0.01 0.0179 0.02 0.01 0.02

t4 vL y1 y2 z1 z2 z3 z4
0.01 0.001 0.5 0.5 0.9 0.9 0.9 0.8

of those cases that are not assigned a compartment by the CDC data. That is,

cases that are not described by the CDC as being H-resistant or MDR. These cases

may be drug-susceptible at some proportion b, or they may be R-resistant at the

proportion (1 − b). Since drug-resistance is still relatively rare, it is reasonable to

suppose that most of these remaining cases are drug-susceptible, and only a minority

are R-resistant. Therefore the high value of b = 0.95 is reasonable.

The constant µ0 represents the US death rate unrelated to TB. In 2000, the

average life expectancy in the US was 76.8 years [39]. The reciprocal of this value

is approximately equal to µ0 = 0.013.

The φ parameters represent the rate at which Infectious individuals end treat-

ment for each strain. These are rate parameters, so as treatment time increases,

the φ parameters will decrease. Treatment of drug-susceptible strains usually lasts

approximately six months [24]; this duration gives a parameter of 1 − e−1
0.5 = 0.86,

which is consistent with the chosen value of φ1 = 0.85. Treatment time generally

increases with increasing resistance, which is consistent with the parameter values

such that φ1 > φ2, φ3 > φ4.

q represents the proportion of active cases that are able to infect others. Note
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Figure 4.4: Plot of simulation with final parameters fit to CDC data (open
circles) [13]

Note that the right-hand axis applies to drug-resistant cases, which occur at much
lower quantities than total active cases and TB death do.

that while all active cases are in the Infectious compartment, they are not all in-

fectious; some active cases are noninfectious. This parameter value of q = 0.7 is

consistent with the Hill model, which used a value of q = 0.708 [19].

The r parameters represent the proportion of immigrant LTBI cases that are

infected with each strain of TB. As with the a parameters, most LTBI cases should

be drug-susceptible, and there should be fewer MDR cases than H-resistant cases.

This is consistent with these parameters, since the sum of the r values is much less

than 0.5 and r2 > r4.

The constant ρ represents the US birth rate. This parameter value of ρ = 0.0179

is consistent with the Hill model, which used a value of ρ = 0.018 [19].

The t parameters represent the proportion of treatment time during which
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actively infected individuals are capable of infecting others. The amount of time

individuals are infectious remains relatively constant, so the proportion should de-

crease as total treatment time increases. As treatment time increases, the φ rate

parameters decrease, and the proportions t should decrease, which is consistent with

the parameter values. That is, since φ1 ≥ φ2, φ3 ≥ φ4, then t1 ≥ t2, t3 ≥ t4.

vL represents the progression rate from latent to active infection. This param-

eter value of vL = 0.001 is consistent with the Hill model, which used a value of

vL = 0.0014 [19].

This epidemiological evidence combined with the qualitative fit of the simula-

tion using these parameters supports these values as accurate.
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Chapter 5

PREDICTIONS

5.1 Long-Term Behavior

Figure 5.1 plots the prediction of the simulation through the year 2100 for each of

the four strains of active TB.

While the incidence of each category of active TB is expected to decrease,

there is a trend towards an increasing proportion of drug-resistant cases. Figure 5.2

illustrates the proportion of all active cases that are expected to be drug-resistant

or MDR. These proportions are expected to increase approximately after the year

2020, and continue increasing seemingly indefinitely. Due to the difficulty of treating

drug-resistant TB, this predicts great challenges in the future of TB control.

Another important consideration is the possibility of elimination. Elimination

of TB is defined as an incidence of fewer than one case per million in population [13].

As shown in Figure 5.3, the simulation does not predict a possibility for elimination

before 2100, which is consistent with the predictions made by the Hill model [19].
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Figure 5.1: Plot of simulation with final parameters through the year 2100
The incidence of each strain of active TB is expected to decrease. Note that the
right-hand axis applies to drug-resistant cases, which occur at much lower quantities
than drug-susceptible cases do.

Figure 5.2: Plot of proportion of drug-resistant and MDR active cases through the
year 2100

Note that the right-hand axis applies to the proportion of MDR cases, which is much
lower than the proportion of all drug-resistant cases.
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Figure 5.3: Plot of the potential for elimination of TB
The simulation does not predict elimination by 2100.

5.2 Analysis

5.2.1 Immigration

The effects of immigration on the state of TB in the US can be analyzed by compar-

ing the model’s simulations with and without immigration. All else being equal, if

the parameter α is set to a value of 0, immigration into the US is effectively halted

after the year 2000. The consequences of removing immigration from the simulation

are illustrated in Figure 5.4.

When immigration is removed, the total incidence of active cases of TB does

not show a major reduction until approximately the year 2020. By the year 2100,

the total incidence is reduced by approximately 28%. That is, in general terms,

28% of the incidence of cases predicted in the year 2100 by the model are the

result of immigration. These removed cases include not only immigrants who were
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infected with LTBI upon entering the US, but also immigrants who would have

been exogenously infected with TB after arriving in the US and all individuals who

would have been exogenously infected with TB by an actively infected immigrant

after their arrival.

Removing immigration from the simulation does not show a noticeable effect

on the proportion of all cases that are drug-resistant. However, the proportion of

cases that are MDR is reduced. This suggests that immigrant populations may

contribute more, proportionally, to MDR cases than to other strains.

Perhaps surprisingly, removing immigration increases the incidence per million

in population, making the goal of elimination less realistic. While preventing im-

migration after the year 2000 decreases the rate of TB incidence, it also decreases

the total US population. This reduction in total population may explain why the

incidence per million increases even as total incidence is reduced.

5.2.2 Reactivation and Exogenous Infection

The new cases predicted by the simulation can be separated into two categories:

reactivated cases and exogenous infections. These categories describe the method

by which an individual enters an Infectious compartment.

Reactivation cases are all those active cases that are the result of disease pro-

gression from the latent stage. Therefore, reactivation cases are represented by

movement from an Exposed compartment to an Infectious compartment (See Fig-

ure 3.1, 3 ).

In contrast, exogenous infections are all those active cases that are the imme-
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diate result of infectious contact between an Infectious person and a Susceptible

person. Therefore, exogenous cases are represented by movement from the Suscep-

tible compartment to an Infectious compartment (See Figure 3.1, 2 ).

These two categories account for all possible entrants into the Infectious com-

partment. That is, for one of the four Infectious compartments i, where i ∈

{1, 2, 3, 4}:

I ′i = pqtiλ
SIi
N

+ vLEi − φiIi − µI4 − µ0Ii

Reactivation = vLEi

Exogenous infections = pqtiλ
SIi
N

(5.1)

Figure 5.5 plots the incidence of active cases in both categories for each of the

four strains. Since it is unknown whether the cases that exist at the beginning of

the simulation (in the year 2000) are due to exogenous infection or reactivation, all

of these categories begin with a value of 0.

By the year 2100, the predictions of the simulation indicate that for all strains,

more cases occur as a result of reactivation than exogenous infection. In the year

2100, the ratio of reactivation cases to exogenous infection cases can be computed

for each strain. For the drug-susceptible strain, this ratio is approximately 6.1 : 1.

For the H- and R-resistant strains, this ratio is 4.5 : 1 and 1.8 : 1, respectively. For

the MDR strain, this ratio is 1.4 : 1.

While reactivation cases outnumber exogenous cases in all strains, drug-resistant
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strains (especially R-resistant and MDR strains) show a much lower proportion of

reactivation cases to exogenous infections.

This is unexpected given the dynamics of drug-resistant strains. Since cases

of acquired resistance enter the Exposed compartments of drug-resistant strains,

their Exposed compartments could be expected to be proportionally larger than the

Exposed (Drug-susceptible) compartment, which has no equivalent input. In this

case, it might be expected that proportionally more reactivation cases would occur

in the drug-resistant strains. Since reactivation cases are described by movement

from an Exposed compartment to an Infectious compartment, a larger Exposed

compartment could be predicted to result in greater potential for reactivation cases.

However, the opposite effect is seen: the drug-resistant strains show fewer reactiva-

tion cases proportionally than the drug-susceptible strain.

This suggests that exogenous infections are more of a concern for drug-resistant

strains than they are for drug-susceptible strains. It may be, therefore, that quaran-

tine for these particular strains would be an effective measure for reducing incidence

of the drug-resistant strains. This potential intervention will be explored in more

detail in Section 8.6.
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Figure 5.4: Comparison of the model’s predictions to simulation without
immigration

Dashed lines represent simulations with the immigration rate set to α = 0. When
immigration is removed, the total incidence of active cases is decreased (top left).
The proportion of drug-resistant cases is unaffected, but the proportion of MDR
cases is decreased (top right). Incidence per million in population is increased (bot-
tom).
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Figure 5.5: Comparison of exogenous and reactivation infections
Solid lines represent incidence of new cases resulting from reactivation. Dotted lines
represent incidence of new cases resulting from exogenous infection. Note that the
right-hand axis applies to drug-resistant cases, which occur at much lower quantities
than drug-susceptible cases do.



47

Chapter 6

COMPARISON TO HILL

6.1 Extensions of the Hill Model

My four-strain model presented above builds upon the Hill model in several valuable

respects.

First, I have included dynamics of drug-resistance. This is an important

change, especially regarding parameter values. In models that do not differenti-

ate between drug-susceptible and drug-resistant cases, the increased treatment time

and decreased treatment success that is typical of resistant cases cannot be reflected.

According to my model, drug-resistant cases are predicted to make up an increasing

proportion of all active cases of TB, so these dynamics are of increasing importance.

Second, my model is potentially more accurate to known data collected by the

CDC than the Hill model, due to my use of additional data. Hill et al. fit their

model only to data for total incidence of active cases for 2000-2008 [19], whereas I

used four sets of data for the years 2000-2013 (total incidence of TB, incidence of
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H-resistant TB, incidence of MDR TB, and cumulative TB death). The Hill model

does not include resistance, so the datasets of H-resistant and MDR cases would not

have been useful, but their model does include death due to TB, so its prediction

can be compared to CDC data for TB death. This plot is shown in Figure 6.1. The

TB death rate predicted by the Hill model overestimates these reported TB deaths.

In contrast, my model was fit to this dataset, and therefore predicts values that are

more accurate to these data.

Figure 6.1: Comparison of TB death predicted by the Hill model to CDC data
Cumulative deaths from TB disease predicted by the Hill model are shown by the
solid line. Open circles represent CDC data for cumulative TB death for the years
2000-2012 [13].

However, it can be argued that the Hill model takes into account TB deaths

that go unreported, and that this causes the increased death rate. It is true that TB

is more prevalent in at-risk populations that include, among others, undocumented

immigrants and the homeless, which may be insufficiently documented by the CDC.
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For this reason, it is likely that TB case rates and TB death rates are underreported.

However, the Hill model fits accurately to the data on incidence of active cases

collected by the CDC; that is, the model does not account for entirely unreported

cases. Therefore, the Hill model would be including cases that are reported to the

CDC and result in death, but where TB is not recorded as the official cause of death.

Given the discrepancy between the Hill model’s prediction and reported TB

death, the Hill model suggests that nearly half of all actual TB deaths go unreported.

Since such cases are by definition unknown, there cannot be accurate data as to their

prevalence. Still, this magnitude of unreported cases seems extreme, and the TB

death rate predicted by the Hill model is at least questionable.

Third, I suggest that the Hill model predicts a rate of LTBI in immigrants

that is unrealistically high. The parameter the Hill model uses for the proportion

of foreign-born arrivals that have LTBI is f = 0.187; this value is assumed [19]. In

contrast, my parameter for this same proportion is lower by more than an order of

magnitude: l = 0.01

Indeed, since realistically most cases of LTBI go undetected, the true value

cannot be known with certainty, and it may lie somewhere between these two es-

timates. However, the Hill model’s value is potentially too extreme. While it is

a widely quoted estimate that one-third of the world’s population is infected with

LTBI, immigrants to the US are not a random sample of the world’s population,

and could be expected to show a rate of LTBI much lower than one-third, and even

lower than the Hill model’s estimate.

One potentially illuminating study was performed by Walter et al. on immi-

grants to California from the Philippines [37]. TB rates are extremely high in the



50

Philippines; in 2000, Tupasi et al. estimated that over 60% of Filipinos have LTBI

- nearly twice the worldwide rate [32].

Out of the 123,114 Filipino immigrants included in the study by Walter et al,

793 cases of active TB were reported in the years 2001-2010. Of these, the authors

estimated that 204 were due to LTBI [37]. Since 5-10% of all LTBI cases progress to

active disease, at maximum perhaps 4,080 of these immigrants had undetected LTBI

when they entered the US. This would suggest a maximum proportion of immigrants

with LTBI of approximately 0.033.

This is much lower than the value predicted by the Hill model, even though it

is based on a population already disposed towards high rates of LTBI. Since the base

rate of LTBI in the population of the Philippines is twice the rate for the world as

a whole, intuitively, the LTBI rate in immigrants from the world population would

be expected to be half that of these Filipino immigrants, or 0.0165. This is an

interesting result, though it must be noted that this conclusion is uncertain; the

available data on LTBI prevalence is too limited for confidence.

If this is true, though, then the Hill model’s parameter value of f = 0.187 [19]

overestimates the true amount of immigrant LTBI cases. It is possible that my

parameter value of l = 0.01 may underestimate the immigrant LTBI burden, but in

light of these data, it does not seem to be unreasonably low.

6.2 Fitting to Hill

Next, I use my randomization algorithm to compare my model to the Hill model’s

predictions. This will allow me to identify the factors most responsible for the
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differences between the two simulations.

First, I removed resistance from the four-strain model. I did this by setting

relevant parameters to 0, so that there could be no entry into any of the drug-

resistant Exposed or Infectious compartments (effectively returning to the single-

strain model). I used the randomization algorithm to produce several sets of pa-

rameters. A plot of the resulting simulations is shown in Figure 6.2. From this, it

is clear that removing resistance alone is not sufficient for my model to show quali-

tative agreement with the Hill model. The Hill model predicts an increase in total

incidence that is not reflected in most of my model’s simulations, and overall the

Hill model predicts greater incidence than my model does.

Figure 6.2: Comparison of the Hill model’s prediction to my model’s prediction,
when resistance is removed

Open circles represent CDC data for total active cases [13].

Therefore, I next attempted to match my model to the Hill model by fitting
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Figure 6.3: Comparison of the Hill model’s prediction to my model’s prediction,
when fit only to the data used to fit the Hill model

Open circles represent CDC data for total incidence of active cases [13].

only to the data to which the Hill model was fit; that is, total incidence of active

cases for the years 2000-2008 [19]. To consider the effect of this change alone, drug-

resistance was reinstated in these trials. The resulting plot is shown in Figure 6.3.

From this, it is clear that limiting the data to which my simulations are fit still does

not produce good qualitative fit with the Hill model’s predictions.

Since neither of these methods of comparison to the Hill model produced good

fit, I combined their approaches. That is, I removed resistance from my model as

before, and fit the model only to the data used to fit the Hill model. The resulting

plot is shown in Figure 6.4. From this, it is clear that even when these strategies are

combined, my model does not produce simulations qualitatively similar to the Hill

model’s. Further, limiting the model in this way produces simulations that are much
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Figure 6.4: Comparison of the Hill model’s prediction to my model’s prediction,
when resistance is removed and fit only to the data used to fit the Hill model

Open circles represent CDC data for total incidence of active cases [13].

less variable. Five randomization trials with these limitations all produce extremely

similar predictions through the year 2100, indicating that most of the variation in

my model’s predictions is due to the inclusion of resistance and the use of several

datasets.

Finally, to determine whether my model is capable of expressing the qualitative

predictions of the Hill model, I fit my model directly to the Hill model. Instead of

using CDC data, I generated a dataset using one value of total incidence of active

cases per year as predicted by the Hill model from 2000-2100. I then used the

randomization algorithm to fit my model to this dataset, which would potentially

fit the model directly to the Hill model’s prediction. The resulting plot is shown in

Figure 6.5. In the short term, most of the trials do not show good qualitative fit

with the Hill model. However, in the long term, approximately between the years

2040 and 2100, the randomization trials show fairly good qualitative fit with the Hill
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model’s prediction. This shows that my model is capable of at least the long-term

behavior predicted by the Hill model.

Figure 6.5: Comparison of the Hill model to my model, when fit directly to the
Hill model’s prediction

Since my model is capable of matching the Hill model’s long-term predictions

to some extent, I argue that my model’s prediction disagrees with the Hill model

because it is more accurate, not because my model is limited and unable to express

the Hill model’s qualitative predictions.
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Chapter 7

MATHEMATICAL ANALYSIS

7.1 R0

The basic reproduction number, R0, is a measurement of the infectiousness of a

disease. It is defined as the average number of new infections produced by one

Infectious individual entering an entirely Susceptible population [36]. It is equal

to the product of the effective contact rate, the total population, and the duration

of Infectiousness [36]. To compute R0 for this model, I took the average of values

for each of the four compartments. Thus for this model, given the final parameter

values,

R0 =
qλN

4

4∑
i=1

ti
µ+ µ0 + φi

= 254.2233.

(7.1)
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This is a very high value of R0, seeming to indicate that TB is likely to be in

a state of epidemic. However, it is important to note that this figure concerns the

total number of infections, not necessarily active infections. Very few patients with

LTBI will progress to active disease. Under the assumption that 5-10% of LTBI

cases progress to active disease, this means that one Infectious patient may result

in approximately 13 - 25 new active cases. Additionally, not all of these new cases

will themselves be infectious; some proportion of active cases will be non-infectious

TB. This is an unusual circumstance that does not usually complicate the use of R0

to analyze infectious diseases.

This value is still quite high. It can be explained by further considering the

challenges facing TB in particular where calculating R0 is concerned.

R0 may not be as informative in the case of TB as it is in other infectious

diseases. Due to the unusually long latent period of TB when compared to other

infectious diseases, the current pattern of incidence depends heavily on transmissions

that took place years, or even decades, in the past. Therefore, R0 does not accurately

describe the current incidence of active cases and may not give much meaningful

information about the current state of TB epidemiology [36].

The value of R0 can also be calculated if one considers only MDR TB as a

separate disease. Then,

R0 =
qλNt4

µ+ µ0 + φ4

= 385.3103.

(7.2)
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This value is even greater than R0 for all cases of TB. As with the R0 value

for TB in general, most of these 385 predicted new infections will remain latent and

will not progress to active disease. Assuming once more that 5-10% of LTBI cases

progress to active disease, this value of R0 suggests that each Infectious (MDR)

patient may result in 19 - 38 new active MDR cases. This again indicates the

challenges of applying R0 values to the analysis of TB [36]. It may also indicate that

MDR TB is more infectious than TB in general, but this conclusion is tentative,

due to the uncertain nature of this method of analysis.

While these values are higher than would be realistically expected for most

infectious diseases, they are not unreasonable for other TB models. Hill et al., for

example, used parameters that would result in the following value for R0, when

calculated similarly [19]:

R0 =
βN

2

∑
i=0,1

1

µd + µi + φi

= 1188.439.

(7.3)

Other mathematical models of TB give a wide range of high values of R0.

When calculated similarly, Uys et al.’s model indicates R0 = 5479, while Cohen and

Murray’s model indicates R0 = 14.1 [15,33]. These results continue to indicate that

R0 values are of uncertain use for the study of TB [36].

Therefore, while my model produces a value of R0 that is unrealistic for infec-

tious diseases, it may not be out of the ordinary for TB modeling.
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7.2 Sensitivity Analysis

For a model of this level of complexity, sensitivity analysis is challenging. It would be

impossible to sample every region of the parameter space - that is, the complete set

of all combinations of all possible values for all the model’s parameters - to any level

of completeness. Even if I limited each of the 31 parameters to only two values, over

two billion trials would be required to sample every possible combination. Therefore,

I have limited this project to univariate analysis on the parameters.

For this process, I varied a single parameter value while holding all the other

parameters constant at their final values. For the parameter of interest, I examined

ten values around its final, consensus value at 10% intervals. That is, a parameter

with a final value of x was sampled at 0.5x, 0.6x, 0.7x, 0.8x, 0.9x, 1.1x, 1.2x, 1.3x,

1.4x, and 1.5x. Note that for many parameters, some of these values fell outside

their epidemiologically acceptable range. The summary statistics used to measure

the effects of this variation were the total incidence of active cases and the incidence

of MDR cases.

The results of this univariate sensitivity analysis are summarized below.

• a2: No effect on either total incidence or MDR incidence.

• a3: No effect on either total incidence or MDR incidence.

• a4: No effect on total incidence. Major effect on MDR incidence for the entire

timeframe. Increasing a4 increases MDR incidence.

• α: Moderate effect on both total incidence and MDR incidence after approxi-

mately the year 2040. Increasing α increases total and MDR incidence.
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• b: Moderate effect on total incidence only before approximately the year 2020.

Increasing b decreases incidence. No effect on MDR incidence.

• γ: No effect on either total incidence or MDR incidence.

• l: Moderate effect on both total incidence and MDR incidence after approxi-

mately the year 2040. Increasing l increases total and MDR incidence.

• λ: Major effect on both total incidence and MDR incidence for the entire

timeframe. Increasing λ increases total and MDR incidence.

• µ: No effect on total incidence. Moderate effect on MDR incidence for the

entire timeframe. Increasing µ decreases MDR incidence.

• µ0: Major effect on both total incidence and MDR incidence after approxi-

mately the year 2005. Increasing µ0 decreases total and MDR incidence.

• p: Major effect on both total incidence and MDR incidence for the entire

timeframe. Increasing p increases total and MDR incidence.

• φ1: Major effect on total incidence for the entire timeframe. Increasing φ1

decreases total incidence. No effect on MDR incidence.

• φ2: No effect on either total incidence or MDR incidence.

• φ3: No effect on either total incidence or MDR incidence.

• φ4: No effect on total incidence. Major effect on MDR incidence for the entire

timeframe. Increasing φ4 decreases MDR incidence.
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• q: Major effect on both total incidence and MDR incidence for the entire

timeframe. Increasing q increases total and MDR incidence.

• r2: No effect on either total incidence or MDR incidence.

• r3: No effect on either total incidence or MDR incidence.

• r4: No effect on total incidence. Moderate effect on MDR incidence after

approximately the year 2040. Increasing r4 increases MDR incidence.

• ρ: Moderate effect on both total incidence and MDR incidence after approxi-

mately the year 2050. Increasing ρ increases total and MDR incidence.

• t1: Major effect on total incidence for the entire timeframe. Increasing t1

increases total incidence. No effect on MDR incidence.

• t2: No effect on either total incidence or MDR incidence.

• t3: No effect on either total incidence or MDR incidence.

• t4: No effect on total incidence. Major effect on MDR incidence for the entire

timeframe. Increasing t4 increases MDR incidence.

• vL: Major effect on both total incidence and MDR incidence for the entire

timeframe. Increasing vL increases total and MDR incidence.

• y1: No effect on either total incidence or MDR incidence.

• y2: No effect on either total incidence or MDR incidence.

• z1: No effect on either total incidence or MDR incidence.



61

• z2: No effect on total incidence. Moderate effect on MDR incidence after

approximately the year 2020. Increasing z2 decreases MDR incidence.

• z3: No effect on total incidence. Moderate effect on MDR incidence after

approximately the year 2020. Increasing z3 decreases MDR incidence.

• z4: No effect on either total incidence or MDR incidence.

According to this univariate analysis, the parameters that have the greatest

effect on the total incidence of TB are λ, µ0, p, φ1, q, t1, and vL. The parameters

with the greatest effect on MDR incidence are a4, λ, µ0, p, φ4, q, t4, and vL.

I will return to some of these significant parameters in Chapter 8 when they

will be affected by potential interventions.
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Chapter 8

POTENTIAL INTERVENTIONS

8.1 LTBI Testing - l

One potential intervention that could be practiced is the implementation of testing

and treatment for LTBI in the immigrant population upon entry to the US. Since

most cases of TB occur in the foreign-born population, it may be that preventing

incoming cases could reduce the incidence of active cases in the US.

To test this, I compared the original prediction to several simulations in which

the parameter l, which controls the proportion of immigrants that have LTBI, was

decreased. The parameter was progressively decreased from an original value of

l = 0.01 to l = 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, 0.001, 0.

The results of these simulations are shown in Figure 8.1.

This intervention seems to be effective at reducing the incidence of total active

cases as well as the incidence of drug-resistant cases.
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Figure 8.1: Effects of intervention on proportion of immigrants with LTBI
Solid lines represent the original simulation; dashed lines represent trials with in-
terventions starting at the year 2015. Decreasing l decreases the total incidence of
active cases (left) and the incidence of drug-resistant cases, including MDR cases
(right).

8.2 Treatment Length - φ

The next potential intervention concerns the amount of time required to treat active

cases of TB. Increasing the parameters φ1, φ2, φ3, and φ4 increases the rate at

which individuals leave their respective Infectious compartment. Increasing these

rates describes a decrease in treatment time. This decreases the amount of time

during which Infectious individuals are able to infect others, so the potential for

new exogenous infections should be reduced. Preventing some exogenous infections

should result in a decrease in incidence.

Recall that φ1 and φ4 were found to be significant parameters in Section 7.2

affecting total incidence and MDR incidence respectively; this predicts that this

intervention will be effective.

To test this, all φ parameters were simultaneously increased.

φ1 was progressively increased from an original value of φ1 = 0.85 to φ1 =
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0.935, 1.02, 1.105, 1.19, 1.275, 1.36, 1.445, 1.53, 1.615, 1.7, with a maximum of double

its original value.

φ2 and φ3 were progressively increased from their original value of φ2 = φ3 = 0.3

to φ2 = φ3 = 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, with a maximum of

double their original value.

φ4 was progressively increased from an original value of φ4 = 0.1 to φ4 =

0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, with a maximum of double its

original value.

The results of these simulations are shown in Figure 8.2.

Figure 8.2: Effects of intervention on treatment length for active TB
Solid lines represent the original simulation; dashed lines represent trials with inter-
ventions starting at the year 2015. Increasing the four φ parameters, to a maximum
of doubling their initial value, decreases both the incidence of active cases (left) and
incidence of drug-resistant cases, including MDR cases (right).

Intervening on the φ parameters does seem to be effective. Further analysis is

necessary to determine whether one or all of the parameters are most responsible

for this effect. This will be discussed in more detail in Section 9.1.2.
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8.3 Treatment Success Rate - z

Next, I modeled interventions on the rate of successful treatment. Increasing the pa-

rameters z1, z2, z3, and z4 increases the proportion of treatments that are successful.

If more treatments are successful, fewer overall cases should occur, as individuals

will be cured and return to the Susceptible compartment, rather than relapsing to

the Exposed compartments. Additionally, fewer drug-resistant cases should occur,

since new cases of drug-resistance result from unsuccessful treatment. Increasing

the success rate should diminish the opportunity for new cases of resistance to be

generated.

To test this, all z parameters were simultaneously increased, to a maximum

value of 1.

z1, z2, and z3 were progressively increased from their original value of z1 = z2 =

z3 = 0.9 to z1 = z2 = z3 = 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 1.

z4 was progressively increased from an original value of z4 = 0.8 to z4 =

0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96, 0.98, 1.

The results of these simulations are shown in Figure 8.3.

Intervening on the z parameters does not seem to be effective in reducing the

incidence of drug-resistant cases or reducing the incidence of active cases of TB

overall.
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Figure 8.3: Effects of intervention on treatment success rate
Solid lines represent the original simulation; dashed lines represent trials with inter-
ventions starting at the year 2015. Increasing the four z parameters, to a maximum
value of 1, has only a minor effect on the total incidence of active cases (left) and
the incidence of drug-resistant cases (right).

8.4 TB Death Rate - µ

Another way in which the efficacy of treatment can be measured is the death rate

due to TB. Decreasing the TB death rate, µ, should be associated with more effective

treatment, though this may not necessarily decrease the incidence of active cases.

To test this intervention, I decreased the parameter µ from an original value of

µ = 0.04 to µ = 0.036, 0.032, 0.028, 0.024, 0.02, 0.016, 0.012, 0.008, 0.004, 0.

The results of these simulations are shown in Figure 8.4.

Decreasing the death rate µ is not an effective intervention on its own; these

simulations show that the incidence of drug-resistant cases actually increases, while

the total incidence of active cases is not notably affected. When the death rate is

decreased, individuals spend more time on average in the Infectious compartments.

This increases the probability that they will infect others. It also increases the prob-

ability that individuals will exit the Infectious compartment via treatment failure,
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Figure 8.4: Effects of intervention on the death rate from TB
Solid lines represent the original simulation; dashed lines represent trials with in-
terventions starting at the year 2015. Decreasing µ, even to a value of 0, shows
no major effect on the total incidence of active cases (left). However, decreasing µ
increases the incidence of drug-resistant cases (right).

rather than death, which provides greater opportunity for resistance acquisition.

Therefore, a decreased death rate must be paired with other values of treatment

efficacy, such as treatment length, in order to be an effective intervention.

8.5 Acquisition of Resistance - y

Another potential intervention is on the rate of acquisition of resistance. Decreasing

the parameters y1 and y2 decreases the proportion of unsuccessful treatments that

will result in drug-resistance. This intervention would be difficult to implement in

practice, and would likely have to be paired with other improvements in treatment

efficacy. However, it can be modeled mathematically. This intervention is expected

to result in decreased incidence of drug-resistant cases.

To test this, both y parameters were simultaneously decreased from their orig-
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inal value of y1 = y2 = 0.5 to y1 = y2 = 0.45, 0.40.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.

The results of these simulations are shown in Figure 8.5.

Figure 8.5: Effects of intervention on the proportion of failed treatments that
result in resistance

Solid lines represent the original simulation; dashed lines represent trials with in-
terventions starting at the year 2015. Decreasing the two y parameters, even to a
value of 0, shows only a minor effect on the total incidence of active cases (left) and
the incidence of drug-resistant cases (right).

This intervention does not seem to be effective on the total incidence of active

cases or the incidence of drug-resistant cases.

8.6 Quarantine - λ

The final intervention concerns the effective contact rate, λ. This parameter controls

the likelihood of contact and resulting exogenous infections between individuals

in the Infectious and Susceptible compartments. One potential strategy to lower

the effective contact rate (and therefore, the rate of new infections) is to institute

quarantine for some or all individuals known to be infected. Quarantining Infectious

individuals would reduce their contacts with Susceptible individuals and prevent
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exogenous infections from occurring. While such a practice is not officially in effect

at this time, it has been suggested for MDR and XDR strains of TB in particular.

Recall that λ was found to be a significant parameter affecting both total

incidence and MDR incidence in Section 7.2; this predicts that this intervention will

be effective.

To test the effectiveness of this strategy, I first modeled a policy of quarantine

that would only be instituted for individuals with active MDR TB. To do so, I

modified the value of λ only for individuals in the Infectious (MDR) compartment.

For these individuals only, I decreased the parameter λ from an original value of

λ = 30 to λ = 27, 24, 21, 18, 15, 12, 9, 6, 3, 0.

The results of these simulations are shown in Figure 8.6.

Figure 8.6: Effects of intervention on the effective contact rate for MDR cases only
Solid lines represent the original simulation; dashed lines represent trials with in-
terventions starting at the year 2015. Decreasing λ shows little effect on the total
incidence of active cases (left), but does decrease the incidence of MDR cases (right).

Reducing the effective contact rate for individuals in the Infectious (MDR)

compartment does not affect the total incidence of TB but does decrease incidence
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of MDR cases.

Next, I considered a policy of quarantine for all cases of TB. To test this

strategy, I decreased the parameter λ as before, but applied the intervention to all

four Infectious compartments.

The results of these simulations are shown in Figure 8.7.

Figure 8.7: Effects of intervention on the effective contact rate for all active cases
of TB

Solid lines represent the original simulation; dashed lines represent trials with in-
terventions starting at the year 2015. Decreasing λ decreases the total incidence of
active cases (left) and the incidence of drug-resistant cases (right).

Decreasing the effective contact rate by instituting a policy of quarantine for

all Infectious individuals predicts a reduction in total incidence of TB as well as

reduction in incidence for all drug-resistant strains, including MDR.
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Chapter 9

CONCLUSIONS

9.1 Efficacy of Interventions

The goals upon which I will focus in this section are decreasing total TB incidence

and decreasing the incidence and proportion of MDR TB. While decreasing incidence

of H- and R-resistant cases would also be valuable contributions to public health,

the aforementioned priorities are the most pressing.

The three most promising interventions for the goal of decreasing total TB in-

cidence and the incidence of MDR cases are altering l, φ, and λ. These interventions

will now be explored in more detail.

9.1.1 l

Decreasing l, the proportion of immigrants who have LTBI, decreases the incidence

of total cases and drug-resistant cases. For every 10% by which l is decreased, there

is a corresponding decrease in the total incidence at the year 2100 of 2.65% and a
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decrease in the incidence of MDR cases of 3%.

9.1.2 φ

Increasing the four φ parameters, which control the rate at which individuals end

treatment, decreases the incidence of total cases and drug-resistant cases. The effects

of these four parameters can be considered individually.

Increasing φ1 decreases the total incidence of TB, but does not affect the in-

cidence of any of the three drug-resistant strains. Increasing φ1 has a diminishing

marginal effect on the total incidence at the year 2100. Initially increasing φ1 by 10%

reduces incidence at 2100 by 8.9%. An additional increase of 10% reduces incidence

by only 7.4% further. The marginal effect continues to diminish.

Intervening on φ2 and φ3 does not affect the total incidence. Increasing φ2

decreases the incidence of H-resistant cases; increasing φ3 decreases the incidence of

R-resistant cases. Neither parameter affects MDR incidence. This is expected, as

increasing these parameters lowers the amount of time spent in the relevant Infec-

tious compartment, which decrease the potential for Infectious individuals to infect

Susceptible individuals. Preventing these new cases would only have an effect on

the strain corresponding to the parameter that was altered, as exogenously infected

individuals are infected with the same strain as the individual who infected them.

Intervening on φ4 does not affect the total incidence, but does decrease the

incidence of MDR cases. Increasing φ4 has a diminishing marginal effect on MDR

incidence at the year 2100. Initially increasing φ4 by 10% reduces incidence at 2100

by 11.2%. An additional increase of 10% reduces incidence by only an additional



73

8.9%. The marginal effect continues to diminish.

Therefore, the greatest marginal benefit on the incidence of total cases can

be achieved by introducing slight decreases in treatment time for drug-susceptible

cases, while the greatest marginal benefit on the incidence of MDR cases can be

achieved by introducing slight decreases in treatment time for MDR cases.

9.1.3 λ

If quarantine is instituted only for MDR cases, the effective contact rate λ is de-

creased for individuals in the Infectious (MDR) compartment. This does not affect

the total incidence of TB, but does decrease the incidence of MDR cases.

Decreasing λ has a diminishing marginal effect on the incidence of MDR cases

at the year 2100. Initially decreasing λ by 10% decreases incidence by 7.3%. An

additional decrease of 10% reduces incidence by only 6.3% further. The marginal

effect continues to diminish.

I also explore the effects of intervening on λ for all strains. If quarantine is

instituted for active cases of all strains of TB, incidence is reduced for total cases

and for MDR cases.

For every 10% by which λ is decreased, the total incidence at the year 2100

is reduced by approximately 2%. The diminishing marginal return of altering this

parameter is negligible.

Decreasing λ has a diminishing marginal effect on the incidence of MDR cases

at the year 2100. Initially decreasing λ by 10% decreases MDR cases by 8.3%.

An additional decrease of 10% reduces incidence by only an additional 7.1%. The
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marginal effect continues to diminish.

Note that MDR incidence at 2100 is more affected by quarantine in all cases

than by quarantine that is limited to MDR cases.

It is important to note that in the US, treatment for TB includes conditions

similar to unofficial quarantine. For example, in some dangerous cases of TB when

the patient does not comply with doctors’ safety recommendations, they may be

involuntarily confined to a hospital to reduce their risk of infecting others [26].

Therefore, reducing λ by small amounts may not be an intervention at all; it may

actually be more accurate to current practice by accounting for these few cases of

confinement.

9.2 Possibility of Elimination

Elimination is defined as incidence of fewer than one case per million in population

[13]. Even if the interventions described above were implemented, elimination would

not be feasible before 2100.

In Figure 9.1, a simulation is plotted in which the interventions are maximized

by setting l and λ to 0 and setting the φ parameters to double their original values.

This means that no immigrants are infected with LTBI, no exogenous infections

occur, and Infectious individuals finish treatment at twice the current rate. Even

with these interventions, by the year 2100 there is still an incidence of 4.1 cases per

million in population.
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Figure 9.1: Plot of the potential for elimination of TB with interventions
maximized after 2015

The simulation still does not predict elimination by 2100.

9.3 Recommendations

To decrease the total incidence of active cases of TB, the most effective intervention

is to decrease treatment time for drug-susceptible TB. Instituting quarantine to

some extent on all strains of TB and requiring testing and treatment for LTBI in

incoming immigrants would also decrease total incidence.

To decrease the incidence of active MDR cases, the most effective intervention

is to decrease treatment time for MDR TB. Instituting quarantine on all strains of

TB and treating immigrant LTBI would also decrease MDR TB incidence.

To decrease the proportion of all cases that are MDR, the most effective inter-

vention is to decrease treatment time for MDR TB. Under current conditions, MDR

cases are expected to make up 1.6% of all active cases of TB in the US by the year
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2100. This proportion decreases to less than 1% only after a major increase in φ4

of 50%, but is noticeably decreased with any improvement in MDR TB treatment

time, as seen in Figure 9.2.

Figure 9.2: Plot of the proportion of MDR cases through the year 2100 when the
parameter φ4 is increased

The solid line represents the original simulation; dashed lines represent trials with
interventions at 10% intervals, up to an increase of 50%.

These recommendations are based off of mathematical predictions, which are

much easier to model than to execute. I recognize that in reality, these interventions

could be prohibitively difficult to implement.

Decreasing treatment time for TB may not be practical, since long treatment

times are necessary to ensure full eradication of M. tuberculosis bacteria. Attempting

to speed up the rate of treatment could result in more failed treatments, which would

only worsen the problems of TB, especially in drug-resistant strains.

While quarantine may be effective at preventing exogenous infections and the
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spread of disease, it would be a highly controversial policy. Confining a larger

portion of TB patients during their treatment would be difficult in practice, both

for logistical and ethical reasons. Hospitals may not have appropriate space to

quarantine TB patients for the long duration of their treatment. This long duration

would also make patients less willing to consent to quarantine, which raises ethical

concerns regarding the confinement of patients against their will.

Finally, testing for LTBI in incoming immigrants is also a difficult prospect.

With the large volume of immigrants entering the US, it would be a major use of

resources to test thoroughly for LTBI and treat all those who test positively. For

efficiency, such testing could be limited to immigrants from countries with high

endemic rates of TB, but this has the potential to encourage discrimination.

Overall, it is clear that while these recommendations seem mathematically

effective, it is important to recognize that implementing these policies would not be

straightforward.

9.4 Future Work

There are some aspects of the model that, with additional study, could be improved.

The values of the z parameters, which control the proportion of treatments

that are successful, could be altered for additional accuracy. In my model, I use the

values z1 = z2 = z3 = 0.9 and z4 = 0.8, which were generated by the randomization

algorithm. While the model as a whole still fits to the data, these values could

be inaccurate. One estimate of international treatment success rates indicates that

they may be as low as 80% for drug-susceptible strains, 72% for single-drug-resistant
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strains, and 15% for MDR strains [7]. The success rates in the US may be greater

than in the world as a whole, but this still suggests that my parameter values may

be unrealistically high.

These values may also explain why intervening on the z parameters had no

beneficial effect on incidence of TB or MDR TB in Section 8.3. These values are

already so high that increasing them, even to a value of 1, makes no noticeable

difference. More realistic parameter values might show the effects of improvement

in success rate more strongly.

Further, the values for the z parameters are suspect because they do not

decrease with increasing resistance. Generally, as drug-resistance increases, the

cure rates for TB strains decrease considerably [22]. This should dictate that

z1 > z2, z3 > z4, but this is not the case in my model, since z1 = z2 = z3. Therefore,

more examination of the treatment success parameters would be beneficial.

Relatedly, as drug-resistance increases, the survival rates for TB strains may

also decrease [22]. Instead of reflecting this, my model uses a single parameter value

for the TB death rate, µ. A potential improvement could be to use four different

parameters, reflecting the tendency of the death rate to increase for resistant strains

of TB.

The final parameters that could be improved are the φ parameters, which

control the rate at which patients end treatment. In my model, I use the values

φ1 = 0.85, φ2 = φ3 = 0.3, and φ4 = 0.1, which were generated by the random-

ization algorithm. The parameter φ1 indicates a treatment length of 0.52 years,

which is consistent with the treatment of drug-susceptible strains, which usually

lasts approximately six months [24]. However, the parameters φ2 and φ3 indicate
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a treatment length of 2.8 years, which is much higher than would be realistic. φ4

suggests that treatment for MDR TB lasts 9.5 years, which is even more extreme.

While treatment for MDR TB does last longer that treatment for drug-susceptible

TB, current recommendations suggest treatment times of only 20 months, or 1.7

years [24].

Since the φ4 parameter was found to have a significant effect on MDR incidence

in Section 7.2, using a more accurate value could have major effects on the model’s

prediction. Therefore, despite the fit of my model to data overall, the φ parameters

for drug-resistant strains are unrealistically low. More work on these parameters is

necessary to improve their accuracy while maintaining fit.

Potentially, the inaccuracy in the φ and z parameters could mediate one another

to some extent. That is, if the model indicates that TB treatment is completing

too slowly, but at a higher rate of success, the total number of successes might be

closer to an accurate figure than it would be if only one of these parameters were

inaccurate. However, to make such a claim with any certainty, more parameter

analysis is necessary.

With continued study, the model could also be improved by taking other fac-

tors into account. For example, my model includes no information about HIV co-

infection, which can be an important influence on TB disease dynamics. Individuals

with LTBI are more likely to progress to active disease if they are also infected with

HIV [12]. Individuals with HIV also have greater rates of death from active TB

disease [12]. Therefore, it could be valuable to include specific compartments and

rates for these individuals in order to increase accuracy and the information that

can be gained from model.
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Additionally, my model could be improved with more information about current

TB epidemiology. One important weakness of the model is the uncertainty of the

number and type of LTBI cases present in the US. LTBI is asymptomatic, so these

individuals usually do not realize that they are infected. Therefore, cases of LTBI

are rarely reported. Further, the BCG vaccine causes false positive results even in

uninfected individuals, further complicated what little LTBI data there is. Since

these data are important for setting accurate initial conditions to my model, their

uncertainty is problematic. If I were able to find or extrapolate more detailed data

to which to fit my model, its accuracy to reality could be improved.

Finally, an interesting extension of this study would be to consider the economic

implications of the suggested interventions. While I have studied the efficacy of these

interventions mathematically, their practicality could be measured in one respect by

introducing cost to the model. Then the cost effectiveness of these interventions

could be contemplated. This examination would increase the practical value of

these results, as well as further help to guide potential policy.
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Appendix A

Randomization Algorithm Code

l ibrary ( deSolve )
deltaT < 0 .1 #The l en g t h o f each time s t ep ( in years )
f i n a lY r < 13 #In years We only have data from the CDC through
#2013
totT < f i n a lY r/deltaT #Time s t e p s
cuto f fYr < 8/deltaT
loops < 100 #Number o f t imes a new parameter va lue w i l l be chosen
data < data . frame (matrix (NA, nrow=loops , ncol=2)) #This empty
#matrix w i l l l a t e r conta in parameter and d i f f e r e n c e va l u e s
names(data ) < c ( "Parameter" , " D i f f e r e n c e " )
CDCActiveTotal < c (16308 , 15945 , 15055 , 14835 , 14499 , 14061 ,

13727 , 13282 , 12893 , 11519 , 11164 , 10509 ,
9940 , 9582) #CDC Reported Tubercu lo s i s 2013

#Table 2
ActiveCasesTotal < CDCActiveTotal/1000000 #Ca l cu l a t e s t o t a l
#a c t i v e i n f e c t i o n s from the CDC data
CDCTBDeaths < c (0 , 776 , 776+764 , 776+764+784 , 776+764+784+711,

776+764+784+711+662, 776+764+784+711+662+648,
776+764+784+711+662+648+644,
776+764+784+711+662+648+644+554,
776+764+784+711+662+648+644+554+590,
776+764+784+711+662+648+644+554+590+529,
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776+764+784+711+662+648+644+554+590+529+569,
776+764+784+711+662+648+644+554+590+529+569+536)

#CDC Reported Tubercu lo s i s 2013 Table 1
TotalDeaths < CDCTBDeaths/1000000
CDCActiveHR < c (981 , 897 , 912 , 903 , 872 , 842 , 845 , 798 , 835 ,

762 , 700 , 753 , 681 , 653) #CDC Reported
#Tubercu lo s i s 2013 Table 8
ActiveCasesHR < CDCActiveHR/1000000
CDCActiveMDR < c (146 , 151 , 158 , 119 , 128 , 125 , 124 , 124 , 107 ,

114 , 105 , 127 , 86 , 95) #CDC Reported
#Tubercu lo s i s 2013 Table 9
ActiveCasesMDR < CDCActiveMDR/1000000
OldDi f f < NewDiff < 0 #Es t a b l i s h e s a s t a r t i n g po in t f o r the
#d i f f e r e n c e va l u e s
count < 0 #Wil l count the number o f t imes the a l gor i thm repea t s

parameters < vector (mode="numeric " , length=27) #Creates a vec t o r
#of parameters wi th the va l u e s s e t to 0 to s t a r t
names( parameters ) < c ( "a2" , "a3" , "a4" , "b" , "gamma" , " l " , "mu" ,

"p" , " phi1 " , " phi2 " , " phi3 " , " phi4 " , " q l " ,
" r2 " , " r3 " , " r4 " , " t1 " , " t2 " , " t3 " , " t4 " ,
"vL" , "y1" , "y2" , " z1" , " z2" , " z3" , " z4" )

ranges < data . frame (matrix (c (0 , 0 . 2 , 0 , 0 . 2 , 0 , 0 . 2 , 0 . 5 , 1 , 0 ,
1 , 0 , 0 . 3 , 0 , 0 . 5 , 0 , 0 . 3 , 0 . 6 , 0 . 9 ,
0 . 5 , 0 . 9 , 0 . 3 , 0 . 9 , 0 . 3 , 0 . 5 , 0 , 30 ,
0 , 0 . 2 , 0 , 0 . 2 , 0 , 0 . 2 , 0 , 0 . 1 , 0 ,
0 . 1 , 0 , 0 . 1 , 0 , 0 . 1 , 0 , 0 . 01 , 0 , 1 ,
0 , 1 , 0 . 6 , 0 . 9 , 0 . 5 , 0 . 9 , 0 . 5 , 0 . 9 ,
0 . 1 , 0 . 8 ) ,nrow=2,

ncol=length ( parameters ) ) )
#Creates a matrix o f the minima and maxima fo r a l l parameters
names( ranges ) < c ( "a2" , "a3" , "a4" , "b" , "gamma" , " l " , "mu" , "p" ,

" phi1 " , " phi2 " , " phi3 " , " phi4 " , " q l " , " r2 " , " r3 " ,
" r4 " , " t1 " , " t2 " , " t3 " , " t4 " , "vL" , "y1" , "y2" , " z1" ,
" z2" , " z3" , " z4" )

rownames( ranges ) < c ( "min" , "max" )

OldTracking < data . frame (matrix (NA,nrow=length ( parameters ) ,
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ncol=3))
#This matrix w i l l conta in the parameter and d i f f e r e n c e va l u e s f o r
#a p a r t i c u l a r t r i a l
names( OldTracking ) < c ( "Parameter" , "Value" , " D i f f e r e n c e " )

ro = 0.0179
mu0 = 0.013
alpha = 0.00425 #These th r ee parameters are always cons tant
#They con t r o l the o v e r a l l popu la t i on s i z e

for ( i in 1 : length ( parameters ) ){
parameters [ i ] < runif (1 , ranges [ 1 , i ] , ranges [ 2 , i ] )
#This genera t e s a random va lue f o r each parameter , w i th in t ha t
#parameter ’ s range

}

order = sample ( 1 : length ( parameters ) , length ( parameters ) ,
replace=F)

#This genera t e s a random order in which to f i t the parameters

#Functions

Pdot < function ( t , v , parms ){
with ( as . l i s t (c ( parms , v ) ) , {

#D i f f e r e n t i a l Equat ions
dS < ro∗N + ( 1 l )∗alpha∗N + z1∗phi1∗ I1 + z2∗phi2∗ I2 +

z3∗phi3∗ I3 + z4∗phi4∗ I4 q l∗t1∗S∗ I1/N ql∗t2∗S∗ I2/N
ql∗t3∗S∗ I3/N ql∗t4∗S∗ I4/N mu0∗S

dE1 < l∗alpha∗ ( 1 r2 r3 r4 )∗N + ( 1 p)∗q l∗t1∗S∗ I1/N +
( 1 y1 )∗ ( 1 z1 )∗phi1∗ I1 vL∗E1 mu0∗E1

dI1 < p∗q l∗t1∗S∗ I1/N + vL∗E1 phi1∗ I1 (mu0 + mu)∗ I1
dE2 < l∗alpha∗r2∗N + ( 1 p)∗q l∗t2∗S∗ I2/N +

gamma∗ ( 1 z1 )∗y1∗phi1∗ I1 + ( 1 y2 )∗ ( 1 z2 )∗phi2∗ I2 vL∗E2
mu0∗E2

dI2 < p∗q l∗t2∗S∗ I2/N + vL∗E2 phi2∗ I2 (mu0 + mu)∗ I2
dE3 < l∗alpha∗r3∗N + ( 1 p)∗q l∗t3∗S∗ I3/N +

( 1 gamma)∗ ( 1 z1 )∗y1∗phi1∗ I1 + ( 1 y2 )∗ ( 1 z3 )∗phi3∗ I3
vL∗E3 mu0∗E3

dI3 < p∗q l∗t3∗S∗ I3/N + vL∗E3 phi3∗ I3 (mu0+mu)∗ I3



84

dE4 < l∗alpha∗r4∗N + ( 1 p)∗q l∗t4∗S∗ I4/N + y2∗ ( 1 z2 )∗phi2∗ I2 +
y2∗ ( 1 z3 )∗phi3∗ I3 + ( 1 z4 )∗phi4∗ I4 vL∗ I4 mu0∗E4

dI4 < p∗q l∗t4∗S∗ I4/N + vL∗E4 phi4∗ I4 (mu0+mu)∗ I4
dN < ( ro+alpha )∗N mu0∗N mu∗( I1 + I2 + I3 + I4 )
dD < mu∗( I1 + I2 + I3 + I4 )
return ( l i s t (c (dS , dE1 , dI1 , dE2 , dI2 , dE3 , dI3 , dE4 , dI4 ,

dD, dN) ) )
})

}

h i l l < function ( i n i t i a l=cuto f fYr+1, f i n a l=totT+1, dataSet=P) {
# recu r s i v e=TRUE co l l a p s e s dataframe to l a b e l e d vec t o r
i n i t v < c ( dataSet [ i n i t i a l , ] , r e c u r s i v e=TRUE)
# times = data po in t s to be c a l c u l a t e d
t imes < i n i t i a l : f i n a l ∗deltaT
# compute master r e s u l t s
mres < l s oda ( i n i t v , times , Pdot , parms )
# mres [ , 1 ] = mres wi thou t 1 s t column
dataSet [ i n i t i a l : f i n a l , ] < c (mres [ , 1 ] )
return ( dataSet )

}

gene ra t eResu l t s < function (mres ) {
with ( as . l i s t ( parms ) , {

Su s c ep t i b l e < mres$S
Exposed1 < mres$E1
I n f e c t i o u s 1 < mres$ I1
Exposed2 < mres$E2
I n f e c t i o u s 2 < mres$ I2
Exposed3 < mres$E3
I n f e c t i o u s 3 < mres$ I3
Exposed4 < mres$E4
I n f e c t i o u s 4 < mres$ I4
Dead < mres$D
Total < mres$S + mres$E1 + mres$ I1 + mres$E2 + mres$ I2 +

mres$E3 + mres$ I3 + mres$E4 + mres$ I4
I n f e c t i o u sTo t a l < mres$ I1 + mres$ I2 + mres$ I3 + mres$ I4
return (data . frame ( Suscept ib l e , Exposed1 , I n f e c t i ou s 1 ,

Exposed2 , I n f e c t i ou s 2 , Exposed3 ,
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In f e c t i ou s 3 , Exposed4 , I n f e c t i ou s 4 , Total ,
Dead , I n f e c t i o u sTo t a l ) )

})
}

#I n i t i a l randomizat ion loop

for ( i in 1 : length ( parameters ) ){
#This runs the randomizat ion code once f o r each parameter
for ( j in 1 : l oops ){ #For each parameter , the code w i l l genera te

#100 random va lu e s and quan t i f y t h e i r f i t

parameters [ order [ i ] ] < runif (1 , ranges [ 1 , order [ i ] ] ,
ranges [ 2 , order [ i ] ] )

#This genera t e s a random va lue f o r the parameter o f i n t e r e s t ,
#d i c t a t e d by the " order " vec t o r

a2 < as .numeric ( parameters [ 1 ] )
a3 < as .numeric ( parameters [ 2 ] )
a4 < as .numeric ( parameters [ 3 ] )
b < as .numeric ( parameters [ 4 ] )
gamma < as .numeric ( parameters [ 5 ] )
l < as .numeric ( parameters [ 6 ] )
mu < as .numeric ( parameters [ 7 ] )
p < as .numeric ( parameters [ 8 ] )
phi1 < as .numeric ( parameters [ 9 ] )
phi2 < as .numeric ( parameters [ 1 0 ] )
phi3 < as .numeric ( parameters [ 1 1 ] )
phi4 < as .numeric ( parameters [ 1 2 ] )
q l < as .numeric ( parameters [ 1 3 ] )
r2 < as .numeric ( parameters [ 1 4 ] )
r3 < as .numeric ( parameters [ 1 5 ] )
r4 < as .numeric ( parameters [ 1 6 ] )
t1 < as .numeric ( parameters [ 1 7 ] )
t2 < as .numeric ( parameters [ 1 8 ] )
t3 < as .numeric ( parameters [ 1 9 ] )
t4 < as .numeric ( parameters [ 2 0 ] )
vL < as .numeric ( parameters [ 2 1 ] )
y1 < as .numeric ( parameters [ 2 2 ] )
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y2 < as .numeric ( parameters [ 2 3 ] )
z1 < as .numeric ( parameters [ 2 4 ] )
z2 < as .numeric ( parameters [ 2 5 ] )
z3 < as .numeric ( parameters [ 2 6 ] )
z4 < as .numeric ( parameters [ 2 7 ] )
#These l i n e s s e t the parameter va l u e s so t ha t they are u sab l e
#as numeric charac t e r s

S < E1 < I1 < E2 < I2 < E3 < I3 < E4 < I4 < D <
N < rep (0 , totT ) #Sets compartment va l u e s to 0

P < data . frame (S , E1 , I1 , E2 , I2 , E3 , I3 , E4 , I4 , D, N)
#Creates a matrix o f compartment va l u e s

#Tota l Popu la t ion
P$N[ 1 ] < 280.726081 #From census data
#LTBI
P$E1 [ 1 ] < 11 .213∗ ( 1 a2 a3 a4 ) #Data from H i l l
P$E2 [ 1 ] < 11 .213∗a2
P$E3 [ 1 ] < 11 .213∗a3
P$E4 [ 1 ] < 11 .213∗a4
#Act ive TB
P$ I1 [ 1 ] < (b∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) / (mu0 + mu + phi1 ) )/1000000
#Method from H i l l ; The CDC t ra c k s H Res i s t an t and MDR cases .
#Those l e f t o v e r are e i t h e r drug s u s c e p t i b l e or R r e s i s t a n t
#( s ca l e d by b and ( b 1 ) , r e s p e c t i v e l y )
P$ I2 [ 1 ] < (CDCActiveHR [ 1 ] / (mu0 + mu + phi2 ) )/1000000
P$ I3 [ 1 ] < ( ( 1 b)∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) / (mu0 + mu + phi3 ) )/1000000
P$ I4 [ 1 ] < (CDCActiveMDR [ 1 ] / (mu0 + mu + phi4 ) )/1000000
#Su s c e p t i b l e Popula t ion
P$S [ 1 ] < P$N[ 1 ] P$E1 [ 1 ] P$ I1 [ 1 ] P$E2 [ 1 ] P$ I2 [ 1 ]

P$E3 [ 1 ] P$ I3 [ 1 ] P$E4 [ 1 ] P$ I4 [ 1 ]

parms < c ( ro=ro , mu0=mu0, alpha=alpha , a2=a2 , a3=a3 , a4=a4 ,
b=b , gamma=gamma, l=l , mu=mu, p=p , phi1=phi1 ,
phi2=phi2 , phi3=phi3 , phi4=phi4 , q l=ql , r2=r2 ,
r3=r3 , r4=r4 , t1=t1 , t2=t2 , t3=t3 , t4=t4 , vL=vL ,
y1=y1 , y2=y2 , z1=z1 , z2=z2 , z3=z3 , z4=z4 )
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#This ’ parms ’ v e c t o r i s redundant , but needed f o r some o f the
#ODE func t i on s

yrs < seq (2000 , 2000+ f ina lYr , deltaT )

P < h i l l (1 , totT+1)
Resu l t s < gene ra t eResu l t s (P)

p e r c d i f f 1 < 0
#p e r c d i f f w i l l be used to quan t i f y how we l l the model f i t s to
#the ac t ua l data by t a k ing the percent d i f f e r e n c e between the
#data po in t f o r t ha t year and the model va lue f o r t ha t year
#and add i t to our t o t a l measure o f d i f f e r e n c e
for ( k in 1 : 14 ) { #For 14 years (2000 2013)

p e r c d i f f 1 < p e r c d i f f 1 +
(100∗ ( ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 3 ] )∗(mu0+mu+phi1 ) +

( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 5 ] )∗(mu0+mu+phi2 ) +
( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 7 ] )∗(mu0+mu+phi3 ) +
( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 9 ] )∗(mu0+mu+phi4 )
Act iveCasesTotal [ k ] ) /ActiveCasesTotal [ k ] ) )^2

#Tota l a c t i v e cases : The sum of the compartments I1 , I2 , I3 ,
#and I4

}

p e r c d i f f 2 < 0
for ( k in 1 : 14 ) {

p e r c d i f f 2 < p e r c d i f f 2 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 5 ]∗(mu0+mu+phi2 )

ActiveCasesHR [ k ] ) /ActiveCasesHR [ k ] ) )^2
#H r e s i s t a n t cases

}

p e r c d i f f 3 < 0
for ( k in 1 : 14 ) {

p e r c d i f f 3 < p e r c d i f f 3 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 9 ]∗(mu0+mu+phi4 )

ActiveCasesMDR [ k ] ) /ActiveCasesMDR [ k ] ) )^2
#MDR cases

}
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p e r c d i f f 4 < 0
for ( k in 2 : 13 ) { #For 12 years (2000 2012)

p e r c d i f f 4 < p e r c d i f f 4 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 1 1 ]

TotalDeaths [ k ] ) /TotalDeaths [ k ] ) )^2 #TB deaths
}

data [ j , 1 ] < parameters [ order [ i ] ] #The f i r s t column conta ins
#the parameter va lue
data [ j , 2 ] < p e r c d i f f 1 ^2 + p e r c d i f f 2 + p e r c d i f f 3 + p e r c d i f f 4
#The second column conta ins the t o t a l d i f f e r e n c e between the
#model and the data . Since the H r e s i s t a n t and MDR data depend
#on t o t a l a c t i v e cases , t h i s va lue i s most important and
#th e r e f o r e squared

} #The 100 rounds o f g enera t ing random parameter va l u e s now end

m < min(data$Di f f e r e n c e ) #This f i n d s the minimum d i f f e r e n c e va lue
parameters [ order [ i ] ] < data [ data [ ,2]==m, 1 ]
#This changes the parameter o f i n t e r e s t to the va lue t ha t
#produced the minimum d i f f e r e n c e va lue
OldTracking [ i , 1 ] < names( parameters ) [ order [ i ] ]
OldTracking [ i , 2 ] < parameters [ order [ i ] ]
OldTracking [ i , 3 ] < OldDi f f < m
#These l i n e s f i l l in the appropr ia t e row o f the t r a c k i n g matrix
#with the name , va lue , and d i f f e r e n c e va lue o f the parameter o f
#i n t e r e s t .

} #This ends the i n i t i a l round o f randomizat ion ; a new va lue has
#been genera ted f o r each parameter

NewTracking < OldTracking
NewDiff < OldDi f f
OldDi f f < OldDi f f+1 #This makes sure the subsequent wh i l e loop i s
#a c t i v e

while ( OldDi f f NewDiff > 0){ #As long as the f i t i s be ing
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#improved , the a l gor i thm cont inues to run .
OldDi f f < NewDiff #The va l u e s t ha t were newly genera ted in the
#prev ious loop are now o ld
OldTracking < NewTracking
count < count + 1 #Keeps t rack o f how many t imes the a l gor i thm
#cy c l e s through

for ( i in 1 : length ( parameters ) ){ #This runs the randomizat ion
#code once f o r each parameter
for ( j in 1 : l oops ){ #For each parameter , the code w i l l

#genera te 100 random va lue s and quan t i f y t h e i r f i t

parameters [ order [ i ] ] < runif (1 , ranges [ 1 , order [ i ] ] ,
ranges [ 2 , order [ i ] ] )

#This genera t e s a random va lue f o r the parameter o f
#in t e r e s t , d i c t a t e d by the " order " vec t o r

a2 < as .numeric ( parameters [ 1 ] )
a3 < as .numeric ( parameters [ 2 ] )
a4 < as .numeric ( parameters [ 3 ] )
b < as .numeric ( parameters [ 4 ] )
gamma < as .numeric ( parameters [ 5 ] )
l < as .numeric ( parameters [ 6 ] )
mu < as .numeric ( parameters [ 7 ] )
p < as .numeric ( parameters [ 8 ] )
phi1 < as .numeric ( parameters [ 9 ] )
phi2 < as .numeric ( parameters [ 1 0 ] )
phi3 < as .numeric ( parameters [ 1 1 ] )
phi4 < as .numeric ( parameters [ 1 2 ] )
q l < as .numeric ( parameters [ 1 3 ] )
r2 < as .numeric ( parameters [ 1 4 ] )
r3 < as .numeric ( parameters [ 1 5 ] )
r4 < as .numeric ( parameters [ 1 6 ] )
t1 < as .numeric ( parameters [ 1 7 ] )
t2 < as .numeric ( parameters [ 1 8 ] )
t3 < as .numeric ( parameters [ 1 9 ] )
t4 < as .numeric ( parameters [ 2 0 ] )
vL < as .numeric ( parameters [ 2 1 ] )
y1 < as .numeric ( parameters [ 2 2 ] )
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y2 < as .numeric ( parameters [ 2 3 ] )
z1 < as .numeric ( parameters [ 2 4 ] )
z2 < as .numeric ( parameters [ 2 5 ] )
z3 < as .numeric ( parameters [ 2 6 ] )
z4 < as .numeric ( parameters [ 2 7 ] )
#These l i n e s s e t the parameter va l u e s so t ha t they are
#usab l e as numeric charac t e r s

S < E1 < I1 < E2 < I2 < E3 < I3 < E4 < I4 <
D < N < rep (0 , totT ) #Sets compartment va l u e s to 0

P < data . frame (S , E1 , I1 , E2 , I2 , E3 , I3 , E4 , I4 , D, N)
#Creates a matrix o f compartment va l u e s

#Tota l Popu la t ion
P$N[ 1 ] < 280.726081 #From census data
#LTBI
P$E1 [ 1 ] < 11 .213∗ ( 1 a2 a3 a4 ) #Data from H i l l
P$E2 [ 1 ] < 11 .213∗a2
P$E3 [ 1 ] < 11 .213∗a3
P$E4 [ 1 ] < 11 .213∗a4
#Act ive TB
P$ I1 [ 1 ] < (b∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) / (mu0 + mu + phi1 ) )/1000000
#Method from H i l l ; The CDC t ra c k s H Res i s t an t and MDR cases .
#Those l e f t o v e r are e i t h e r drug s u s c e p t i b l e or R r e s i s t a n t
#( s ca l e d by b and ( b 1 ) , r e s p e c t i v e l y )
P$ I2 [ 1 ] < (CDCActiveHR [ 1 ] / (mu0 + mu + phi2 ) )/1000000
P$ I3 [ 1 ] < ( ( 1 b)∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) /
(mu0 + mu + phi3 ) )/1000000

P$ I4 [ 1 ] < (CDCActiveMDR [ 1 ] / (mu0 + mu + phi4 ) )/1000000
#Su s c e p t i b l e Popula t ion
P$S [ 1 ] < P$N[ 1 ] P$E1 [ 1 ] P$ I1 [ 1 ] P$E2 [ 1 ] P$ I2 [ 1 ]

P$E3 [ 1 ] P$ I3 [ 1 ] P$E4 [ 1 ] P$ I4 [ 1 ]

parms < c ( ro=ro , mu0=mu0, alpha=alpha , a2=a2 , a3=a3 , a4=a4 ,
b=b , gamma=gamma, l=l , mu=mu, p=p , phi1=phi1 ,
phi2=phi2 , phi3=phi3 , phi4=phi4 , q l=ql , r2=r2 ,
r3=r3 , r4=r4 , t1=t1 , t2=t2 , t3=t3 , t4=t4 , vL=vL ,
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y1=y1 , y2=y2 , z1=z1 , z2=z2 , z3=z3 , z4=z4 )
#This ’ parms ’ v e c t o r i s redundant , but needed f o r some o f
#the ODE func t i on s

yrs < seq (2000 , 2000+ f ina lYr , deltaT )

P < h i l l (1 , totT+1)
Resu l t s < gene ra t eResu l t s (P)

p e r c d i f f 1 < 0
#p e r c d i f f w i l l be used to quan t i f y how we l l the model f i t s
#to the a c t ua l data by t a k ing the percent d i f f e r e n c e between
#the data po in t f o r t ha t year and the model va lue f o r t ha t
#year and add i t to our t o t a l measure o f d i f f e r e n c e
for ( k in 1 : 14 ) { #For 14 years (2000 2013)

p e r c d i f f 1 < p e r c d i f f 1 +
(100∗ ( ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 3 ] )∗(mu0+mu+phi1 ) +

( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 5 ] )∗(mu0+mu+phi2 ) +
( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 7 ] )∗(mu0+mu+phi3 ) +
( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 9 ] )∗(mu0+mu+phi4 )
Act iveCasesTotal [ k ] ) /ActiveCasesTotal [ k ] ) )^2

#Tota l a c t i v e cases : The sum of the compartments I1 , I2 ,
#I3 , and I4

}

p e r c d i f f 2 < 0
for ( k in 1 : 14 ) {

p e r c d i f f 2 < p e r c d i f f 2 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 5 ]∗(mu0+mu+phi2 )

ActiveCasesHR [ k ] ) /ActiveCasesHR [ k ] ) )^2
#H r e s i s t a n t cases

}

p e r c d i f f 3 < 0
for ( k in 1 : 14 ) {

p e r c d i f f 3 < p e r c d i f f 3 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 9 ]∗(mu0+mu+phi4 )

ActiveCasesMDR [ k ] ) /ActiveCasesMDR [ k ] ) )^2
#MDR cases
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}

p e r c d i f f 4 < 0
for ( k in 2 : 13 ) { #For 12 years (2000 2012)

p e r c d i f f 4 < p e r c d i f f 4 +
(100∗ ( ( Resu l t s [ ( 1/deltaT )∗(k 1 )+1 , 1 1 ]

TotalDeaths [ k ] ) /TotalDeaths [ k ] ) )^2 #TB deaths
}

data [ j , 1 ] < parameters [ order [ i ] ] #The f i r s t column conta ins
#the parameter va lue
data [ j , 2 ] < p e r c d i f f 1 ^2 + p e r c d i f f 2 + p e r c d i f f 3 + p e r c d i f f 4
#The second column conta ins the t o t a l d i f f e r e n c e between the
#model and the data . Since the H r e s i s t a n t and MDR data
#depend on t o t a l a c t i v e cases , t h i s va lue i s most important
#and t h e r e f o r e squared

} #The 100 rounds o f g enera t ing random parameter va l u e s now end

m < min(data$Di f f e r e n c e ) #This f i n d s the minimum d i f f e r e n c e va lue
parameters [ order [ i ] ] < data [ data [ ,2]==m, 1 ]
#This changes the parameter o f i n t e r e s t to the va lue t ha t
#produced the minimum d i f f e r e n c e va lue
NewTracking [ i , 1 ] < names( parameters ) [ order [ i ] ]
NewTracking [ i , 2 ] < parameters [ order [ i ] ]
NewTracking [ i , 3 ] < m
#These l i n e s f i l l in the appropr ia t e row o f the t r a c k i n g
#matrix wi th the name , va lue , and d i f f e r e n c e va lue o f the
#parameter o f i n t e r e s t .

}#A new , more accurate va lue has been genera ted f o r each parameter

NewDiff=NewTracking [ length ( parameters ) , 3 ]
#This s e t s the NewDiff to the f i n a l d i f f e r e n c e va lue genera ted
#by the s e parameters

}

a2 < OldTracking [ OldTracking [ ,1]=="a2" , 2 ]
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a3 < OldTracking [ OldTracking [ ,1]=="a3" , 2 ]
a4 < OldTracking [ OldTracking [ ,1]=="a4" , 2 ]
b < OldTracking [ OldTracking [ ,1]=="b" , 2 ]
gamma < OldTracking [ OldTracking [ ,1]=="gamma" , 2 ]
l < OldTracking [ OldTracking [ ,1]==" l " , 2 ]
mu < OldTracking [ OldTracking [ ,1]=="mu" , 2 ]
p < OldTracking [ OldTracking [ ,1]=="p" , 2 ]
phi1 < OldTracking [ OldTracking [ ,1]=="phi1 " , 2 ]
phi2 < OldTracking [ OldTracking [ ,1]=="phi2 " , 2 ]
phi3 < OldTracking [ OldTracking [ ,1]=="phi3 " , 2 ]
phi4 < OldTracking [ OldTracking [ ,1]=="phi4 " , 2 ]
q l < OldTracking [ OldTracking [ ,1]==" q l " , 2 ]
r2 < OldTracking [ OldTracking [ ,1]==" r2 " , 2 ]
r3 < OldTracking [ OldTracking [ ,1]==" r3 " , 2 ]
r4 < OldTracking [ OldTracking [ ,1]==" r4 " , 2 ]
t1 < OldTracking [ OldTracking [ ,1]==" t1 " , 2 ]
t2 < OldTracking [ OldTracking [ ,1]==" t2 " , 2 ]
t3 < OldTracking [ OldTracking [ ,1]==" t3 " , 2 ]
t4 < OldTracking [ OldTracking [ ,1]==" t4 " , 2 ]
vL < OldTracking [ OldTracking [ ,1]=="vL" , 2 ]
y1 < OldTracking [ OldTracking [ ,1]=="y1" , 2 ]
y2 < OldTracking [ OldTracking [ ,1]=="y2" , 2 ]
z1 < OldTracking [ OldTracking [ ,1]=="z1" , 2 ]
z2 < OldTracking [ OldTracking [ ,1]=="z2" , 2 ]
z3 < OldTracking [ OldTracking [ ,1]=="z3" , 2 ]
z4 < OldTracking [ OldTracking [ ,1]=="z4" , 2 ]
#The wh i l e loop ended because the "NewDiff" va lue d id not improve ,
#so the b e s t parameters are found in the OldTracking matrix , so we
#se t to those va l u e s

#Now, we run the model one f i n a l time to p l o t the s imu la t i on
#genera ted by t h e s e parameters

S < E1 < I1 < E2 < I2 < E3 < I3 < E4 < I4 < D < N <
rep (0 , totT ) #Sets compartment va l u e s to 0

P < data . frame (S , E1 , I1 , E2 , I2 , E3 , I3 , E4 , I4 , D, N)
#Creates a matrix o f compartment va l u e s

#Tota l Popu la t ion
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P$N[ 1 ] < 280.726081 #From census data
#LTBI
P$E1 [ 1 ] < 11 .213∗ ( 1 a2 a3 a4 ) #Data from H i l l
P$E2 [ 1 ] < 11 .213∗a2
P$E3 [ 1 ] < 11 .213∗a3
P$E4 [ 1 ] < 11 .213∗a4
#Act ive TB
P$ I1 [ 1 ] < (b∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) / (mu0 + mu + phi1 ) )/1000000
#Method from H i l l ; The CDC t ra c k s H Res i s t an t and MDR cases .
#Those l e f t o v e r are e i t h e r drug s u s c e p t i b l e or R r e s i s t a n t
#( s ca l e d by b and ( b 1 ) , r e s p e c t i v e l y )
P$ I2 [ 1 ] < (CDCActiveHR [ 1 ] / (mu0 + mu + phi2 ) )/1000000
P$ I3 [ 1 ] < ( ( 1 b)∗( CDCActiveTotal [ 1 ] CDCActiveHR [ 1 ]

CDCActiveMDR [ 1 ] ) / (mu0 + mu + phi3 ) )/1000000
P$ I4 [ 1 ] < (CDCActiveMDR [ 1 ] / (mu0 + mu + phi4 ) )/1000000
#Su s c e p t i b l e Popula t ion
P$S [ 1 ] < P$N[ 1 ] P$E1 [ 1 ] P$ I1 [ 1 ] P$E2 [ 1 ] P$ I2 [ 1 ]

P$E3 [ 1 ] P$ I3 [ 1 ] P$E4 [ 1 ] P$ I4 [ 1 ]

parms < c ( ro=ro , mu0=mu0, alpha=alpha , a2=a2 , a3=a3 , a4=a4 , b=b ,
gamma=gamma, l=l , mu=mu, p=p , phi1=phi1 , phi2=phi2 ,
phi3=phi3 , phi4=phi4 , q l=ql , r2=r2 , r3=r3 , r4=r4 , t1=t1 ,
t2=t2 , t3=t3 , t4=t4 , vL=vL , y1=y1 , y2=y2 , z1=z1 , z2=z2 ,
z3=z3 , z4=z4 )

#This ’ parms ’ v e c t o r i s redundant , but needed f o r some o f the ODE
#func t i on s

yrs < seq (2000 , 2000+ f ina lYr , deltaT )

P < h i l l (1 , totT+1)
Resu l t s < gene ra t eResu l t s (P)

#Plot model and CDC data f o r t o t a l a c t i v e cases , HR cases , MDR
#cases , and TB deaths on the same p lo t , us ing two s e t s o f axes
years = 2000:2013 #For CDC data where we have through 2013
plot ( yrs , ( Resu l t s$ I n f e c t i o u s 1∗(mu0+mu+phi1 ) ) +

( Resu l t s$ I n f e c t i o u s 2∗(mu0+mu+phi2 ) ) +
( Resu l t s$ I n f e c t i o u s 3∗(mu0+mu+phi3 ) ) +
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( Resu l t s$ I n f e c t i o u s 4∗(mu0+mu+phi4 ) ) ,
main=’ F i t t i n g ␣Model␣ to ␣Data ’ , x lab=’Year ’ ,
y lab=’ Total ␣ a c t i v e ␣␣ ca s e s ␣ or ␣TB␣deaths ␣ in ␣ m i l l i o n s ’ ,
type=’ l ’ , col=’ red ’ , yl im=

c ( 0 , . 0 2 ) ) #Tota l a c t i v e cases in the model i s the sum of
#each I compartment
points ( years , ActiveCasesTotal , col=’ red ’ )
year s =2000:2012 #For CDC data on TB deaths , where we have through
#2012 only
l ines ( yrs , Resu l t s$Dead , col=’ black ’ )
points ( years , TotalDeaths , col=’ black ’ )
par (new = TRUE) #This uses the r i gh t hand s i d e ax is , s ince HR and
#MDR cases e x i s t on a much sma l l e r s c a l e
years = 2000:2013
plot ( yrs , Resu l t s$ I n f e c t i o u s 2∗(mu0+mu+phi2 ) , axes = FALSE,

bty = "n" , xlab = "" , ylab = "" , col=’ blue ’ , yl im=c ( 0 , 0 . 0 0 1 ) ,
type=’ l ’ )

points ( years , ActiveCasesHR , col=’ blue ’ )
l ines ( yrs , Resu l t s$ I n f e c t i o u s 4∗(mu0+mu+phi4 ) , col=’ green ’ )
points ( years , ActiveCasesMDR , col=’ green ’ )
mtext( "Drug r e s i s t a n t ␣Cases ␣ in ␣ m i l l i o n s " , s i d e=4)
axis ( s i d e =4, at=c ( 0 , 0 . 0 0 1 ) )
legend ( ’ l e f t ’ , legend=c ( ’ Act ive ␣ ca s e s ␣ ␣Total ’ ,

’ Act ive ␣ ca s e s ␣ ␣H r e s i s t a n t ’ ,
’ Act ive ␣Cases ␣ ␣MDR’ ,
’ Cumulative␣TB␣deaths ’ ) ,

col=c ( ’ red ’ , ’ b lue ’ , ’ green ’ , ’ b lack ’ ) , l t y=c (1 , 1 , 1 , 1 ) )

OldTracking #Prin t s the parameter and d i f f e r e n c e va l u e s used to
#genera te t h i s p l o t
count #Prin t s how many t imes the randomizat ion was repea ted
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