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Abstract 

Fuel cells with solid oxide electrolytes (SOFCs) have attracted increasing interest 

as efficient alternatives to combustion-based energy production. Doped 

perovskites have displayed mechanical stability and high proton conductivity in 

the key 500-700 ̊C temperature range, making investigation of proton conduction 

in perovskites an important step in the fuel cell development process. This work 

details the characterization of a perovskite grain boundary expected to display 

unique conduction behavior, the fine-tuning and testing of a new multistep 

Kinetic Monte Carlo (KMC) algorithm for generating long-range conduction 

pathways, and the application of a graph theoretical centrality measure to help 

explain system-specific conduction patterns.  

Although proton conduction in bulk perovskites is well understood, many 

questions remain about proton conduction in grain boundaries, which represent 

major barriers to conduction. Theoretical study a grain boundary system begins 

with full energetic characterization of conduction in the system. As a first step in 

this process, optimum energies for Y/BaZrO3 (310) tilt grain boundaries doped at 

different sites have been calculated using density functional theory. Results from 

different exchange correlation functionals have been compared.  

 Because proton conduction in perovskite systems involves a series of rare 

proton movements, it can be modeled with KMC simulations. The standard KMC 
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algorithm involves moving a proton between binding sites, using random numbers 

and rate constants to pick moves in proportion with their probability. We have 

modified this algorithm to generate n-step pathways from each site. At each 

iteration, a pathway rather than a single move is selected. Results for the 

Y/BaZrO3, Al/BaZrO3, Y/SrZrO3, and Al/SrZrO3 systems have been in good 

agreement with standard KMC results, showing that probable pathways run 

through different regions in systems with different dopants. A valid method of 

calculating rate constants for multi-step moves has been developed, and the multi-

step algorithm has been shown to increase computational efficiency.  

 Graph theoretical methods have been applied to provide additional insight 

into the relationships between binding sites. Average hitting time between sites 

has been used to rank binding sites based on accessibility. The contrasting 

patterns of rankings in each system are consistent with contrasting trends in 

conduction pathways and barriers, suggesting that graph theoretical ranking may 

prove a quick, powerful tool for predicting conduction trends in perovskite 

systems.  

 Thus, this work refines an existing technique for generating proton 

conduction pathways, applies a graph theoretical centrality measure to proton 

conductors for the first time, and begins the characterization of a grain boundary 

system, the first step toward full analysis of conduction trends.  
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Chapter 1 

An Introduction to Fuel Cells, Perovskite Oxides, and 

Proton Conduction Therein 

 

1.1 Beyond Fossil Fuel Combustion 

As the effects of global climate change become more apparent, reducing 

atmospheric levels of greenhouse gases has arisen as an important goal for 

policymakers, researchers, and individuals alike. These efforts will necessarily 

involve reducing atmospheric levels of CO2. Carbon dioxide produced by 

combustion of fossil fuels has been estimated to account for 79 percent of 

warming potential-weighted emissions in the United States between 1990 and 

2010. Increasing CO2 emissions from electricity generation and transportation 

activities have driven a 1.7 percent average annual growth rate in U.S. emissions 

between 1990 and 2007.1 

 Such trends have sparked fresh interest in fuel cells, which offer a means 

of producing energy with only a fraction of the CO2 emissions of hydrocarbon 

combustion, or frequently without any CO2 emission. However, the current wave 
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of research is only the most recent entry in the long history of fuel cells. Sir 

William Robert Grove constructed the first primitive prototype of a hydrogen-

powered fuel cell in the nineteenth century, publishing an account of his work in 

1839. Scattered international experimentation with fuel cell designs and materials 

continued through the twentieth century. The oil crisis of the late 1960s and early 

1970s together with Cold War anxieties motivated the first concentrated burst of 

fuel cell research in the United States. Many of the advances made during this 

period have played a major role in the current wave of design and inquiry.2  

 

1.2 Basic Principles of Fuel Cell Operation and Design 

Broadly speaking, a fuel cell is a device intended to convert chemical energy 

directly into electrical energy. Fuel cells are distinguished from batteries by the 

fact that energy is released from the reactions of substances in the liquid or gas 

phase, rather than the solid phase as in batteries. Further, reactants are supplied to 

fuel cells continuously, and reaction products are released continuously. Fuel cells 

need not be recharged to ensure continuous operation.1 A generic fuel cell is 

illustrated in Figure 1.1.  

 The cell’s fuel, typically gaseous hydrogen or methane, is introduced 

through the fuel flow channels. In a hydrogen fuel cell, the oxidation reaction at 

the anode catalyst layer yields protons and electrons:  

2H2 → 4H+ + 4e-.               (1) 
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The electrons travel into the anode current collector and then into the circuit. The 

protons travel through the electrolyte towards the cathode. At the cathode, they 

combine with oxygen and electrons in the reduction reaction:  

O2 + 4H+ +4e- → 2H2O.                         (2) 

The ionic species and the final product vary with the fuel used.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 A simplified representation of a general fuel cell. Adapted from 

Mench.3 The oxidation reaction at the anode produces electrons that travel 

through the circuit. Meanwhile, ions produced by the oxidation reaction are 

conducted through the electrolyte, where they combine with electrons and 

atmospheric oxygen to form a product in the reduction reaction at the cathode.   
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Wang and coworkers have presented an idealized fuel cell polarization 

curve. Shown in Figure 1.2, this curve illustrates the fact that losses of potential 

difference occur at each step in the process described above. At the region of 

activation polarization (low current densities), the slow kinetics of the reduction 

reaction at the cathode are primarily responsible for potential losses. As current 

density increases, ohmic losses due to resistance to ion conduction in the 

electrolyte—the focus of this work—and resistance to electron conduction in the 

electrodes dominate. Finally, at high current densities, the rate of the reactant 

gases’ diffusion onto the catalytic layers begins to contribute to the mass 

transport-related potential drop that occurs when the fuel and oxidant cannot be 

supplied quickly enough.4  

 

 

 

 

 

 

 

 

Figure 1.2 An idealized version of a polarization curve for a fuel cell operating 

under constant conditions.4 As current density increases, losses associated with 

different processes in the cell begin to contribute to the drop in potential.  
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Working voltages below one Volt are common to most fuel cells. To yield 

higher voltage, multiple cells are connected in series to form stacks. The cathode 

of one cell in a stack is separated from the anode of the next by a conducting 

bipolar plate. The necessary voltage dictates the number of cells in the stack. Each 

section of electrolyte is sealed, end plates are added, and the completed stack is 

compressed using tie bolts.1  

 

1.3 Types of Fuel Cells 

Fuel cells are usually classified by their electrolyte material and, where relevant, 

by their fuel type. This section provides a brief survey of the types of fuel cells 

that have been the subjects of the most intensive study and development efforts.   

 

1.3.1 Proton Exchange Membrane Fuel Cells and Direct 

Liquid Fuel Cells 

Proton exchange membrane fuel cells (PEMFCs) and direct liquid fuel cells both 

contain polymer electrolyte membranes, but the former are fueled by humidified 

hydrogen gas and the latter by one of a number of liquids, including methanol, 

ethanol, formic acid, and inorganic fuels. The polymer membrane is composed of 

monomers containing acid groups. When the membrane comes into contact with 

water, these acid groups dissociate, and the hydrogen-bonded networks that form 
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can conduct protons generated in the anode reaction. The most commonly used 

polymer, Nafion®, consists of perflourinated sulfonic acid groups.2  

 Because proton conduction in PEMFCs depends on the presence of liquid 

water, their optimal operating temperatures range from 80-90 ˚C. Warm-up time 

is short. Cool operation coupled with high power-to-mass ratios make PEMFCs 

the natural choice for powering passenger vehicles.5 However, this low operating 

temperature also necessitates the use of an excellent and extremely expensive 

catalyst: platinum6 or platinum mixed with ruthenium.2 Platinum catalysts are 

vulnerable to CO poisoning, which can dramatically reduce efficiency. PEMFC 

efficiency is also hampered by the occasional movement of reactant and oxidant 

molecules directly through the relatively permeable electrolyte.2 

 

1.3.2 Phosphoric Acid Fuel Cells  

In the highly concentrated phosphoric acid (H3PO4) solutions employed as 

electrolytes in phosphoric acid fuel cells (PAFCs), protons produced at the anode 

jump from one acid molecule to the next, diffusing by the Grotthuss mechanism. 

While the single phosphoric acid molecule adsorbs well on platinum catalysts, 

with deleterious effects for electrode efficiency, the phosphoric acid dimmer 

(H4P2O7) that forms at high temperatures (160-220 ˚C) in aqueous solution does 

not.2 Higher operating temperatures make catalyst layers less vulnerable to CO 

poisoning. Waste heat is produced at high enough temperatures to be utilized for 

thermal energy co-generation, making possible efficiencies approaching 85 
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percent for cogeneration systems. Standard combustion-based power plants 

typically run at 33-35 percent efficiency.5  

 However, higher temperatures necessitate longer warm-up and thus slower 

starting times. PAFCs have lower power-mass ratios than PEMFCs, but they still 

require expensive, corrosion-resistant Pt-containing catalysts. Because the 

electrolyte is present in the aqueous phase, small portions are constantly lost to 

evaporation. Nonetheless, as one of the earliest types fuel cells developed, PAFCs 

have reached a level of refinement that makes them an appealing option for 

noiseless, minimally polluting stationary power generation.3 Approximately 300 

PAFC power plants are in operation in Europe, Japan, and the United States.2 

 

1.3.3 Alkaline Fuel Cells 

In contrast to PAFCs, fuel cells containing less corrosive alkaline electrolytes 

(usually aqueous solutions of potassium hydroxide) may utilize a range of 

catalytic materials at the electrodes. While silver and gold prove highly effective, 

oxides of other metals, nickel, and activated carbon have also been employed.2 

Operating temperature depends on the catalysts used, ranging from 60-250 ˚C. 

Alkaline cells can operate much more efficiently than cells with acidic 

electrolytes because of the salutary effects of the alkaline solution on the kinetics 

of the reduction reaction at the cathode, a major source of potential loss for most 

fuel cells.  
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Despite these advantages, alkaline fuel cells have not been widely adopted 

because of their extreme vulnerability to even small concentrations of CO2, which 

reacts with the electrolyte solution to form K2CO3.3 Alkaline fuel cells have been 

used most successfully to provide power to early spacecrafts, where the purity of 

the reactant gases could be ensured.  

 

1.3.4 Molten Carbonate Fuel Cells 

The electrolyte of a molten carbonate fuel cell (MCFC) consists of a mixture of 

62-70 mol percent Li2CO3 and 30-38 mol percent K2CO3. Maintaining this 

mixture at the eutectic point—the temperature and composition that represent the 

coolest possible mixture in which both components are present in the liquid 

phase—requires working temperatures ranging from 600-650 ˚C. This elevated 

temperature range confers several advantages, including high tolerance of 

impurities (thus greater flexibility in fuel sources) and production of high quality 

waste heat. Moreover, the high rate of hydrogen-carbonate reactions at the 

electrodes allows use of less efficient catalysts that are far less expensive than 

platinum.2 Co-generation MCFC systems can reach efficiencies close to 85 

percent.5 

 Kinetic gains in MCFCs are offset by thermodynamic loses, as the 

efficiency of the overall reaction decreases with increasing temperature.2 Further, 

as with PAFCs, small amounts of electrolyte are constantly lost to evaporation 

and must be replaced regularly. The electrolyte solution often corrodes the 
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cathode catalysts, causing durability problems.3 Design is complicated by the fact 

that CO2 evolved in the anode reaction must be returned to the cathode to 

participate in the reduction reaction.2 Finally, with high operating temperature 

comes a start-up time slow enough that MCFCs are suitable only for continuous 

power generation. These difficulties have not prevented the development of 

several lines of commercially available MCFCs.3  

 

1.3.5 Solid Oxide Fuel Cells 

Solid oxide fuel cells (SOFCs) contain hard, non-porous ceramic electrolytes. 

Their operating temperatures are the highest among the common types of fuel 

cells, ranging from 800-1000 ˚C. Although the extended start-up time required for 

operation at such temperatures limits their use to continuous stationary power 

generation, co-generation systems that make use of waste heat could operate at 

efficiencies higher than 85 percent.3 As with alkaline and molten carbonate fuel 

cells, higher operating temperatures make the use of inexpensive, non-noble metal 

catalysts possible. SOFCs are highly CO-tolerant, allowing the use of lower-grade 

fuels.3 A variety of hydrocarbon fuels may be employed. Use of hydrocarbon 

fuels naturally entails the emission of carbon-containing gases, but SOFCs 

running on hydrocarbons remain significantly more efficient than hydrocarbon 

combustion-based energy generation, and their flexibility in fuel sources make 

them an attractive option for easing the transition to a hydrogen-based energy 

infrastructure.3 
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 The central goal of SOFC research and development efforts involves 

lowering working temperatures to 500-700 ˚C. This range would preserve the 

benefits associated with high temperature operation while decreasing thermal 

stress on components and allowing the use of interconnects made of metal rather 

than ceramic. Lower operating temperatures would also have the advantage of 

increasing the safety of SOFC co-generation plants and decreasing operating 

costs. Achieving lower-temperature operation requires the use of a ceramic 

electrolyte capable of conducting ions below the standard temperature range.7  

Thus, exploring the conduction properties of different classes of ceramics 

represents a promising direction for inquiry. One such class of ceramics consists 

of the perovskite-structured oxides, or perovskite oxides. This work will detail 

efforts to determine energetics and patterns of proton conduction in several 

perovskite oxide systems.  

 

1.4 The Structure of Perovskite Oxides 

Perovskite oxides are ceramics with the unit formula ABO3, where the 12-

coordinated A cation is larger than the six-coordinated B cation. Figure 1.3 shows 

a unit cell of one such material, BaZrO3. While most perovskite oxides are nearly 

cubic or orthombic,8 deviations from the ideal structure may be predicted by 

calculation of the tolerance factor t, which is given by  

,               (3) 

€ 

t =
rA + rB
2(rB + rO )
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where rA, rB, and rO are the radii of the A, B, and O ions, respectively.  

 

  

 

 

 

 

 

 

Figure 1.3 (a) and (b) show two equivalent unit cells for BaZrO3, one of the 

perovskite-structured oxides with the general formula ABO3. Ba ions (the A ions) 

are shown in mauve, Zr ions (the B ions) in green, and O ions in red. In (a), the Zr 

ion is shown at the center of an octahedron made up of O ions, with Ba ions at 

each corner. The front face shows a diagonal Ba-O-Ba (A-O-A) axis. In (b), the 

Ba ion is shown at the center. A Zr-O-Zr (B-O-B) axis is shown in black. 

Replicating either unit cell produces the same lattice structure. Notice that both 

cells share the same basic grouping of a Ba ion, a Zr ion, and three O ions. This is 

the true replicable BaZrO3 unit. Additional ions are shown to emphasize the cubic 

structure.  

 

The tolerance factor compares the lattice size obtained from perfect 

packing along the A-O-A diagonal with the lattice size obtained from perfect 

(a) (b) 
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packing along the B-O-B lines that form the edges of the cube shown in Figure 

1.3 (b). If the two lattice constants are equal, t = 1, and the structure is expected to 

be cubic at low temperatures. When t < 1, and the lattice size required to 

accommodate perfect packing on the B-O-B axis is greater, extra space is 

available along the diagonal. This allows the octahedra formed by O ions 

surrounding B ions to tilt, distorting the cubic structure.  

 

 

 

 

 

 

 

 

Figure 1.4 A BaZrO3 structure composed of eight unit cells in a 2x2x2 

arrangement is shown in (a) for reference. The octahedra formed by zirconia 

surrounded by six oxygens are shown in green. (b) shows a Y-doped 2x2x2 

BaZrO3 unit. The Y-centered octahedron is shown in blue. The octahedra in the 

doped unit are noticeably tilted. When a larger Y ion replaced a Zr ion, the longer 

length of the new Y-O-Zr axis increased the spacing along the Ba-O-Ba axis, 

allowing the octahedra to tilt.  

 

(a) (b) 
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When a fraction of the B ions are replaced with dopant ions, the tolerance 

factor indicates whether tilting should be expected to increase (when the ionic 

radius of the dopant is larger than the radius of B) or decrease (when the ionic 

radius of the dopant is smaller than the radius of B). Tilting effects in one 

perovskite system are illustrated in Figure 1.4.9,10  

When two perovskite crystals with the structure described above meet 

with different orientations, they form a defect known as a grain boundary. Grain 

boundaries may be grouped into broad categories based on the angle formed by 

the axis of rotation for each crystal o with respect to the normal axes n for the 

crystals. When o⊥n, the interface is called a tilt grain boundary, and when o||n, 

the interface is called a twist grain boundary.11 Both types are shown in Figure 

1.5.  

Interfaces that do not fall into one of these categories are described as 

mixed grain boundaries. Additional details about grain boundary structure and 

properties as well as a discussion of the significant impact of perovskite grain 

boundaries on proton conduction will be provided in Chapter 2.  
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Figure 1.5 A tilt grain boundary between two generic crystals or grains is shown 

in (a). The axis of rotation o is perpendicular to the normals n of both shaded 

crystal surfaces. In (b), a twist grain boundary is shown. The normals n for the 

shaded crystal surfaces lie parallel to the axis of rotation o. In a mixed grain 

boundary, n and o would describe an angle between 0˚ and 90˚.  

 

1.5 Proton Conduction in Perovskite Oxides 

Many perovskite oxides display electrical, ionic, or mixed electrical and ionic 

conductivity.12 Among the ion conductors are BaZrO3 and SrZrO3, the proton 

conductors that are the subjects of this work. Other perovskite-structured proton 

conductors include SrCeO3, CaZrO3, and BaCeO3. Rates of incorporation for 

protonic defects are increased by the replacement of a fraction of the +4 ions with 

lower valence (usually +3) ions. A sample equation7 for the doping of BaCeO3 

with an M3+ cation summarizes the doping process for most proton-conducting 

perovskite oxides:  

(a) (b) 
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Ce x
Ce + M2O3 + Ox

O  → 2M '
Ce + 

€ 

VΟ
•• + 2CeO2.            (4) 

The superscript of each species gives its charge with respect to the ion site it 

occupies, which is given in the subscript. Species such as Ce that occupy their 

own sites are uncharged relative to the original occupancy, a state denoted by the 

x superscript. Each superscripted dot denotes a positive charge, and each prime 

indicates a negative charge.  V indicates a vacancy. The introduction of the dopant 

metal’s oxide leads to the replacement of a fraction of the original B cations with 

the M cation, the creation of an oxygen vacancy, and the formation of an ionic 

product that leaves the lattice.  

 The presence of oxygen vacancies allows water molecules present in the 

gas phase to be absorbed at the surface of the perovskite. During this process, the 

water molecule dissociates into a hydroxide ion and a proton. The proton forms a 

covalent bond with a lattice oxygen, and the hydroxide ion fills an oxygen 

vacancy. This process is given by7 

H2O(g) + 

€ 

VΟ
•• + Ox

O  → 2OH

€ 

Ο
•
 .              (5) 

Incorporation of protons from water is exothermic in doped and undoped cerates 

(such as BaCeO3) and zirconates (such as BaZrO3), a fact consistent with 

observations that proton incorporation decreases with increasing temperature.7 

 It is convenient to describe a proton that has been incorporated into the 

lattice and covalently bonded to an oxygen ion as occupying one of four binding 

sites on the oxygen. The four sites lie in a plane perpendicular to the axis formed 

by the oxygen and the two adjacent B cations. When every binding site is 



 16 

occupied, the covalent bonds form right angles with each other, each pointing 

toward an oxygen atom in an adjacent octahedron. 

  Density Functional Theory (DFT) studies9,10,13 suggest that a proton 

diffusing through the lattice that is bound at any given site may rotate to an 

adjacent site on the same oxygen (in a rotation step R), move into a site in the 

same plane on an oxygen in one of the two octahedra its current oxygen is part of 

(in an intraoctahedral transfer step T), or move into a site on the oxygen in a 

different octahedron toward which it “points” (in an interoctahedral step I). Each 

move is illustrated in Figure 1.6.  

 

 

 

 

 

 

 

Figure 1.6 A single unit lattice plane. Protons are shown occupying each binding 

site to which the top center proton might move in a single transition. Notice that 

two rotations (marked R) and two intraoctahedral transfers (marked T) are 

possible, as they are from any binding site in the system. Interoctahedral tilting 

has brought the top and bottom oxygens together, so a fifth transition (an 

interoctahedral transfer marked I) is possible from the site. 
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The third move is possible only when octahedral tilting (see Figure 1.4B) 

has brought the two sites closer together than they would be in a perfectly cubic 

lattice (4A). Thus, from a given binding site, four or five moves are possible. The 

average speed of each type of step depends on the type of perovskite and the 

dopant.9,10 This process is classified as a Grotthuss-type conduction mechanism, 

as the proton is passed between adjacent ions that remain relatively stationary.13 

 

1.6 Toward a Deeper Understanding of Proton Conduction in 

Perovskites 

This work will describe efforts to generate and understand proton conduction 

pathways in two different perovskites, BaZrO3 and SrZrO3. Yttrium and 

aluminum dopants are considered for both perovskites. Chapter 2 will discuss the 

effects of exchange-correlation functional and pseudopotential choices on 

minimum energy configurations obtained for stable Y-doped BaZrO3 tilt grain 

boundary systems. In Chapter 3, the Kinetic Monte Carlo algorithm will be 

presented as a method for generating long-range conduction pathways in bulk 

perovskite systems, and past and current efforts to increase the efficiency of the 

algorithm will be described. Chapter 4 will treat graph theoretical analysis aimed 

at making sense of the differences in conduction pathways and energetics that 

mark the four bulk systems considered. This analysis will include a novel 

application of a centrality measure based on average hitting time.  
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Chapter 2 

Determining the Structural Effects of Yttrium Dopant 

on BaZrO3 Grain Boundaries 

Given the extreme differences between ionic arrangements in bulk systems and in 

grain boundary systems, it is hardly surprising that the conduction behavior of 

grain boundaries in ionic solids usually differs significantly from conduction 

behavior of the bulk material. In many common minerals, ionic diffusion along 

grain boundaries may be assumed to be several orders of magnitude faster than 

bulk diffusion. In fact, diffusion through polycrystalline MgO is thought to allow 

exchange of carbon and transition metals between Earth’s mantle and core on a 

reasonable timescale.14 The same changes that promote such radical shifts in MgO 

diffusion could not be expected to leave proton conduction behavior unchanged. 

Indeed, grain boundary effects on the conduction properties of Y-doped BaZrO3 

have been the subject increasing research efforts over the past decade.  
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2.1 Grain Boundary Effects on Y-doped BaZrO3 Proton 

Conductivity 

Although Y-doped BaZrO3 shows excellent bulk proton conductivity with respect 

to other perovskite-structured oxide conductors, the overall conductivity of 

polycrystalline Y/BaZrO3 is significantly lower than optimal bulk conductivity. 

Experimental values for bulk and grain boundary conduction activation energies 

are given in Table I. Although values vary based on sample preparation methods, 

humidity levels, and a host of other factors that make conductivity measurements 

notoriously difficult to reproduce,15 the higher barriers to conduction in grain 

boundaries are apparent.  

 

Table 2.1 Activation energies for proton conduction in bulk and grain boundary 

sections of Y-doped BaZrO3 with varying dopant levels. While absolute 

activation barriers vary between studies and dopant percentages, grain boundary 

activation energies are significantly higher than bulk activation energies.  

Y 

% 

Bulk Activation Energy 

(eV) 

Grain Boundary Activation Energy 

(eV) 

Ref. 

20 0.45 ± 0.01 0.71 ± 0.02 16 

15 0.37 0.74 17 

15 0.46 ± 0.01 0.80 ± 0.01 18 

10 0.44 0.70 19 
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High-temperature annealing has been shown to increase grain size and produce 

more orderly grain boundary and bulk structures, minimizing grain boundary 

resistance effects. Annealing at 1250 ˚C yielded a 200-fold increase in BaZrO3 

conductivity levels with respect to samples annealed at 800 ˚C, and annealing at 

1500 ˚C yielded a nearly 500-fold increase with respect to samples annealed at 

800 ˚C.20 

 High activation barriers for proton conduction across grain boundaries 

have been attributed in part to charge density patterns in grain boundary regions. 

In most ionic solids, the structural differences between grain boundaries and bulk 

material lower the standard enthalpies for charged defect formation in grain 

boundary cores. Thus, grain boundary cores may be expected to carry excess 

positive or negative charge.21 Experimental22,23 and theoretical15 work has shown 

that BaZrO3 grain boundary cores are positively charged, an effect attributed to 

segregation of oxygen vacancies to the core.15 Protons segregation to the grain 

boundary core has also been shown to contribute to the region’s positive charge.24 

Positively charged grain boundary cores repel positively charged mobile 

protons, and the increased number of vacancies at oxygen sites decreases the 

number of proton binding sites available, increasing the O-O distance protons 

must jump.15 Higher Y concentrations surrounding grain boundary cores 

compensate in part for the positive charge. Because Y3+ has a larger radius than 

Zr4+ (1.01 Å vs. 0.84 Å), elastic strain promotes the segregation of the dopant into 

more spacious grain boundary core sites.23 Negatively charged defects, 
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particularly electrons, accumulate outside the grain boundary core. This charge 

gradient forms what is known as the space charge layer, a common feature of 

doped oxides and other ionic substances. Figure 2.1 illustrates the expected 

concentrations of protonic and electronic defects in the area surrounding a grain 

boundary.  

 

 

 

 

 

 

 

Figure 2.1 A schematic of a grain boundary core and one of the adjacent space 

charge layers.22,23 The positively charged grain boundary core repels protonic 

defects and attracts electronic defects, hindering the passage of protons through 

the grain boundary. The concentrations of any other positive defects in the lattice 

also decline near the core.   

 

Although the space charge layer model has gained considerable traction, it has 

also been posited that grain boundary resistance is the product of the irregular 

geometries of grain boundaries. These disruptions of the periodic perovskite 

structure may simply require the proton to move longer distances between 
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oxygens.25 Recent work suggests that grain boundary resistance is properly 

understood as a product of both electrostatic effects and aperiodicity.26   

 

2.2 Toward Determination of Proton Conduction Pathways 

Across a Grain Boundary 

 While the general tendency of grain boundaries to increase activation 

barriers for proton conduction has been well documented experimentally, few 

theoretical studies have considered the migration of a proton across a grain 

boundary at the atomic scale. Kim and coworkers examined proton conduction in 

a Σ5 (310) tilt BaZrO3 grain boundary doped with Y at 3.57 percent, the most 

commonly observed grain boundary in TEM studies of perovskite oxides.27 The 

Σ5 (310) grain boundary may be expected to be among the most stable grain 

boundary structures, as the Σ5 classification refers to the fact that 1/5 of the 

atomic sites in each grain coincide when the grains are superimposed. If we 

assume that the lowest energy, most stable arrangement occurs when each ion is 

in its normal lattice site, it is reasonable that the most stable superimposition of 

grains would be the one that preserves the highest fraction of these positions.28  

In order to trace out possible low-energy pathways across the grain 

boundary, Kim and coworkers determined the most stable Σ5 (310) tilt grain 

boundary structure. Density functional theory (DFT), a technique that will be 

described in more detail in the next section, was used to determine the energies of 
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the geometrically optimized possible structures. Four possible dopant sites labeled 

A-D (shown in Figure 2.2) were identified at the core of the most stable grain 

boundary structure. The structure with the dopant at the B site was determined to 

be most stable, and the energy barriers to each possible proton move between 

binding sites in the structure were calculated. Using these energies, possible low-

activation energy pathways across the grain boundary were identified.27  

 

 

 

 

 

 

 

Figure 2.2 A portion of a single lattice plane from Kim’s optimized Σ5 (310) tilt 

grain boundary structure showing the possible sites at which a dopant ion may be 

substituted for a Zr ion (shown in bright green). Ba ions have been omitted for 

clarity. Substituting Y for Zr at one of these sites gives a dopant level of 3.57 

percent when all of the Zr sites in the system (and not just those shown here) are 

considered. 
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Previous studies have employed kinetic Monte Carlo simulations and 

dynamic programming (see Chapters 3 and 4) to generate all possible periodic 

long-range conduction pathways through bulk perovskite systems, including Y-

doped BaZrO3.9,10 Probability-weighted averages of the highest activation barriers 

in each pathway yielded rigorous estimates of activation barriers for proton 

conduction in the systems of interest.  Constructing long-range conduction 

pathways requires full characterization of the system, including the optimal 

energies of the structure with a single proton occupying each binding site, the 

energies of each possible proton transition between binding sites, and the normal 

mode frequencies for binding site and transition state structures.9,10 As a first step 

toward this full characterization, optimal energies for Kim’s grain boundary 

structures with dopant in each of were the four sites were determined using DFT. 

The results proved an interesting demonstration of the effects of the 

approximations chosen in the course of DFT calculations.  

 

2.3 Reducing the Complexity of the Many-Body Problem to 

Determine Ground State Energy 

Because the precise ground state energy of any system with interactions more 

complex than those present in the hydrogen atom cannot be determined 

analytically, calculating a reasonably accurate ground state energy for a 

perovskite grain boundary system requires a series of approximations. The 

problem may is simplified by application of the Born-Oppenheimer 
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approximation, with assumes that light, quick electrons respond instantaneously 

to the motion of relatively slow-moving, heavy ionic nuclei. Thus, the motion of 

the nuclei and the electrons may be treated separately, with electron behavior 

playing out in the potential generated by a static configuration of nuclei.  

 Even when ion nuclei are fixed, electron-electron interactions and 

electron-ion interactions must be accounted for, and electron positions must be 

optimized based on these interactions. Electron-electron interactions may be 

treated using density functional theory (DFT). DFT rests on Hohenberg and 

Kohn’s proof that the total energy of an interacting electron gas is a functional of 

the gas’s electron density. Hence, the many-electron problem presented by the gas 

can be mapped onto a series on non-interacting electrons subject to potentials 

generated by the other electrons in the system. The set of wave functions that 

minimizes the total energy functional consists of the self-consistent solutions to 

the equation 
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where the Hartree potential vH is given by  
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n(r) refers to the electron density at a point r, equivalent to the probability density 

for any of N electrons in the system being at the point r:  
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The vion(r) term gives the static electron-ion potential, and vXC(r) refers to the 

exchange-correlation potential, given by  

€ 

vXC (r) =
δEXC [n(r)]
δn(r)

.               (4) 

EXC[n(r)] is the exchange-correlation functional. The exchange-correlation 

energy is the sum of the exchange energy (reduction in energy due to the wave 

function’s antisymmetry) and the correlation energy (the difference between the 

true many-bodied energy of the system and the energy approximated by the 

Hartree-Fock method). Exchange energy is itself a function of the electron density 

function. Once an approximation for EXC[n(r)] is given, determining the total 

energy is a matter of solving the eigenvalue problem posed by Equation 1.  

Employing periodic boundary conditions would seem to complicate the 

problem by introducing an infinite number of electrons and fixed nuclei whose 

interactions must be accounted for. However, according to Bloch’s theorem, each 

electronic wave function can be given as the sum of a basis set of plane waves. 

Depending on the boundary conditions of the system, a set of k points may be 

constructed where electronic states are represented, and extremely accurate 

approximations may be produced by the calculation of only a few k points’ wave 

functions. Because plane waves with lower kinetic energy are weighted more 

heavily in the wave functions, the basis set is truncated at a chosen energy cutoff.  

In the areas close to the ionic nucleii, where wave functions oscillate 

quickly, the plane wave basis set cannot adequately expand the electronic wave 

functions. The behavior of valence electrons rather than core electrons tends to 
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dictate the properties of crystals, though, so core electrons may effectively be 

removed and replaced with weak pseudopotentials acting on pseudo wave 

functions. When an appropriate pseudopotential is used, the effects outside the 

core region are indistinguishable from the effects produced by the core electrons. 

The construction of a pseudopotential begins with the selection of an exchange-

correlation functional. An initial pseudopotential expression with variable 

parameters is generated. The parameters are optimized until the pseudo-ion 

system displays the same eigenvalues as the electronic system is will replace, and 

the pseudo wave functions are equal to the electronic wave functions beyond a 

certain cutoff radius. When an appropriate pseudopotential is in place, simplifying 

the treatment of electron-ion interactions, the many-body problem has been 

reduced to manageable proportions.29  

 

2.4 Exchange-Correlation Functionals 

Many exchange-correlation functional approximations have been developed for 

use in different systems, but only three general approaches that have been applied 

in this work will be described here. The first is the local-density approximation, or 

LDA. In the LDA, it is assumed that the exchange-correlation energy for each 

electron at some point r in the electron gas is equivalent to the exchange-

correlation energy that would be obtained if the gas had the same density 

throughout that it displays at point r.29 The approximation has the general form  

€ 

EXC
LDA[n↑,n↓ ] = d3rn(r)εXC [∫ n↑(r),n↓ (r)],            (6) 
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with 

€ 

εXC (n↑,n↓ ) giving the exchange-correlation energy per particle in the gas.30 

Despite the fact that this approximation ignores the effects of nearby variation in 

electron density, it often yields excellent results.29 

 The LDA is recognized as sufficiently accurate for calculating ground 

state energies for a number of applications, but for some applications it is 

desirable to consider the variation in the density of the electron gas, which is 

accomplished by incorporating the gradient of the electron density at different 

points to form a generalized gradient approximation (GGA). These 

approximations take the general form  

€ 

EXC
LDA[n↑,n↓ ] = d3rf (n↑ (r),n↓ (r),∫ ∇n↑,∇n↓) .            (7) 

One commonly employed GGA is the PW91 approximation.17 Another potential 

in common use is the PBE functional, which attempts to provide a simpler 

alternative to the complex, highly parameterized GGA functional while 

maintaining the most accurate features of the LDA and introducing only the 

energetically significant gradient corrections.31 

 

2.5 Energetic and Geometric Optimization Using VASP 

The Vienna Ab-Initio Simulation Package (VASP)32 employs exchange-

correlation functionals, pseudopotentials, and periodic boundary condition 

approximations to calculate approximate ground state energies for ionic systems. 

Electronic ground states are calculated self- 
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consistently for each configuration of nuclei. This process involves setting up the 

Hamiltonian with trial wave functions and charge densities, and then optimizing 

these functions until they closely approximate the true functions.32 

 Multiple algorithms for optimizing the positions of the nuclei exist, but 

calculations described in this work have employed only the conjugate gradient 

(CG) method. Nuclei positions are optimized with respect to the potential energy 

surface generated by the electrons in the system. From the point on the potential 

energy surface corresponding to the initial configuration, nuclei are moved in the 

direction of steepest descent, in the direction opposite the gradient at the initial 

point. When a local minimum along the line is reached, a new direction is 

selected. This direction is a linear combination of the previous direction vector 

and the gradient at the current point, and it is conjugate to the previous direction. 

Each time a conjugate direction is selected, the dimension of the area to be 

explored is reduced by one. Eventually, the space becomes zero-dimensional, and 

the configuration at this point represents the minimum energy.29 The geometric 

optimization of the system is said to have converged when the difference between 

two successive configurations drops below a specified cutoff value.30  

 

2.6 Optimal Grain Boundary Structures and Energies 

Preliminary optimizations indicated that grain boundary structures with dopant in 

the A site or the B site were more stable than structures with dopant at the C or D 

sites. Thus, these two structures were optimized using each of the three exchange-
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correlation functionals discussed above: LDA, PW91, and PBE. For each 

optimization, a 2x2x2 Monkhorst set of k points were constructed, and an energy 

cutoff of 500 eV was used to limit the plane-wave basis set. The dimensions and 

volume of the simulation box were relaxed. The optimal energies for each 

structure using each functional are reported in Table II. The results from each 

functional will be discussed in more detail in the following sections. 

 

Table 2.2 The energies of optimized grain boundary structures with dopant at the 

A or B site. All energies and relative energies are reported in eV. Notice that two 

of the three functionals yielded lower optimal energies for the structure doped at 

the B site. 

Functional LDA  PW91  PBE  

Result 

Type 

Energy Relative 

Energy 

Energy Relative 

Energy 

Energy Relative 

Energy 

Site A -1237.2 0.2 -1138.5 0.9 -1133.4 0.0 

Site B -1237.4 0.0 -1139.5 0.0 -1133.3 0.1 

 

 

2.6.1 Results from the LDA Functional 

The optimized structures grain boundaries in with the dopant in the A and B sites 

are shown in Figures 3 and 4, respectively.  
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Figure 2.3 Kim’s grain boundary structure with the dopant (dark blue) in the A 

site. This structure was optimized using the LDA functional. Some ions have been 

omitted for clarity, and periodic images of ions are not shown. This structure 

maintained its symmetry about the central vertical axis.  

 

While the structure doped at the A site remained largely symmetrical about a 

vertical axis, the structure doped at the B site displayed significant asymmetric 

distortions. The latter was determined to be approximately 0.23 eV lower in 

energy than the former.  
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Figure 2.4 Kim’s grain boundary structure doped at the B site and optimized 

using the LDA functional. Notice that the extreme asymmetric distortions 

introduced as a result of the asymmetric doping. 

 

2.6.2 Results from the PW91 Functional 

The grain boundary structures doped at the A and B sites and optimized using the 

PW91 functional are shown in Figures 5 and 6, respectively. The structure doped 

at the B site was determined to be the lower in energy by 0.99 eV. In general, the 

structures show the same patterns as the structures optimized using the LDA 

functional. The grain boundary doped at the A site remained symmetrical upon 

optimization, while the grain boundary doped at the B site was asymmetrically 

distorted. These distortions appear more extreme than the distortions produced in 

the same structure during optimization using the LDA functional, and they may 
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account for the larger energy gap between the two structures yielded by 

optimization using the PW91 functional.  

 

 

 

 

 

 

 

 

 

Figure 2.5 The grain boundary doped at the A site and optimized using the PW91 

functional. The grain boundary remained almost perfectly symmetric about the 

vertical axis, and the structure is extremely similar to the same structure 

optimized using the LDA functional.  
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Figure 2.6 The optimized structure for the grain boundary doped at the B site. 

Optimization was performed using the PW91 functional. Notice that the 

asymmetric distortions on the left side of the structure, particularly in the unit cell 

above the dopant, are more extreme than the distortions generated by optimization 

using the LDA functional.  

 

2.6.3 Results from the PBE Functional  

Optimizations performed using the PBE functional yielded energy values 

suggesting that the structure doped at the A site is more stable by 0.13 eV than the 

structure doped at the B site. The optimized structure doped at the A site is shown 

in Figure 2.7. Of the three functionals used, only the PBE functional produced 

asymmetric distortions in the structure doped at the A site.  
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Figure 2.7 The grain boundary structure doped at the A site and optimized using 

the PBE functional. The resulting distortions are less extreme than the distortions 

in structures doped at the B site, but they are not entirely dissimilar to those 

present in the structure doped at the B site and optimized using the LDA 

functional.  

 

 

Although the structure doped at the B site is significantly more distorted than the 

structure doped at the A site, the fact that both show asymmetric distortions might 

account for the relatively small energy gap between them.  
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Figure 2.8 The grain boundary structure doped at the B site and optimized using 

the PBE functional. It is interesting to note that the distortions in this structure are 

almost identical to the distortions in the same structure optimized using the PW91 

functional.  

 

2.7 Conclusions 

The variation in optimized structures and relative energies demonstrates the 

significant effects of the chosen functional on optimization results. Determining 

which functional has performed best is not a simple matter, and none of the 

individual results can be considered complete without reference to the functional 

used to generate them. The most recent theoretical studies of Y/BaZrO3 grain 
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boundary structure have employed the PBE functional, so use of this functional 

would yield results more comparable to similar work.24,27  

A few general trends may still be observed. In each case, asymmetrically-

doped optimized structures were more distorted than structures doped at the A 

site. Further, the lowest energy structure for each functional underwent at least 

minor distortions. It is not entirely apparent, though, that the shifts in simulation 

box shape and volume that allowed the most extreme distortions to occur 

realistically reflect the behavior of a physical grain boundary. In an experimental 

system, forming grain boundaries would be surrounded by large sections of bulk 

material, so it is not clear whether such broad distortions could occur. Further 

review of similar studies might shed light on the simulation box relaxation issue. 
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Chapter 3 

Kinetic Monte Carlo Simulations to Determine 

Probable Conduction Pathways in Perovskite Systems 

While graph theoretical methods have proved extremely useful in determining 

probable conduction pathways and the general characteristics of probable 

pathways in perovskite systems (see Section 4.2), kinetic Monte Carlo (KMC) 

simulations offer an alternate, complementary approach for determining pathways 

by predicting the movement of a proton through the system. In this section, the 

advantages of KMC simulations over molecular dynamics simulations will be 

discussed and a general algorithm will be presented, along with the process for 

applying this algorithm to simulate proton conduction. A novel variation on this 

general algorithm will be described, and its results and utility in determining 

proton conduction pathways will be assessed.  

 

3.1 KMC Algorithms as Solutions to the Time Scale Problem 

Beginning in the 1990s, as available computing power increased, molecular 

dynamics (MD) simulation emerged as the first-principles method of choice for 
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modeling the evolution of systems over time on the molecular level.33 MD 

simulations model system changes by propagating the classical equations of 

motion ahead in time and moving atoms along the resulting trajectories. When the 

potential used to calculate atomic forces in the system describes the system well, 

MD simulations can yield very accurate information about the behavior of the 

system.34 Although these features make MD simulation a powerful modeling tool, 

time scale issues can limit its application. In order to resolve atomic vibrations, 

the time steps used in MD integration must be very short—on the order of 10-15, 

limiting simulation times to less than a microsecond.34 System behavior typically 

unfolds along multiple time scales, though, and studies of structure, transport, and 

other key properties often need to simulate longer time spans than are possible 

using MD.33,34   

 Kinetic Monte Carlo (KMC) simulations provide a stochastic method for 

simulating behavior over extended time scales.33,34 KMC simulations may be 

performed in systems whose evolution over time is marked by a series of 

relatively infrequent transitions between states separated by minor vibrational 

activity. KMC methods yield trajectories consisting of many such state-to-state 

transitions. Intervening vibrations are neglected.34 KMC algorithms can be 

thought of as providing solutions to the master equation 

€ 

∂P(σ,t)
∂t

= W ( $ σ →σ)P( $ σ ,t) −
$ σ 

∑ W (σ → $ σ )P(σ,t),
$ σ 

∑    (1) 



 40 

where σ and σʹ′ represent successive states of the system, P(σ,t) is the probability 

that at time t the system is in state σ, and W(σʹ′→ σ) represents the probability per 

unit time that the system will transition from σʹ′ to σ.35  

 In many solid-state systems, including the perovskite systems discussed 

here, the states σ and σʹ′ correspond to the system’s occupation of two different 

energy wells. Moving from one state to the next requires the system to overcome 

the energy barrier that separates the two wells. The time separating transitions is 

long enough to allow the system to “forget” what process brought it to its current 

state, so the probability of each transition that represents an escape route from the 

currently occupied energy well i to some adjacent well j depends only on the 

characteristics of i, j, and the ridge connecting them. No matter which well the 

system occupied before well i, the probability per unit time that the system will 

transition from i to j can be given by a single rate constant kij.34 Hence, transitions 

can be treated as random, independent events, allowing us to model the evolution 

of the system as a Poisson process, a treatment that is consistent with the master 

equation (Equation 1).35 This “infrequent event” model is highly general and has 

been used to model a wide range of processes. Early applications include 

simulations of crystal growth, surface diffusion, and reaction kinetics.33 
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3.2 A General Kinetic Monte Carlo Algorithm 

This section describes what is perhaps the most commonly employed KMC 

algorithm, which was proposed by Bortz, Kalos, and Lebowitz in 1975 as a 

method of simulating Ising spin systems. It is commonly known as the BKL 

algorithm or continuous time KMC.34 The simulation begins with the system 

occupying some initial state i. Rate constants kij have already been calculated for 

every possible move from state i to some other state j. These rate constants are 

treated as objects with lengths corresponding to their values, and they are strung 

end to end to form a larger object corresponding to the sum of the rate constants 

for every possible move from state i, ktot. A random number r between zero and 

one is generated, and this number is multiplied by the length of ktot to choose a 

random position along the ktot object, which will correspond to the rate constant 

object for one of the possible moves.  

Thus, moves are selected in proportion with their probability of occurring 

in the physical system. The move described by the chosen rate constant is then 

executed, moving the system into one of the states adjacent to i. Figure 3.1 

illustrates this selection process. Every move selected in this manner is executed. 

This feature distinguishes the BKL algorithm from “null event” algorithms in 

which a selected move might be rejected to ensure that moves occur at rates 

proportional to their probabilities.  
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Figure 3.1 The ktot “object” used to select a move from one state to an adjacent 

state. In this illustration, the position rktot lies along the k4 object, so of four 

possible moves, the one described by k4 will be selected.  

 

 After the chosen move has been executed, the simulation’s clock is 

advanced by a random time drawn from an exponential distribution determined by 

the value of ktot: 
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tdraw = −
1
ktot
ln(r)                          (2) 

where r is again a random number between zero and one. At this point the move 

selection procedure begins again.34  

 

3.3 Generating Proton Conduction Pathways Using Kinetic 

Monte Carlo Simulations 

The infrequent event model that forms the basis for KMC simulations 

corresponds well with the long-term conduction behavior of perovskite systems. 

Each state or energy well represents an optimized configuration with a single 

proton occupying one of the binding sites in the system. Before the simulation 

k1 k2 k3 k4 
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begins, rate constants for every possible transition are calculated using barriers to 

transition and frequencies yielded by density functional theory (DFT) 

calculations. Moves between states are selected randomly using the rejection-free 

procedure described above.  

After each move, the binding site occupied by the proton in the new state 

is recorded. The resulting list of binding sites represents the trajectory of the 

proton throughout the simulation. Following the simulation, another program is 

used to extract conduction pathways of different lengths from the trajectory and 

sort these paths by probability. Each possible move from a state with the proton 

occupying some binding site i to another state with the proton occupying some 

site j is assigned a weight wij, which is given by  
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where pij is the probability of transition from state i to state j, which is equal to the 

rate constant for the transition, kij, normalized by the sum of the rate constants for 

all possible transitions away from state i. The total weight for a path is equal to 

the sum of the weights of each step involved, so the highest-probability paths of a 

given length are those with the lowest weights. One such pathway, the most 

probable for the Al-doped SrZrO3 system, is shown below in Figure 3.2. 

Conduction pathways for perovskite systems produced using KMC simulations 

have been shown to be in good agreement with pathways generated using a graph 

theoretical approach.9,10  
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Figure 3.2 The most probable seven-step conduction pathway in the Al-doped 

SrZrO3 system (RIRRTTR). The final step leading back to the periodic image of 

the first binding site is not shown. Protons have been placed in each location the 

single moving proton occupies as it traverses the path—each site that would be 

recorded in the proton’s trajectory.  

 

3.4 Attempts to Increase Kinetic Monte Carlo Simulation 

Efficiency 

Although the standard KMC algorithm as described in Section 3.2 yields 

simulation on much longer time scales than would be feasible using MD methods, 

lengthy KMC simulations can still prove computationally expensive. This section 

will present a sampling of problems that often slow KMC simulations, describe 

paradigmatic algorithms that have been developed to circumvent these issues, and 

discuss their potential effectiveness for simulations of proton conduction behavior 

in perovskite systems.  
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3.4.1 Efficient Search Algorithms  

One of the most time-intensive steps of many KMC algorithms involves picking 

out the event based on the random number chosen. The method that corresponds 

most closely with the intuitive notion of pointing to a section of the ktot object 

introduced in 3.2 requires the creation of an array of partial sums of the rate 

constants for possible moves. A linear search of the array is performed, and the 

index of the first element greater than or equal to rktot indicates the rate constant 

chosen.34 Computation time required for a single move choice increase linearly 

with the number of possible moves.33  

 

 

Figure 3.3 An illustration of the simplest algorithm for choosing a KMC move. In 

this example, rktot ≤ k1 + k2, so the move corresponding to k2 will be selected.  

 

When a large number of moves are possible from a given state, this linear 

search method becomes burdensome. In a crystal growth simulation, for example, 

a move may be constituted by the occurrence of one of several processes 

(adsorption, desorption, diffustion, etc.) at any of the hundreds or thousands of 

sites forming the crystal lattice. Hence, it is often desirable to implement a more 

k1 k1 +k2 k1 + k2 + k3 
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efficient search method, many of which have been developed to facilitate database 

searches in other fields. This section describes two frequently employed 

methods.33  

 

3.4.1.1 n-level Linear Search Methods 

In the simplest case where n = 2, this method requires the construction of a 2D 

square matrix with elements consisting of the rate constants for each process. The 

sum of the elements in each column, kc,tot, is computed. The first column C such 

that  
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is chosen. Next, the move corresponding to the first element of the column, ki, for 

which 
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is chosen. The computational savings depend on the number of possible moves 

and the number of levels used. For example, if 106 moves are possible, a two-

level search will be approximately 103 times faster than a linear search.33  

 

3.4.1.2 Binary Search  

Binary search-based move selection methods offer additional high-efficiency 

alternatives to linear search. Effectively implementing these methods requires the 
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construction of a data structure known as a binary tree. A binary tree consists of a 

series of nodes, with a single node at the first level and at each subsequent level 

two nodes linked to each node in the level above. In a balanced binary tree, nodes 

at the lowest level contain the rate constants for each possible move, and nodes at 

higher levels contain the sums of their two daughter nodes. Alternately, in an 

unbalanced binary tree, one node at each level below the first level contains a rate 

constant corresponding to a possible move. The other node contains the sum of 

the nodes below it. These data structures are illustrated below in Figure 3.4.  

 At the start of the search process, rktot is the search value. If the search 

value is less than the left branch, the left branch is selected, and the search value 

remains the same. If the search value is greater than the left branch value, the 

right branch is selected, and the left branch value is subtracted from the search 

value. The process continues until a rate constant is reached and the 

corresponding move selected. A balanced or unbalanced tree may be used. 

Computational time is proportional to log2 of the number of possible moves, so a 

binary search of 106 rate constants is 104-105 times faster than a linear search of 

the same rate constants.33 
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Figure 3.4 A shows a balanced tree diagram that may be employed for selecting a 

KMC move, and B shows an unbalanced tree diagram for the same purpose. They 

may be used equivalently in the move selection process.  

 

 Hence, the computational savings realized by implementing either an n-

level or binary search depends entirely upon the number of elements that must be 

searched at each iteration of the algorithm. From any binding site in a perovskite 

system, only four or five transitions are possible. Performing a linear search of an 

A 

B 
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array containing four or five rate constants is not sufficiently costly to warrant use 

of a more complex search method.  

 

3.4.2 Temporal Coarse-Graining with the τ-Leap Method 

The KMC algorithm described so far yields highly detailed information about the 

behavior of the system: a log each transition the system undergoes and the time of 

each transition. Suggesting that such detailed information may not be required to 

yield an adequate simulation of system behavior, Gillespie described a method of 

temporal coarse-graining known as τ-leaping, which is applicable to systems 

whose transitions may be described as occurrences of chemical reactions. For 

certain systems, an adequate simulation might be one that records which reactions 

have occurred over a subinterval spanning what would otherwise have been two 

or more time steps.  

 The τ-leap method is designed to provide information about the behavior 

of a system at a more general level. Its central function is 

€ 

Q(k1,...,kM |τ;x,t) , the 

probability that given a certain configuration x, reaction channel Rj will fire 

precisely kj times during the interval [t, t + τ) for j=1,…,M. Obtaining a value for 

Q for an arbitrary τ is prohibitively difficult, but Q may be approximated if τ is 

restricted to values small enough that any state change over the interval [t, t + τ] 

will have only a trivial impact on the propensity functions aj of each reaction 

channel (the probability that for some configuration a reaction channel will fire 
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within the system in the next infinitesimal time interval). This constitutes the leap 

condition. In this case, kj, the number of firings of a reaction channel Rj, 

constitutes a Poisson random variable:  

€ 

k j (τ;x, t) = P(a j (x),τ)               (7) 

for j=1,…,M. As each of k1,…kM are statistically independent, Q can be given by 

€ 

Q(k1,...,kM |τ;x,t) = ρP (k j ;a j (x),τ)
j=1

M

∏ .            (8) 

P(a,τ) may be generated by numerical means, so at each iteration of the algorithm 

a sample value kj representing the number of times Rj fires during the interval [t, t 

+ τ) is produced. With each firing of Rj, the composition of the system changes by 

vj molecules. Thus, the net state change λ may be calculated:  

€ 

λ = k jv j
j=1

M

∑ .                (9) 

Once λ has been calculated for the sample values of each kj as well as aj(x) and τ, 

the leap is made by advancing the clock from t to t + τ and updating the positions 

from x to x + λ.6 

 Although the τ-leap method has been shown to perform as well as more 

finely-grained simulations in common systems—a growing crystal, for example—

while saving computational resources, it would not be suitable for conduction 

pathway determination. Any state change that shifts a perovskite system from a 

state with the proton located in one binding site to a state with the proton located 

in a different binding site has a major impact on the propensity functions of each 
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potential proton transition, as a unique set of four to five proton transitions is 

possible from each site. Changing binding sites changes the set of possible 

transitions in a non-trivial fashion, so the leap condition could never be met. 

While Gillespie aimed at eliminating the timed record of each move made by the 

system, it is precisely this detailed, ordered record which allows the use of KMC 

simulations to determine conduction pathways.36  

 

3.4.3 Executing Multiple Moves at Each Time Step with 

Multiscale Kinetic Monte Carlo (MSKMC) Simulations 

DeVita, Sander, and Smereka have developed an efficient algorithm for KMC 

simulations of epitaxial surface growth to accommodate the varying time scales of 

events in surface systems. In their systems of interest, five types of transitions 

consisting of atom hops are possible: hops taken by adatoms with no in-plane 

bonds as well as hops taken by atoms with between one and four bonds. The rate 

for each type of transition is given by  

€ 

wn = exp(−nkBT),             (10) 

where n is the number of bonds.  

Rates for each type of transition are drastically different. In a Cu system at 

600 K, for example, 148 adatom hops occur for each singly bonded atom hop, and 

22,000 adatom hops occur for each doubly-bonded atom hop. Hence, a 

disproportionate amount of computation time is spent calculating adatom 
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dynamics. To reduce the disparity in rates, adatoms are allowed to make multiple 

nearest-neighbor hops, diffusing for m steps. The rate is scaled by a factor of m, 

giving a rate of 1/ m for each adatom hop in the series. An ideal step distance 

yields a time step that does not exceed the ratio of the rate of adatom hopping to 

the rate of the next fastest process.  

To avoid the computational expense of allowing the adatom to perform an 

m-step random walk, which would require m random numbers, a search 

substitutes for a random walk. An approximate probability for finding a particle at 

the site (i, j) after an m2-length random walk is given by  

€ 

pi, j
t+m 2

=
1
4
(pi−m, j

t + pi+m, j
t + pi, j+m

t + pi, j−m
t ).          (11) 

This distribution contains only four potential new locations for the adatom. To 

simulate an m2-length random walk, a square extending m-1 spaces on each side 

of the current site is searched for attachment sites, and then the adatom is moved 

m spaces in one of the four possible directions, which is chosen randomly. If 

attachment sites exist within the square, a step with fewer than m hops is taken. 

The process is repeated until m hops have been taken. If the adatom attaches, 

another adatom moves for the remaining portion of the time step.  

 The MSKMC algorithm yielded results in good agreement with the 

standard BKL algorithm over both short and long-term simulations, and MSKMC 

simulations ran between six and seven times faster than BKL simulations. This 

improved efficiency was attributed to the fact that the local searches required by 

the MSKMC algorithm to simulate m adatom hops were less computationally 
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demanding than the generation of m random numbers, even when a relatively fast 

random number generator was employed. Use of a slower random number 

generator would likely have amplified the efficiency gains made using the 

MSKMC algorithm.37  

 

3.5 Multi-step Kinetic Monte Carlo Simulations in Perovskite 

Systems 

The earliest applications of KMC simulation to the problem of conduction 

pathway determination have focused on transitions from one state to the next 

corresponding to a single proton transition at each iteration of the algorithm.9,10  

Ciszewski recently developed a multi-step KMC algorithm that instead considers 

a series of state transitions corresponding to the proton’s movement along an n-

step pathway at each iteration.38 In contrast to the system described in the 

previous section, the perovskite systems allows only one type of transition—

movement from a state with the proton bound in one site to a state with the proton 

in a different site—and transition events occur on a single timescale. Like the 

multi-scale algorithm, though, the multi-step algorithm was aimed at increasing 

computational efficiency by decreasing the number of times random numbers 

must be generated in order to select moves. In the multi-step algorithm, all 

possible n-step pathways from each site in the system are generated using the 

graph theoretical methods described in Section 4.2 during pre-simulation 

calculations. When the simulation begins and a move must be made, a random 
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number is drawn to select a pathway accessible from the current binding site 

using the linear search method. Both the multi-scale and multi-step algorithms 

employ a single random number rather than n random numbers at this stage, but 

the multi-step algorithm, designed for a simpler system, does not require the 

spatial search the multi-scale algorithm employs as a means of simulating a 

random walk. A pre-defined random walk is simply selected at random.38  

 Ciszewski’s algorithm stopped short of providing a method for calculating 

rate constants for multi-step moves. Following de Vita and coworkers,37 the 

algorithm was altered so rate constants for each single move making up an n-step 

pathway were totaled and scaled by the number of steps in the pathway to give the 

rate constant for the path according to the equation  

€ 

kpath =

ki
i=1

n

∑
n

                         (12) 

where n is the number of steps in the pathway and ki is the rate constant for a 

single step in the pathway. Path speed is inversely proportional to path length. 

This method of rate constant calculation is justified by the fact that an ensemble 

of independent Poisson processes behaves as a single Poisson process, and its 

properties can be determined by reference to the properties of the individual 

processes.35 In this case, since each step along a pathway is the result of a Poisson 

process, the entire pathway can be treated as a larger Poisson process, and a rate 

constant for the pathway can be generated from rate constants for the single steps.  
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3.6 Results from the Multi-step KMC Algorithm in Doped 

Perovskite Systems 

This novel multi-step algorithm was first tested in the undoped bulk BaZrO3 

system, where two to three-step pathways were determined to give optimal 

computation times.38 In this study the multi-step simulation method was applied 

to three representative doped perovskite systems: Al-doped SrZrO3, Y-doped 

SrZrO3, and Y-doped BaZrO3. Conduction pathways yielded by the simulations in 

each system were in good agreement with pathways generated using standard 

single-step KMC simulations and graph theoretical methods. The same pathway 

through the Al-doped SrZrO3 system illustrated in Figure 3.2  

is shown below in Figure 3.3 as a composite of shorter pathways generated in a 

multi-step simulation with n = 2. 

 

  

 

 

 

 

 

Figure 3.5 Another illustration of the most probable conduction pathway in the 

Al-doped SrZrO3 system. Here, the short two-step pathways that were chosen 

during the simulation are highlighted in different colors. 
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Moreover, the average times spent by the proton at each binding site 

during the simulations, the average residence times, matched average residence 

times for single-step KMC simulations. This suggests that the method for 

calculating kpath yields accurate values, as inaccurate values would skew the length 

of time steps chosen (see Equation 2).  

Simulation program runtimes show that using n-step moves at each 

iteration of the algorithm does increase computational efficiency for n = 2 and 

n = 3. For each system and value of n (ranging from one to five), ten simulations 

were performed for each of three trajectory lengths (one, two, and three million 

picoseconds). Simulations were performed at 600 K. The run times for each set of 

simulations were averaged to evaluate the performance of algorithms with 

different n values in each system for different trajectory lengths. Averages 

obtained for the Al-doped SrZrO3 system, system are shown below in Figures 6. 

Figure 3.6 also shows average run times for the single-step KMC program for 

comparison. Simulations run in other bulk perovskite systems yielded similar 

results.  

The results reflect competing efficiency effects at play in the multi-step 

algorithm. For short pathways, it is apparent that reducing the number of move 

choices that must be made to simulate the total trajectory time increases program 

efficiency. This is to be expected, as the process of selecting a move requires the 

generation of a random number and an array search. However, for pathways 

longer than three steps, the computational cost of generating and storing every 
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possible pathway begins to outweigh the time saved by making fewer move 

choices.  

 

 

 

Figure 3.6 Run times for KMC simulations in the AlSrZrO3 system with three 

different trajectory lengths. Notice that the optimal pathway length is two steps. 

As the pathway lengths increase beyond three steps, run times begin to increase as 

the savings associated with making fewer move choices are outweighed by the 

cost of generating and storing longer pathways. 
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3.7 Conclusions 

The novel multi-step KMC algorithm yielded conduction pathways in good 

agreement with pathways generated using a simpler KMC algorithm. It was 

demonstrated that using multi-step pathways with n = 2 or n  = 3 allowed the 

program to run more efficiently than use of single steps within the multi-step 

algorithm or single steps within the single step algorithm. The time saved by 

using short pathways increased as the trajectory lengths increased, suggesting that 

the multi-step algorithm would prove particularly valuable when long trajectories 

are required. 
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Chapter 4 

Extending Graph Theory Analysis to Understand 

Relationships Between Binding Sites in Perovskite 

Systems 

From its beginnings in Euler’s 1736 mathematical formulation of the Königsberg 

Bridge Problem,40 graph theory has evolved into a complex, multi-disciplinary 

field of inquiry. Graph theory has been applied to problems ranging from protein 

structure prediction41 in the biological realm to evaluation of consistency of 

choice in psychology and percolation processes in physics.42 This chapter will 

present essential graph theory definitions and discuss prior use of graph theory in 

determining conduction pathways in perovskites. Further, it will describe a novel 

application of a graph theoretical method of evaluating binding site centrality 

aimed at clarifying the relationships between binding sites and the flow of protons 

in perovskite systems.  

 

 

 



 60 

4.1 Graph Theory Definitions 

 A graph G consists of a finite, non-empty set of vertices V(G). A set of unordered 

pairs of distinct vertices is known as the edge set E(G). Any two vertices u and v 

that form one of these pairs are joined by some edge e ={u, v} and are described 

as adjacent vertices. Adjacency relationships between vertices {v1, v2, …, vp} may 

be described by a symmetric p x p adjacency matrix A(G) with entries aij such that  

€ 

aij =
1 if vi v j ∈ E(G)
0 if vi v j ∉ E(G)
$ 
% 
& 

.          (1)4     

An example graph with the vertices V(G) = {v1, v2, v3, v4, v5} and the edges E(G) 

= {v1v4, v1v3, v2v3, v2v5, v3v4, v3v5} is shown in Figure 4.1 with its adjacency 

matrix.  

 

 

 

 

 

 

 

 

Figure 4.1 Graph and adjacency matrix representations of a graph with the edges 

and vertices described above. Vertices in graphs are typically represented as 

points, and edges are represented as lines. 
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 A directed graph or digraph D consists of a non-empty, finite set of 

vertices V(G), but in contrast to the vertices of graphs, the vertices of digraphs 

may be joined by arcs or directed edges, where the arc set E(D) consists of sets of 

ordered pairs of vertices. Figure 4.2, below, illustrates a digraph with the vertices 

V(D) = {v1, v2, v3, v4, v5} and the directed edge set E(D) = {v1v3, v2v3, v2v5, v3v1, 

v3v2, v4v1, v4v3, v4v5}. The edges of a graph or digraph may each be assigned a 

positive real number, in which case the graph or digraph is weighted.  

 

 

 

 

 

 

 

 

Figure 4.2 The sample digraph described above. As with graphs, vertices are 

represented as points. Directed edges are represented as rays.  

 

If u and v are vertices of a digraph, a u-v walk consists of a finite, 

alternating sequence of vertices and edges of the form u = u0, e1, u1, e2, …, un-1, 

en, un = v, beginning with vertex u and ending with vertex v such that ei =ui-1ui for 

i = 1, 2, …, n. A u-v walk in which no vertices are repeated can be described as a 
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u-v path. When a digraph D contains a u-v path, we say vertex v is reachable from 

vertex u. For every two distinct vertices of D, if each is reachable from the other, 

the digraph is described as strongly connected.43  

 

4.2 Modeling Perovskite Systems as Digraphs for Pathway 

Determination 

In the past, Y and Al-doped SrZrO3 and Y-doped BaZrO3 bulk systems have been 

modeled as digraphs in order to generate possible n-step periodic conduction 

pathways. Each vertex in the graph corresponds to one of the 96 proton binding 

sites, and each edge corresponds to a transition state connecting neighboring 

binding sites. The digraph representing the Y-doped BaZrO3 system is illustrated 

below in Figure 4.3.  

Dynamic programming is used to determine all possible pathways of a 

certain length that span the system by connecting a binding site to its periodic 

image. To allow paths to be sorted by probability, each edge eij is assigned a 

positive weight wij equal to -ln(pij), where pij is given by Equation 3 in Chapter 3. 

The total weight for an n-step pathway from some site j to its periodic image, 

then, is given by  

€ 

w = −ln(ρ j1
) + w ji−1 , jii=1

n
∑                (2) 

where ρj1 is the probability of the proton occupying site j.  
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Figure 4.3 A digraph representation of the Y-doped BaZrO3 system. This 

representation reflects the connections between vertices, but the lengths of the 

rays do not correspond to the weights of the directed edges.  

 

The highest-probability paths have the lowest weights. Total path weights 

rather than total path probabilities are used in ranking path probability because 

weights may be summed over the pathway to calculate total weight, whereas 

calculating a total path probability would require multiplication of probabilities at 

each step of the pathway, a more expensive calculation. Pathways and relative 

probabilities determined using the digraph model have been in good agreement 

with pathways found using kinetic Monte Carlo simulations (See Chapter 3).9,10,44 

The probability of transition from some site i to another site j is different than the 
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probability of transition from j to i, so it is appropriate to model the systems as 

digraphs rather than graphs, because each directed edge connecting vi to vj may be 

given a different weight. In every case, though, if a directed edge eij connects vi to 

vj, another directed edge eji connects vj to vi.  

 

4.3 Evaluating the Centrality of Vertices in Graphs and 

Digraphs 

Development of methods for determining the relative centralities of vertices in 

graphs is one of the key problems in the field of network analysis. Broadly, a 

vertex’s centrality can be understood as its contribution to the graph. Freeman 

(1978) suggested that centrality should be intuitively understood as the quality 

possessed by a vertex at the center of a star-shaped graph or in the hub position of 

a wheel-shaped graph.45 A more precise definition for centrality may be 

formulated based on the system the graph represents. For example, if a graph is 

used to model connections within a social network, with each vertex 

corresponding to an individual, a high centrality ranking for a vertex would 

indicate that the corresponding individual is highly influential or is in a position to 

control the flow of information in the group.45,46  

 Evaluating the centralities of vertices in the digraphs representing the 

perovskite systems seemed a natural extension of prior graph theoretical analysis. 

In this section, the three common centrality measures formalized by Freeman will 

be presented, and their applications, limitations, and potential for measuring 
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centrality in perovskite systems will be discussed. The limitations of each basic 

method have served to motivate the use of a centrality measure for digraphs 

representing perovskite systems based on an understanding of the digraphs as 

representations of Markov chains. This measure will be introduced in the next 

section.  

 

4.3.1 Degree Centrality 

The degree of some vertex vi in a graph is equal to the number of edges 

connecting vi to other vertices, or the number of ordered pairs containing vi. It is 

apparent that vertices forming the centers of wheel or star-shaped clusters 

generally have higher degrees than surrounding vertices. Hence, the simplest 

measures of degree centrality simply take vertices with higher degrees to be more 

central.45 By this measure, v3 (degree = 4) would be the most central vertex in the 

graph displayed in Figure 4.1. When the graph in question is weighted, the degree 

centrality (known as node strength in the case of weighted graphs) of a vertex vi 

may be given as the sum of the weights of the edges connecting vi to other 

vertices, with higher values indicating higher centrality.47 The concept of degree 

centrality has been applied in analysis of biological networks. While networks 

may be generally robust against random disturbances, it has been shown that 

disturbances at points corresponding to vertices with high degree centrality often 

bring about system failure.48  
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  Despite their appealing simplicity, degree-based centrality measures 

convey a limited amount of information. They take only local structure into 

account. A vertex might be connected to a number of other vertices, or be 

connected by edges with high weights, but be relatively inaccessible from other 

areas of the graph.49 As centrality analysis of the perovskite systems is aimed at 

improving understanding of pathways spanning the system, a global rather than 

local centrality measure is called for. Further, the vast majority of degree-based 

centrality measures have been formulated for graphs rather than digraphs, making 

them inappropriate for analysis of perovskite systems best represented by 

digraphs.   

 

4.3.2 Betweenness Centrality 

Another characteristic of vertices at the center of wheels or stars is that they lie 

along a number of the shortest paths connecting non-adjacent vertex pairs (pairs 

of vertices that do not share an edge).45 For an unweighted graph, a simple 

measure of the betweenness centrality of a vertex vi is given by  

€ 

Cb (vi) =
σ jk (i)
σ jk{(v j ,vk )|vi ∉(v j ,vk )}

∑ ,               (3) 

where σjk(i) is the number of shortest paths connecting distinct vertices vj and vk 

that include vi, and σjk is the total number of shortest paths connecting vj and vk. In 

the graph shown in Figure 4.1, v3 has the highest betweenness centrality. 

Betweenness centrality has been applied to graphs representing protein systems. 
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Proteins corresponding to vertices with high betweenness centrality have been 

shown to play important functional and dynamic roles as connectors.48  

 Efforts have been made to develop formulations of betweenness centrality 

for weighted graphs, and betweenness centrality captures global characteristics to 

a greater degree than degree centrality.49 However, the perovskite systems are 

uniform enough that large groups of vertices have the same levels of betweenness 

centrality, so this type of centrality measurement does not contribute to our 

understanding of binding site relationships in perovskite systems.  

 

4.3.3 Closeness Centrality 

Intuitively, vertices from which other vertices are easily accessible seem to play a 

greater role in their graphs. A simple calculation of closeness centrality for a 

vertex vi in an unweighted graph involves adding the lengths of the shortest paths 

from vi to each of the other vertices and taking the inverse of this sum. By this 

measure, v3 has the highest centrality of the vertices in the graph shown in Figure 

4.1. For weighted graphs, the sums of the edge weights in the each path replace 

path lengths. Applications of closeness centrality include identification of 

important metabolites in metabolic networks.48  
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4.4 A Centrality Measure Based on Expected Hitting 

Time 

To develop a broader centrality measurement for the perovskite system graphs, it 

seemed desirable to evaluate the accessibility of a vertex vi by considering all 

possible paths from other vertices to vi, not merely the shortest ones taken into 

account by measures of closeness centrality. The general accessibility of one 

vertex from another may be given in terms of expected hitting time. When we 

consider a random walk over a diagraph, we can think of each vertex as a possible 

state of the system, and each movement from one vertex in the sequence to 

another vertex connected to the first by a directed edge as a state transition. 

Because the probability of a given transition depends only on the state the system 

currently occupies, not the system’s past behavior, the series of states represented 

by the vertices visited during a random walk forms a Markov chain. The average 

number of transitions required to reach the state corresponding to vertex vj (state 

j) from the state corresponding to another vertex vi (state i) is termed the expected 

hitting time from vi to vj (H(i,j)),49 or mean first passage time.50  

 To calculate hitting times for vertices in any digraph of interest, we must 

first develop a means of organizing the relevant probabilities. The probability 

distribution for all possible states in the system is given by the stationary 

probability vector π. The ith component of π represents the probability that if an 

initial state for the system is chosen randomly, state i will be chosen. The entries 
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of π are positive and have a sum of one. For the perovskite systems, the entries of 

π consist of normalized Boltzmann factors: 

€ 

π i =
e−βEi

e−βE j

j
∑

 ,             (4) 

where 

€ 

β =
1
kbT

 and Ei is the energy of the system when it occupies a state with 

the proton bound at site i. 

 The probabilities of every possible transition from one state to another are 

given by the probability transition matrix P, whose entries pij give the probability 

of transition from state i to state j. For the perovskite systems, the entries pij 

represent the probability of the proton transitioning from a binding site i to 

another binding site j. They may be calculated using equation (3) given in Section 

3.3. Diagonal entries pii are equal to zero.  

 In an intermediate step, we use π and P to form a new matrix Z, the 

fundamental matrix of the digraph. The inverse of the fundamental matrix for a 

digraph of n vertices representing a system with n possible states is given by  

Z-1 = I – P + π,            (5) 

where I is the n x n identity matrix.  

 The entries of Z in combination with the entries of π allow us to calculate 

the expected hitting time H(i,j) from vertex vi to vertex vj:  

€ 

H(i, j) =
z jj − zij
π j

.          (6)50 
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Summing over hitting times from every vertex vi to a certain vertex vj gives yields 

the total hitting time for vertex vj, our chosen centrality measure:  

€ 

H( j)total = H(i, j).
i
∑

          (7) 

Lower total hitting times correspond to higher vertex centrality.  

White and Smyth developed a similar centrality measure based on average 

hitting time. Termed Markov centrality, this measure considers the inverse of the 

average average hitting time from each of n vertices in the graph to the vertex of 

interest. The Markov centrality C of a vertex vj is given by  

€ 

C j =
1

1
n

H(i, j)
i
∑

.           (8) 

In this case, higher values correspond to higher centrality.51 

 

4.5 Hitting Time Centrality for Perovskite System Graphs 

Each perovskite system’s probability transition matrix P was constructed using 

probabilities calculated at 900 K. A stationary probability vector π was 

constructed for each system using energies calculated using DFT (see Chapter 2). 

The fundamental matrix for each system was then constructed according to 

Equation 6, and total hitting times for vertices corresponding to each binding site 

in each system were calculated using Equation 7. Although total hitting times 

were used to rank centrality, Markov centrality values would have produced 

equivalent rankings.  
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4.5.1 Hitting Time Centrality in the Al-doped SrZrO3 System 

Hitting time centrality was evaluated from each vertex in the graph representing 

the Al-doped SrZrO3 system as described above. In Figure 4.4, below, the system 

is shown with a proton occupying each possible binding site. Protons are colored 

to reflect the centrality of the vertices corresponding to their binding sites.  

It has been determined that the most probable pathways in the AlSrZrO3 

system tend to avoid the dopant. This trend is attributed to the relatively high 

energy barriers to interoctahedral transfers from binding sites near the dopant to 

binding sites farther away that serve to make paths traversing the dopant region 

less probable.9 Thus, we would expect the binding sites that can be reached by 

interoctahedral transfer from a site on an oxygen adjacent to the dopant to be least 

accessible and have relatively low hitting time centrality. This is the case. The 22 

least central binding sites in the system are all connected to sites adjacent to the 

dopant by interoctahedral transfers. The six most central sites, on the other hand, 

are located on oxygens as far away from the dopant as possible.  
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Least Central         Most Central 

 

Figure 4.4 The binding sites of the AlSrZrO3 system are shown occupied by 

protons color-coded by centrality as shown in the spectrum. For clarity, aluminum 

dopant ions are shown in orange. Notice that the least central sites are separated 

by interoctahedral transfers from sites on oxygens adjacent to the dopant, while 

the most central sites are located in the center of the system, as far as possible 

from the dopant.  

 



 73 

Figure 4.5 shows the centrality of sites located along the most probable 

seven-step periodic conduction pathway in the system. The relative centralities of 

sites along the pathway vary, but the path does include the most central site in the 

system.  

 

 

 

 

 

 

 

Figure 4.5 Protons are shown occupying each site in the most probable seven-

step periodic conduction pathway in the AlSrZrO3 system. The proton occupying 

the periodic image of the first site is not shown. The most central site in the 

system appears third from left and takes part in two transfers. The fifth most 

central site appears second from right and takes part in an interoctahedral transfer 

and a rotation.  

 

4.5.2 Hitting Time Centrality in the Y-doped SrZrO3 System 

Binding sites in the Y/SrZrO3 system were ranked by hitting time centrality as in 

the AlSrZrO3 system. The results are shown in Figure 4.6. 
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Figure 4.6 The Y/SrZrO3 system is shown with protons occupying each binding 

site. Protons are color-coded by the centrality of their binding site as in Figure 

4.4. Notice that the most central sites are located on oxygens adjacent to the 

dopant, whereas the least central sites are located on oxygens as far as possible 

from the dopant.  

 

The high barriers to interoctahedral transfers away from oxygens adjacent 

to the dopant that characterized the Al SrZrO3 system are absent in this system, 

and the most probable conduction pathways tend to traverse the dopant region.9 In 
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contrast to the Al-doped system, then, we would expect the most central sites to 

occur on oxygens located adjacent to the dopant, and in fact the seven most 

central sites are located in this position. Sites separated from sites adjacent to the 

dopant by interoctahedral transfers are much more central than sites in the same 

position in the Al-doped system, which reflects their relatively greater 

accessibility. Sites along the most probable pathway in the system are shown 

below in Figure 4.7. This pathway includes the most central site in the system, 

and in general the sites along it have higher relative centrality than the sites along 

the most probable pathway in the Al-doped system. The presence of trajectories 

of more easily accessible sites in the Y/SrZrO3 system seems consistent with the 

lower theoretically calculated average barriers to conduction in this system (0.43 

eV vs. 0.61 eV in the Al-doped system).9 
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Figure 4.7 The most probable 7-step periodic conduction pathway in the 

Y/SrZrO3 system. Again, the periodic image of the first site in the pathway is not 

shown. The most central site in the system appears third from right. Notice that 

the sites along this pathway are generally more central than the sites along the 

most probable pathway in the AlSrZrO3 system. 

 

4.5.3 Hitting Time Centrality in the Y-doped BaZrO3 System 

When hitting time centralities were evaluated for the Y/BaZrO3 system, the 

patterns observed were relatively similar to the ones present in the Y/SrZrO3 

system (see Figure 4.9). The eight most central sites are located on oxygens 

adjacent to the dopant, and the least central sites are located on oxygens as far 

from the dopant as possible. This trend is consistent with the fact that the most 

probable paths in the system tend to avoid the region in the center of the 

simulation box far away from the dopant.10 
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 The most probable seven-step periodic pathway, shown in Figure 4.8, does 

not include the most central binding site. It does, however, include the second and 

fourth-most central binding sites, and it shows a general centrality pattern similar 

to that of the most probable pathway in the Y-doped SrZrO3 system. Again, the 

availability of high-centrality pathways seems to correspond to a lower 

conduction barrier. The overall barrier to conduction in this system is estimated to 

be 0.3 eV,10 the lowest barrier among all the systems considered.  

 

 

 

 

 

 

 

 

 

Figure 4.8 The most probable 7-step conduction pathway in the Y/BaZrO3 system 

are illustrated below. The second most central site in the system appears on the 

left, and the fourth most central site appears second from left. Sites in the pathway 

generally have moderate to high centrality, as in the Y/SrZrO3 system. 

 

 



 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Protons are shown occupying each binding site in the Y/BaZrO3 

system. The least central sites are uniformly located on oxygens in the center of 

the simulation box, whereas more central sites appear in the dopant layers, 

particularly on oxygens adjacent to the dopant. The overall pattern is similar to 

the one displayed by the Y/SrZrO3 system, despite the fact that the Y/SrZrO3 

system is significantly more distorted than the Y/BaZrO3 system.  
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4.5.4 Hitting Time Centrality Patterns in the Al-doped 

BaZrO3 System 

Because the Al-doped BaZrO3 system’s cubic structure is significantly less 

distorted than the structures of the other perovskite systems, its conduction 

pathways are markedly different from the paths described in the other systems. In 

the other systems, distortions bring certain binding sites closer together, allowing 

interoctahedral transfers to occur between a number of sites. Depending on 

whether a site may participate in an interoctahedral transfer, each site is connected 

to four or five other sites by a single transition state. Interoctahedral transfers 

allow the proton to move in a single step to a site that would normally be 

reachable only by a two-step pathway consisting of a rotation and an 

intraoctahedral transfer, making it possible for the proton to travel the length of 

the simulation box in seven steps.52  

 In the Al-doped BaZrO3 system, the lack of distortion prevents 

interoctahedral transfers from occurring. Each site is connected to exactly four 

other sites by single transition states, and the shortest paths spanning the 

simulation box are eight steps in length.52 Because of these differences, we would 

expect to see distinctive trends in binding site accessibility in the Al-doped 

BaZrO3 system. Hitting time centralities for each binding site are highlighted 

below in Figure 4.10. The general distribution of highly central sites does bear 

some resemblance to the Al-doped SrZrO3 system. Highly central sites tend to be 

clustered in the inner octahedron and adjacent to the dopant in both systems.  
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However, while the most central sites in the AlSrZrO3 system appear in 

the inner octahedron, the most central sites in the Al/BaZrO3 system appear on 

oxygens adjacent to the dopant. Both Al-doped systems are marked by low 

binding energies adjacent to the dopant and thus high barriers to escape from 

these sites. Hitting time centrality patterns suggest, though, that sites adjacent to 

the dopant are more accessible in the Al/BaZrO3 system than in the AlSrZrO3 

system. The 24 sites that are separated by intraoctahedral transfers from sites 

adjacent to the dopant in the Al/BaZrO3 system and are not adjacent to the dopant 

themselves are the least accessible in the system.  

 In contrast to the most probable seven-step pathways in the other 

perovskite systems, the most probable eight-step conduction pathway in the 

Al/BaZrO3 system (shown in Figure 4.11) does not include any highly central 

sites. As it runs through the center of the simulation box, as far from the dopant as 

possible, it avoids both the most central and the least central sites in the system. 

The least central site along the most probable pathway ranks 75th of 96 in 

centrality, whereas the most probable pathway in the AlSrZrO3 system includes 

the 89th most central site in the system. 
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Figure 4.10 Each site in the Al/BaZrO3 system is shown occupied by a proton 

colored to reflect its hitting time centrality. Notice that the most central sites in 

the system are located on oxygens adjacent to the dopant, while the least central 

sites are the ones reachable by intraoctahedral transfer from the most central sites.  
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Figure 4.11 The most probable eight-step conduction pathway in the Al/BaZrO3 

system. Notice that in general, the sites have lower centralities than sites along the 

most probable seven-step pathways in the other perovskite systems.  

 

The lower centrality of the sites along the most probable pathway in the 

Al/BaZrO3 system relative to the sites along the most probable pathway in the 

Y/BaZrO3 system seems to be in keeping with the difference in barriers to 

conduction between the two systems. Theoretical estimates place the average 

conduction barrier at 0.41 eV for the Al-doped system52 (as opposed to 0.3 eV for 

the Y-doped system).10  

 

4.6 Site Centrality in Proton Traps 

Up to this point, the only pathways that have been discussed are those spanning 

the systems’ simulation boxes, stretching from a binding site to its periodic image. 
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It is important to remember that in the absence of an electric field, the proton’s 

trajectory during a KMC simulation will include a number of loops. To shed light 

on these common features of proton conduction, the centralities of the binding 

sites along the most probable loops spanning more than 40 percent of the 

simulation box were evaluated for the Al/BaZrO3 and Y/BaZrO3 systems. Loops 

were generated from KMC trajectories run at 900 K. These loops are shown in 

Figures 12 and 13, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 The most probable loop in the AlSrZrO3 system. Notice that the sites 

are all above median centrality, and they cluster around the dopant. Comparison 

with Figure 4.10 shows that the sites surrounding the loop have low centralities.  
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 The most probable loops in both systems comprise binding sites adjacent 

to the dopant. In each loop, every binding site ranks in the top 50 percent for 

centrality. The loop in the Y/BaZrO3 system includes the most central binding 

site, and the loop in the Al/BaZrO3 system includes the second, third, and fourth-

most central binding sites in the system. Comparing the loops to the full rankings 

shown in Figures 9 and 10, the differences between the two systems become 

apparent. While the loop in the Y-doped system is surrounded by moderate-

centrality sites, the loop in the Al-doped system is surrounded by very low-

centrality sites. This suggests that the loop in the Y/BaZrO3 system might be 

escaped without much difficulty, but the loop in the Al/BaZrO3 system might 

function as a hard-to-escape proton trap. The presence of such traps in Al-doped 

systems might help explain the higher barriers to conduction in these systems.  

 

 

 

 

 

 

 

 

 Figure 4.13 The most probable loop in the Y/BaZrO3 system. It includes the 

system’s most central site. The surrounding sites have moderate centralities.  
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4.7 Conclusions 

Hitting time centrality provides a general means of determining which vertices in 

a graph are easily accessible from other vertices. Its treatment of the graph as a 

representation of a Markov chain allows it to capture variation in the importance 

of vertices and their corresponding states even for graphs that lack the wheel or 

star patterns that are intuitively associated with centrality, such as the graphs 

representing perovskite systems. When it is applied to the perovskite graphs, the 

resulting trends in binding site centralities appear to be consistent with observed 

patterns in site accessibility, locations of probable pathways, and overall barriers 

to conduction. Relative site centralities offer a new way of understanding these 

observed trends as well as information-rich snapshots of binding site 

relationships.  
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Chapter 5 

Conclusions and Directions for Future Work 

 

5.1 Toward Full Characterization of the 310 Tilt Grain 

Boundary System 

This work has discussed the results of grain boundary optimizations using three 

exchange-correlation functionals and their associated pseudopotentials. Two 310 

Y/BaZrO3 grain boundary structures that differed in the placement of the dopant 

along the grain boundary core were minimized using each of the functionals. The 

PW91 and LDA functionals were shown to produce similar patterns of distortion 

and relative energies for the two structures, while the PBE functional yielded 

higher levels of distortion and reversed the trend in relative energies. Further 

characterization of the grain boundary will require the choice of one of these 

functionals for the remaining calculations. Recent theoretical explorations of 

Y/BaZrO3 grain boundary structure have employed the PBE functional,24,26 so use 

of this functional might improve the comparability of future results.  
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 Once a functional has been selected, the structure with the dopant in the 

position that yielded the lowest energy configuration using that functional will be 

selected for continuing characterization. Structures with single protons in each of 

the possible binding sites in the system will be optimized to determine the binding 

energies for each site in the system. Next, barriers to transition between binding 

sites connected by transition states will be calculated using the nudged elastic 

band (NEB) method. Frequencies necessary for the calculation of prefactors for 

each of these transitions will also be determined.  

Determination of binding energies, transition barriers, and prefactors will 

allow rate constants for each possible proton move to be calculated as described 

for bulk systems in Chapter 3. These rate constants will then be used in KMC 

simulations and the graph theoretical analysis process to extract long-range 

conduction pathways through the grain boundary and determine the activation 

energy for proton conduction through the grain boundary. Finally, the hitting time 

centrality of each site in the system will be evaluated as described in Chapter 4 to 

examine trends in the locations of high-probability conduction corridors and 

proton traps. It is expected that centrality analysis will yield particularly helpful 

insights in a grain boundary system with less regular patterns of connection 

between binding sites than the bulk systems.   
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5.2 Kinetic Monte Carlo Simulations 

This work has described the implementation, testing, and fine-tuning of a multi-

step KMC algorithm used to simulate proton conduction in bulk perovskite 

systems. It has been shown that choosing 2 or 3-step pathways at each iteration of 

the algorithm rather than single moves decreases program run time, and the 

computational savings increase as simulation trajectory times increases. It has 

also been demonstrated that a simple method of scaling the rate constants for each 

n-step pathway yields appropriate step rate constants and time steps. Pathways 

determined using the single-step and multi-step algorithms were found to be in 

good agreement. Minor alterations will be required to generalize the multi-step 

KMC simulation program for use in grain boundary systems. Additional 

alterations would allow the program to calculate diffusion constants for the proton 

in each system.   

 

5.3 Increasing the Scope of Centrality Analysis 

Chapter 4 described how a graph theoretical centrality measure based on average 

hitting time yielded insights into the relationships between binding sites in bulk 

perovskite systems and the likely flow of protons in these systems. Moreover, 

distributions of highly central sites help explain activation barriers within each 

system. Y-doped systems that display lower barriers to conduction are 

characterized by trajectories of highly central sites spanning the their simulation 

boxes, while the most central sites in Al-doped systems with higher barriers to 
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conduction are scattered across the simulation boxes. The regularity of the bulk 

systems made betweenness and degree centrality measures meaningless, but these 

measures might prove more useful in grain boundary systems, where the numbers 

of connections between each site and the weights of connecting edges in graphs 

are expected to be more varied. Together with KMC results, these centrality 

measures will help provide a rigorous characterization of the flow of protons in 

the 310 Y/BaZrO3 tilt grain boundary system.  
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