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Abstract

For tasks such as collective transport, a multi-robot formation must preserve its global

shape in order to prevent damage to the carried object. We focus on persistent leader-

follower formations, which maintain local distance constraints in order to preserve the

global shape of the formation. In this theoretical model of persistence theory, robots

are modeled as vertices and dependencies between robots are represented as directed

edges. To allow persistent formations to maintain persistence after mechanical failure,

we incorporate redundancy into the existing theoretical model. We define persistence

circuits to be persistent formations which become minimally persistent after the loss

of any edge, present one method for creating these formations, and prove that persis-

tent leader-follower formations cannot be redundantly persistent. For persistent leader-

follower formations, we focus on a more restricted notion of redundancy and present 3

methods for constructing these formations. Finally, we present simulation results for 3

multi-robot formations simulated using Webots to evaluate behavior between formations

with and without redundancy.
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Chapter 1

Introduction

Consider the task of transporting the wing of an aircraft during assembly. Wings are

large and heavy enough that humans cannot carry them unassisted. In addition, because

of a wing’s delicate nature, it cannot be held tightly with clamps or robotic arms. The

simple problem of moving an object from point A to point B therefore becomes more

complex - how should the wing be transported, without being dented or dropped and

without the use of clamps or grips? One solution is to use multi-robot formations

engaged in collective transport.

Multi-robot formations are groups of robots which are organized into a particular struc-

ture to collectively complete a task. This means that they are often able to accomplish

tasks which could not be done, or so easily so, by a single robot. In the case of collective

transport, defined as the transportation of an object by a group of robots which are

not physically attached to each other, what one robot could not carry on its own, the

group can move together. However, simply using any multi-robot formation does not

sufficiently solve the problem. If the global shape of the formation changes too much as

the formation moves, the carried item may be dropped or damaged.

In this thesis, we focus specifically on a subclass of multi-robot formations known as

persistent leader-follower formations [8]. Persistence captures the notion that the for-

mation should retain its structure as it moves, thus eliminating the problem of dropping

or damaging a carried object due to changes in global structure. A leader-follower for-

mation is organized such that there is a leader robot, which could be teleoperated by

people or operated autonomously by an artificial intelligence, and follower robots which

use sensors to analyze the position of other robots in the formation and adjust to follow

a set of instructions called constraints which define dependence relationships between

them [14].

1
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A real-life analog of a persistent leader-follower formation is a skein of geese in flight.

When the leader goose (the one at the front of the V) changes the heading of the group,

the other geese observe this change, notice how it affects the positions of other geese, and

then adjust accordingly. In Figure 1.1, a skein is drawn with a persistent leader-follower

formation superimposed. Each arrow in the diagram has a fixed length called a distance

constraint. Collectively, the arrows directed away from a goose represent the distance

constraints that goose is charged with maintaining and to whom those distances are to

be kept. One could imagine that the follower geese notice when a distance constraint

has been violated and then take action to satisfy that constraint and maintain the

formation’s global shape.

Figure 1.1: A skein of geese with a possible persistent leader-follower formation su-
perimposed.

Incorporating redundancy to make systems robust to mechanical malfunction is an im-

portant consideration for robotics and other fields of engineering. If a sensor were to fail

while a formation was engaged in collective transport, the formation should be able to

continue and complete its assigned task– without damaging or dropping the carried item.

However, current work on persistence theory does not explicitly address redundancy so,

in this thesis, we expanded the existing persistence theory to incorporate redundancy.

1.1 Contributions

The main research question we address is: How can we construct persistent multi-

robot formations which are able to retain persistence after the failure of sensors used

to maintain constraints? The natural place to start is by defining redundant persistence

which, in the same way that a rigidity circuit remains rigid after the loss of any one

edge, retain persistence after the loss of any one edge in the formation. We present an

algorithm for creating redundantly persistent formations and then prove that persistent

leader-follower formations cannot also be redundantly persistent. Because we wanted
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to focus specifically on leader-follower formations, we define a more restricted notion

of redundancy. We present three methods for constructing persistent leader-follower

formations with redundancy: derivation from rigidity circuits in Section 3.2, building

larger formations by merging smaller ones in Section 3.3, and recursive construction

through trilateration graphs in Section 3.4.

We provide results from experiments simulating the behavior of formations constructed

using two of our construction approaches, validating that these formations are robust

to sensor failure. Chapter 4 contains more specific information regarding the setup,

results, and analysis of our simulation experiments. In particular, Section 4.1 contains

information about the formations and robots we used, the path they followed, how

the robots followed that path, and how we obtained minimally persistent formations

from those containing redundancy. Section 4.2 contains information on what data we

gathered, how we analyzed those data, and an analysis of the results.

1.2 Related Work

Mostly closely related to our work is the approach of [18], which utilizes leader-follower

formations whose members maintain distance constraints for the application of collective

transport. However, in [18] the robots maintain distances to the object they are carrying

instead of to each other. This approach cannot be directly applied to the transport of

delicate objects because these robots must tightly grasp the object they are carrying as

to not drop it.

We note that our persistent formations necessarily are decentralized or distributed, mean-

ing that each formation member handles its own decision-making as defined in [14].

Other work which includes distributed leader-follower formations are [17] and [13]. Some

other approaches to collective transport which use distributed groups of robots (but not

specifically persistent or leader-follower formations) are [1, 10, 15, 16]. In [6] and [5], dis-

tributed formations are utilized for collective transport, but focus specifically on control

and path planning.

Persistence theory was introduced by Hendrickx et al in [7–9] and is closely related to

rigidity theory. For further reading on rigidity theory, refer to [4]. Modeling robots as

points in the plane allow us to use the rigidity theory model known as 2D bar-and-joint

(as discussed in [19]). We provide the full details for two of the construction techniques

in [2] for constructing persistent formations with redundancy. The third method utilizes

theorems regarding trilateration graphs and rigidity [3].
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1.3 Thesis Structure

Chapter 2 provides background for understanding the contributions and results of this

thesis, covering foundations in graph theory, rigidity theory, and persistence theory.

Theoretical and experimental results are contained in Chapter 3 and Chapter 4, respec-

tively. Chapter 5 concludes with future directions.



Chapter 2

Background

The contributions of this thesis build upon persistence theory as introduced by Hendrickx

et al in [8]. In this chapter, we cover the relevant basics of graph theory (Section 2.1),

rigidity theory (Section 2.2), and persistence theory (Section 2.3) required for presenting

our results. We also fix notation that will be used throughout this thesis.

2.1 Graph Theory

In this thesis, we work with both undirected and directed graphs.

Formally, an undirected graph G = (V,E) is a collection of vertices and edges where

V = [1..n] is the set of vertices and E is the set of edges represented by unordered pairs

of vertices. We denote the edge between vertex i and j by ij and fix notation to require

i < j. See Figure 2.1 for examples of undirected graphs.

1

3

2

4

(a) An undirected graph with V = {1, 2, 3, 4} and
E = {12, 14, 23, 24, 34}.

1

3

2

4
5

(b) An undirected graph with a path between vertex
1 and 4 highlighted in blue.

Figure 2.1: Examples of undirected graphs.

A directed graph H = (V,A) is a set of vertices and edges where V = [1..n] is the set

of vertices and A is the set of directed edges represented as ordered pairs of vertices.

We call the edge from i to j ~ij. We call i the source and j the target. Notice that for

5
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directed graphs, the edge
−→
ij 6= −→ji . We depict directed edges as arrows where the tail of

the arrow is at the source and the tip is at the target; see Figure 2.2.

1

3

2

4

(a)

1

3

2

(b)

1

3

2

4

6

5

(c)

1

3
2

4

(d)

Figure 2.2: Examples of directed graphs.

Every directed graph has an associated underlying undirected graph. Formally, if H =

(V,A) is a directed graph, then its underlying undirected graph is G = (V,E), where an

edge ij ∈ E if
−→
ij ∈ A or

−→
ji ∈ A. Figure 2.3 provides examples of directed graphs and

their underlying undirected graphs.

1

3

2

4

1

3

2

4

(a)

1

3

2

1

3

2

(b)

1

3

2

4

6

5

1

3

2

4

6

5

(c)

Figure 2.3: Examples of directed graphs with their associated underlying undirected
graphs below.

The degree of a vertex v is the number of edges incident to v. In Figure 2.1(a), vertex

4 has a degree of 3 and vertex 1 has a degree of 2. For directed graphs, the out-degree

of v is the number of edges whose source is v. For example, the vertex 1 in the graph

shown in Figure 2.3(c) has out-degree 3, while vertex 4 has out-degree 0.

We say that there is a path between two vertices i and j if there exists a sequence of

vertices v1, ..., vp such that v1 = i, vp = j and vkvk+1 ∈ E for all 1 ≤ k < p ∈ R. In the
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graph in Figure 2.1(b), the edges of a path between vertex 1 and 4 are highlighted in

blue. A cycle is a path where i = j. For directed graphs, note that the edge direction

must be maintained. For example, the graphs shown in Figure 2.4(a) and 2.4(c) contain

cycles marked in blue, while the graphs shown in Figure 2.4(b) and 2.4(d) contain no

cycles. We call a graph without a cycle acyclic or cycle-free.

1

3

2

4

(a) An undirected graph
with a cycle marked in
blue.

1

3

2

4

(b) An acyclic undirected
graph.

1

3

2

4

(c) A directed graph with
a cycle marked in blue.

1

3

2

4

(d) An acyclic directed
graph.

Figure 2.4: Examples of undirected and directed graphs with and without cycles.

2.2 Rigidity Theory

We now present the core concepts of rigidity theory as a foundation for persistence

theory. For further reading on rigidity theory, we refer the reader to [4].

Conceptually, a structure is rigid if it does not bend or flex and is flexible otherwise.

While there are many theoretical models within rigidity theory, we focus on the model

known as 2D bar and joint– where structures are composed of revolute joints connected

by fixed-length bars. The 2D bar and joint structures shown in Figure 2.5(a) and 2.5(b)

are rigid but the one in Figure 2.5(c) is flexible – the dashed shape shows a possible

flexion. If some portion of a structure is rigid, but not all of it, we say that it contains

a rigid component. In Figure 2.5(d) we see a structure made up of both Figure 2.5(a)

and 2.5(c). Even if a structure contains a rigid component, it is still considered to be

flexible.

1 2

3

(a) A 3-joint rigid struc-
ture.

1 2

3 4
5

(b) A 5-joint rigid struc-
ture.

1 2

3 4

1 2

(c) A flexible structure
with a gray flexion.

5

1 2

3 4

1 2

(d) A flexible structure
with a rigid component.

Figure 2.5: Rigid and flexible structures in the 2D plane.
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Let G = (V,E) be an undirected graph. We call p ∈ (R2)n an embedding in the

Euclidean plane, where pi is the position of vertex i. Two embeddings p and q are

considered to be congruent if ||pi − pj|| = ||qi − qj|| for all points i and j ∈ V . We

call the pair H = (G,p) a framework. Given a framework H = (G,p), we can extract a

distance function d : E → R such that d(ij) = ||pi − pj||.

Definition 2.1. If all q in some neighborhood of p satisfying the distance function d

are congruent, we say the framework H is locally rigid and flexible otherwise.

Definition 2.1 specifies local behavior to account for scenarios such as the following

example, shown in Figure 2.6. Consider the two embeddings p and q shown in Figure

2.6(a) and 2.6(b), respectively. While p is associated with a locally rigid framework,

q is not because vertex 4 is able to rotate as shown in grey in Figure 2.6(b). In this

thesis, we are not concerned with cases like this as we expect our formations to maintain

local behavior. Therefore, we omit the word “locally” and instead refer to frameworks

as either being rigid or flexible.

1

2

3 4 5

(a) A locally rigid embedding of G.

1

2

3 43
5

4

(b) A flexible embedding of G where vertices 3 and 5 are
embedded at the same point.

Figure 2.6: Two embeddings of the same graph display different local behavior.

We say that a graph is minimally rigid if it is (1) rigid and (2) removal of any edge

would render it flexible. The framework in Figure 2.7(a) is minimally rigid while the

one shown in Figure 2.7(b) is not because edges 13, 23, or 34 could be removed and the

framework would remain rigid. There is a special type of rigid graph known as a rigidity

circuit which is formally defined as follows:

Definition 2.2. Let G = (V,E) be an undirected graph. We say that G is a rigidity

circuit if it is rigid and every sub-graph obtained by removing one edge from E is

minimally rigid.

The graph shown in Figure 2.7(c) is an example of a rigidity circuit.
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1 2

3 4

(a) A minimally rigid framework.

1
2

3
5

4

(b) A rigid framework which is not
minimally rigid.

1 2

3 4

(c) A rigidity circuit, a special case
of graph which is rigid, but not min-
imally rigid.

Figure 2.7: Examples of (minimally) rigid frameworks.

2.3 Persistence Theory

A straight forward application of applying rigidity theory to multi-robot formations

would require both robots to maintain the distance constraint associated with the undi-

rected edge between them. Since this would lead to increased communication and/or

sensing costs, we instead choose to use the related notion of persistence, wherein the

edges are directed. This thesis project builds upon persistence theory first introduced

by Hendrickx et al in [7]. For containment, we present the relevant background, defini-

tions, and results from [8] in this section.

Within the persistence model, imagine that each vertex represents a robot and each

outgoing edge a distance constraint which it is responsible for satisfying. Conceptually,

a formation is persistent if (1) every robot can find a location which satisfies all of its

distance constraints and (2) the underlying, undirected graph is rigid. The frameworks

shown in Figure 2.9 are persistent while the frameworks in Figure 2.8 are not. Figure

2.8(a) fails condition (1) because its underlying, undirected graph is not rigid, while

Figure 2.8(b) fails condition (2) because it is possible to be in a position where not

all of the distance constraints can be maintained simultaneously. In this example, it is

possible for vertex 4 to move to a position where 3 cannot satisfy all 3 of its constraints

at the same time, as shown in Figure 2.8(c).

1

2

3 4

3

4

(a) A framework with a flexible un-
derlying graph is not persistent.

1 2

3 4

(b) A framework where it is not al-
ways possible for all vertices to satisfy
the distance function d.

1 2

3 4

(c) A framework which displays how
2.8(b) is not persistent.

Figure 2.8: Examples of frameworks which are not persistent.
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1 2

3 4

(a) A minimally persistent framework.

1 2

3 4

(b) A persistent framework which is not minimally per-
sistent.

Figure 2.9: Examples of persistent frameworks.

Let H = (V,A) be a directed graph and p be an embedding of H. We define a formation

to be the pair (H,p). Given the underlying undirected graph of H, we can extract the

distance function d.

Let q be another embedding of H. If ~ij ∈ A and ||qi−qj|| = d(~ij) then we say that the

edge ~ij is active. In other words, if the distance constraint associated with edge ~ij is

being satisfied, then it is considered active. We say that a vertex i ∈ V in position qi is

fitting if there is no other position qi∗ ∈ R2 such that the set of active (outgoing) edges is

larger, or, more formally, if {−→ij ∈ A : ||qi−qj|| = d(
−→
ij )} ⊂ {−→ij ∈ A : ||qi∗−qj|| = d(

−→
ij )}.

We say that an embedding is a fitting embedding if all of the vertices in V are fitting.

In its application to robotics, we can think of the position of a robot in a formation as

fitting if there is no other location which the robot could move to which would allow it

to strictly increase the number of constraints it is satisfying.

We can now state the technical definition of persistence:

Definition 2.3. Let (H,p) be a formation. If all fitting embeddings q in some neigh-

borhood of p are congruent to p, then the formation is persistent.

Note that the definition of persistence requires the embeddings of a formation to be both

fitting and congruent. While it seems like a formation which has a fitting embedding

also imply that its embeddings must be congruent, that is not necessarily the case.

Consider the example shown in Figure 2.10. Let the embedding shown in Figure 2.10(a)

be p. Here, we see that vertex 3 has an out-degree of 3 and therefore must try to

satisfy three different constraints. Assume that all of vertex 3’s edges cannot be active

simultaneously. In other words, assume that by satisfying two of these constraints it

must necessarily violate the third. There are two other possible positions for 3 (shown

in Figure 2.10(b) and 2.10(c)) such that 2 of its 3 edges are active.

Because the definition of fitting requires that a different position must strictly increase

the number of active outgoing edges, we consider the position of 3 in p to be fitting

and therefore we consider p to be a fitting embedding. However, the embeddings in



11

Figure 2.10(b) and 2.10(c) are also fitting embeddings by the same logic. As Figure

2.10(a), 2.10(b), and 2.10(c) are fitting embeddings of the same framework but are

clearly not congruent, we can see that fitting is a necessary, but not sufficient, condition

for persistence.

1 2

3
4

(a) In this position, vertex
3 satisfies its distance con-
straints to vertices 1 and 2
but not 4.

1 2

3
4

(b) In this position, vertex
3 satisfies its distance con-
straints to vertices 2 and 4
but not 1.

1 2

3 4

(c) In this position, vertex
3 satisfies its distance con-
straints to vertices 1 and 4
but not 2.

Figure 2.10: Examples of fitting embeddings which are not congruent.

Alternately, we can check for the persistence of a formation a different way – by checking

for rigidity within the underlying undirected graph:

Theorem 2.4 (Theorem 3 of [8]). A graph is persistent if and only if the underlying

undirected graph of every subgraph obtained by removing out-edges from vertices with

out-degree > 2 until all vertices have out-degree ≤ 2 is generically1 rigid.

In addition, graphs which are known to be persistent remain persistent when unnecessary

edges are removed by the following Proposition.

Proposition 2.5 (Proposition 1 of [8]). A persistent graph remains persistent after

deletion of any edge
−→
ij for which the out-degree is ≥ 3.

Analogously to rigidity, a formation is minimally persistent if it is (1) persistent and (2)

removal of any edge will cause the resulting framework to no longer be persistent. See

Figure 2.9 for examples of graphs which are and are not minimally persistent.

By the following theorem, if a graph is rigid, the degrees of its vertices determine if it is

minimally persistent.

Theorem 2.6 (Theorem 4 of [8]). A rigid graph (with more than one vertex) is mini-

mally persistent if and only if one of the following two conditions is satisfied.

1. Three vertices have an out-degree 1 and all the others have an out-degree 2.

2. One vertex has an out-degree 0, one vertex has an out-degree 1, and all the others

have an out-degree 2.

1Genericity is outside of the scope of this thesis.
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Persistent Leader-Follower Formations

This project focuses on a specific subset of persistent formations known as persistent

leader-follower formations. Conceptually, a persistent leader-follower formation is a

persistent formation where one vertex, known as the leader, maintains no constraints,

and a second vertex, known as the co-leader, maintains a single constraint to the leader.

All other vertices in the formation maintain 2 or more constraints and are known as

followers. Persistent leader-follower formations are formally defined as follows:

Definition 2.7. Let F = (H,p) be a persistent formation. We say that F is a persistent

leader-follower formation if:

1. There exists some vertex vL ∈ V with out-degree 0,

2. There exists some vertex vC ∈ V with out-degree 1, with −−−→vCvL ∈ E, and

3. The out-degree of all vertices v 6= vL, vC ∈ V is ≥ 2.

Figures 2.9(a) and 2.9(b) depict examples of persistent leader-follower formations –

vertex 1 is the leader, 2 is the co-leader, and 3 and 4 are followers. Both leader and

co-leader vertices are necessary to control the movement of the formation; one point can

determine the translation of a formation within the xy plane, while a second point is

necessary to determine the rotation.

Acyclicity

As discussed in Chapter 4, we choose to focus specifically on acyclic persistent leader-

follower formations for simulation considerations. The persistence of acyclic formations

can be analyzed differently than that of formations which may contain cycles. For

example, we are able to determine the persistence of an acyclic graph using its vertex

degrees, as follows:

Theorem 2.8 (Theorem 5 of [8]). A cycle-free graph having more than one vertex is

persistent if and only if:

1. One vertex (called the leader) has an out-degree 0.

2. One vertex (called the first follower) has an out-degree 1 and the corresponding

edge is incident to the leader.

3. Every other vertex has an out-degree larger or equal to 2.
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The proof of this theorem is inductive, requiring:

Proposition 2.9 (Proposition 5 of [8]). A graph obtained by adding one vertex to a

graph G = (V, E) and at least two edges leaving this vertex is persistent if and only if

G is persistent.



Chapter 3

Constructing Persistent

Formations with Redundancy

In this chapter, we will build upon the background in Chapter 2 by expanding per-

sistence theory to incorporate redundancy into the theoretical model. We begin by

defining persistence circuits, and present an algorithm for creating them (Section 3.1)

and then prove that persistence circuits cannot be leader-follower formations. There-

fore, we present three different methods for the construction of persistent multi-robot

formations with a more restricted notion of redundancy: derivation from a rigidity cir-

cuit (Section 3.2), merging existing persistent formations with redundancy (Section 3.3),

and recursive construction through vertex addition (Section 3.4).

3.1 Persistence Circuits

The notion of minimal redundancy in rigidity theory is captured by rigidity circuits: any

edge can be removed to obtain a minimally rigid graph. Therefore, we begin by defining

the analogous concept for persistence.

Definition 3.1. A persistent formation is a persistence circuit if all subgraphs obtained

by removing a single edge are minimally persistent.

We propose the following algorithm for the construction of persistence circuits. Note

that this algorithm uses the (2, 3)-pebble game algorithm of [11, 12] as a subroutine.

The pebble game determines rigidity and outputs a directed graph. If the input graph

is rigid, the output is a minimally persistent directed graph (whose vertices have at

most out-degree 2). Pebbles are used as a mechanism for controlling the out-degree of

14
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a vertex. Specifically, for the (2,3)-pebble game used in the following algorithms, the

following result holds.

Lemma 3.2 (Invariant (1) of Lemma 10 of [12]). For any vertex v, the sum of the

number of pebbles on v and the out-degree of v is 2.

Algorithm 1 Constructing a persistence circuit from a rigidity circuit.

Input: a rigidity circuit G = (V,E)
Output: a persistence circuit.

1. Remove any edge e = ij ∈ E.

2. Play the (2, 3)-pebble game on G′ = (V,E \ {e}) to obtain a directed graph H.

3. If i has 0 pebbles, use pebble collection moves on H to collect a single pebble on
i.

4. Output the resulting directed graph with the additional edge
−→
ij .

Proof of correctness of Algorithm 1. Let H = (V,A) be the output of Algorithm 1. By

construction and Lemma 3.2, H has either 1 vertex with out-degree 0 or 2 vertices with

out-degree 1; all other vertices have out-degree 2. We show that H is a persistence

circuit. Choose some edge
−→
ij ∈ A to remove and call the resulting graph J . J either

has (1) 3 vertices with out-degree 1, and all other vertices with out-degree 2; or (2) 1

vertex with out-degree 0, 1 vertex with out-degree 1, and all others with out-degree 2.

By Theorem 2.6, J is minimally persistent if its underlying, undirected graph of J , J ′,

is rigid. Because the underlying, undirected graph G of H is a rigidity circuit and J ′

is obtained by removing one edge from G, J ′ must also be rigid and so J is minimally

persistent.

We now work through an example of this technique with a graph with 4 vertices. All

steps of this example are shown in Figure 3.1. We begin with the K4 rigidity circuit and

choose to remove edge 13. We play the pebble game to obtain the directed graph shown

in Figure 3.1(c). Note that because this orientation has 2 pebbles on vertex 3 already,

we do not need to reorient the graph. We add the edge we removed back in as
−→
31 and

output the final graph. For the purpose of this example and to display an alternate

persistence circuit of the same K4 rigidity circuit, we have reoriented the graph output

by the pebble game so that 2 pebbles are on 1. This new orientation is shown in Figure

3.1(e). In this example, the removed edge is added back in as
−→
13 and is shown in Figure

3.1(f).
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1 2

3 4

(a) Example input to Algorithm 1.

1 2

3 4

(b) Graph after removing edge 13 in
Step 1.

1 2

3 4

(c) Graph output by (2,3)-pebble
game, oriented such that vertex 3
has out-degree 0.

1 2

3 4

(d) Edge 13 is added back in as
−→
31

and output as the final persistence
circuit.

1 2

3 4

(e) Alternately, the graph in Figure
3.1(c) could be oriented so that ver-
tex 1 has out-degree 0.

1 2

3 4

(f) 13 is added back as
−→
13.

Figure 3.1: Example of Algorithm 1 with input of rigidity circuit K4.

Unfortunately, the formations created using Algorithm 1 are never leader-follower for-

mations, which are the type of formation needed for our simulation approach. In fact,

we can show the following:

Lemma 3.3. A persistent leader-follower formation cannot be a persistence circuit.

Proof. Let F = (H,p) be a persistent leader-follower formation, where H = (V,A) is a

directed graph with n vertices and p ∈ (R2)n an embedding from which we extract the

distance function d; note that this implies that p is a fitting embedding of the formation.

Let the vertex vL ∈ V be the leader and vC ∈ V be the co-leader. By the definition of

a leader-follower formation, −−−→vCvL ∈ A. Assume, for the purpose of contradiction, that

F is a persistence circuit. If F is a persistence circuit, then it must be true that the

removal of any one edge −−→vivj ∈ A does not result in a loss of persistence. We remove

edge −−−→vCvL ∈ A and let F ′ be the resulting formation. We construct a second embedding

p′. Without loss of generality, let pvC = (0, 0) and p′vC
= (1, 1). For all other vertices

v 6= vC ∈ V , let p′v = pv. Note that because the out-degree of vC is 0, any position

p′vC
∈ R2 is fitting for vC . By construction, since pv was fitting for v, p′v is still fitting for

all v 6= vC ∈ V . Thus, p′ is fitting for F ′. However, ||pvL−pvC || 6= ||p′vL
−p′vC

|| and so p

and p′ are not congruent. Thus, F ′ is not persistent, resulting in the contradiction.

Consider the example shown in Figure 3.2. Figure 3.2(a) shows a persistent leader-

follower formation. After the removal of the edge
−→
21, we obtain the formation shown in

Figure 3.2(b). Because vertex 2 is maintaining no constraints, it is free to move anywhere
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1 2

3 4

(a) Example of a persis-
tent leader-follower forma-
tion.

1 2

3 4

(b) The leader-follower
formation with the edge
from co-leader to leader
removed.

1

2

3 4

(c) Flexion of the frame-
work possible with edge 21
removed.

Figure 3.2: Example of proof of Lemma 3.3.

in R2. Visually, we can see in Figure 3.2(c) that it is possible for the formation to change

shape, and thus confirm that the formation is not persistent after the removal of the

edge
−→
21. Therefore, it cannot be a persistent leader-follower formation.

3.2 Derivation from Rigidity Circuits

The simulation of persistent formations which are not leader-follower formations is out-

side of the scope of this project and so we present a class of redundant formations with

a more restricted definition of redundancy which can occur in persistent leader-follower

formations.

Proposition 3.4 (Proposition 1 of [2]). For every rigidity circuit G, there exists some

persistent, leader-follower orientation of it.

The correctness of this proposition is proved by construction in [2] through the algorithm

that follows.

Algorithm 2 [Algorithm 1 of [2]], Constructing a persistent leader-follower formation
from a rigidity circuit.

Input: a rigidity circuit G = (V,E), a desired leader vertex vL and a desired co-leader
vertex vC incident to vL.
Output: a persistent leader-follower formation.

1. Remove any edge e = ij 6= vCvL ∈ E.

2. Play the (2, 3)-pebble game on G′ = (V,E \ {e}) to obtain a directed graph H.

3. Use pebble collection moves on H to collect 2 pebbles on vL and one pebble on
vC .

4. Output the resulting directed graph with the additional edge
−→
ij , if i 6= vC , vL, or−→

ji otherwise.
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For example, consider the rigidity circuit K4 as shown in Figure 3.3(a). We designate

vertex 1 to be vL and vertex 2 to be vC . We choose to remove edge 24 to obtain the

minimally rigid graph in Figure 3.3(b). After playing the pebble game, we obtain the

directed persistent graph shown in Figure 3.3(c). As vertex 2 is vC , we add back in the

edge we removed as
−→
42 and obtain the final persistent formation with redundancy shown

in Figure 3.3(d).

1 2

3
4

Leader Co-leader

(a) Example input for Al-
gorithm 2 with 4 vertices.

1 2

3 4

(b) Graph after removing
edge 24 in step 1 of Algo-
rithm 2.

1 2

3 4

(c) Graph after playing the
pebble game in step 2.

1 2

3 4

(d) Algorithm 2 output.

Figure 3.3: Example of Algorithm 2 with input of the rigidity circuit K4.

We also demonstrate this technique with a second rigidity circuit as shown in Figure

3.4(a). Again, we designate vertex 1 to be vL and vertex 2 to be vC . We remove edge

36 to obtain the minimally rigid graph in Figure 3.4(b). After playing the pebble game,

we obtain the graph shown in Figure 3.4(c). We add edge 36 back in as
−→
36 to obtain the

final persistent directed graph with redundancy as shown in Figure 3.4(d).

1 2

3
4

Leader Co-leader

5
6

(a) Example input for Al-
gorithm 2 with 6 vertices.

1 2

3 4

5
6

(b) Graph after removing
edge 36 in step 1 of Algo-
rithm 2.

1 2

3 4

5
6

(c) Graph after playing the
pebble game in step 2.

1 2

3 4

5
6

(d) Algorithm 2 output
with redundant edges col-
ored in blue.

Figure 3.4: Example of Algorithm 2 with input of the rigidity circuit with 6 vertices.

Formations created using this technique contain a single vertex with out-degree 3. We

call the set of edges leaving this vertex redundant edges, as the removal of any one of these

edges will make the formation minimally persistent. For example, Figure 3.5(a) shows

a persistent formation with redundancy with the set of redundant edges highlighted in

blue. The minimally persistent formations created by removing one edge from that set

are shown in 3.5(b), 3.5(c), and 3.5(d).

The redundancy in formations created using this method is necessarily restricted as there

is only 1 set of 3 edges which can be safely removed without a loss of persistence. The

probability that the loss of a random edge will not effect the persistence of the formation
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1 2

3 4

(a) Persistent formation
with redundancy whose re-
dundant edges are colored
blue.

1 2

3 4

(b) Minimally persistent
graph after removing edge
−→
41 from graph in Figure
3.5(a).

1 2

3 4

(c) Minimally persistent
graph after removing edge
−→
42 from graph in Figure
3.5(a).

1 2

3 4

(d) Minimally persistent
graph after removing edge
−→
43 from graph in Figure
3.5(a).

Figure 3.5: Example of a persistent formation with redundancy.

is 3/m, where m is the number of edges in the formation. For small formations such as

the formation shown in Figure 3.3(d), the probability of preserving persistence is good

– here, there is a 50% chance that the loss of an edge will not affect the persistence of

the formation. Note, however, that as m grows, the probability that the loss of an edge

will not affect the persistence of the formation approaches 0.

3.3 Merging Formations

As a method for creating persistent leader-follower formations with a larger number of

redundant edges, we propose the following in [2]:

Proposition 3.5 (Proposition 3 of [9]). Let H = (U,E) and I = (V, F ) be persistent

leader-follower graphs with leaders uL ∈ U , vL ∈ V and co-leaders uC ∈ U and vC ∈ V .

Then the graph U ∪ V , E ∪ F ∪ {e = −−→vLui, f = −−→vLuj, g = −−−→vCuk} is a persistent

leader-follower graph, where ui, uj , uk ∈ U and |{ui, uj , uk}| > 1.

Using this method, we are able to treat existing formations as “seeds” and join them

together to create larger formations. If redundant sets of edges are evident in the seed

formations, they are preserved in the larger merged formation. Refer to [2] for a formal

proof of correctness.

For example, we could join two copies of the persistent formation with redundancy shown

in Figure 3.3(d) by adding edges
−→
51,
−→
52, and

−→
61 (highlighted in blue). This new, merged

formation is the one shown in Figure 3.6(a). Additionally, this technique can be used

recursively. This time, we begin with two copies of the formation obtained in Figure

3.6(a). We choose to add edges
−→
91,
−→
92, and

−→
101 (highlighted in blue) to obtain final

formation in Figure 3.6(b). Notice that this formation is four of the formation shown in

Figure 3.3(d).
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1 2

3 4

5 6

7 8

(a) Formation obtained by merging two persistent
formations with redundancy from Figure 3.3(d).

1 2

3 4

5 6

7 8

9 10

11

12

13 14

15 16

(b) Formation obtained by merging two persistent
formations with redundancy from Figure 3.6(a).

Figure 3.6: Examples of merged persistent formations with redundancy using Propo-
sition 3.5.

With this construction technique, we calculate the probability that the loss of an edge

does not affect the persistence of the overall formation as 3w/m, where w is the number

of vertices with out-degree 3 and m is the total number of vertices in the graph. For the

formation in Figure 3.6(a), we see that the probability that the loss of an edge will not

result in a loss of persistence is 40%, and ≈ 36% for Figure 3.6(b).

3.4 Construction using Trilateration

In this section, we propose the application of trilateration graphs to build persistent

formations with redundancy. We build upon the work of [3] by extending the application

of trilateration graphs to persistence instead of rigidity.

Here, we construct persistent leader-follower formations by using directed edges instead

of undirected edges. We propose the following algorithm for the construction of persis-

tent leader-follower formations with redundancy:
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Algorithm 3 Constructing a persistent leader-follower formation by recursive addition

Input: A set of vertices V0 = [1..n], a leader vertex vL ∈ V0 and a co-leader vertex
vC ∈ V0.
Output: a persistent leader-follower formation.

1. Initialize a set of vertices V = {vL, vC} and a set of edges E = {−−−→vCvL}

2. For each vertex vi ∈ V0 6= vL, vC :

(a) If V = {vL, vC}, add edge −−→vivL and −−→vivC to E

(b) Else randomly select 3 unique vertices vj , vk, vl ∈ V and add edges −−→vivj , −−→vivk,
and −−→vivl to E.

(c) Add vi to V

3. Output the directed graph G = (V,E)

Note that the running time of this algorithm is O(n), where n is the number of vertices

in the graph. We now prove the correctness of this construction technique:

Proof. We proceed by induction on n, the number of vertices.

Base case: When n = 2, the output of Algorithm 3 is G = (V,E), where the set of

vertices is V = {vL, vC} and the set of edges is E = {−−−→vCvL}. Because G is acyclic,

G is persistent by Theorem 2.8. In addition, G satisfies the definition of a persistent

leader-follower formation.

Induction step: Assume that the output of Algorithm 3 is a persistent leader-follower

formation for k ≥ 2 vertices. We show that the output G′ = (V ′, E′) is correct for k + 1

vertices.

Let G = (V,E) be the constructed graph before the last iteration of Step 2. Then

V ′ = V ∪ {vk+1}.

If k = 2, then E′ = E ∪ {−−→v3v1,
−−→v3v2}.

Otherwise, if k > 2, E′ = E ∪ {−−−−→vk+1vi,
−−−−→vk+1vj ,

−−−−→vk+1vl}, where vi, vj , vl ∈ V .

By induction, G is a persistent leader-follower formation. By Proposition 2.9, we know

that G′ must be persistent because G was persistent. Additionally, we know that G′

satisfies the definition of a persistent leader-follower formation.

Let vertex vi ∈ V have out-degree 3 and let Evi be the set of edges out of vi. Let Er be

the set of all Evi for all vi ∈ V . Let G′′ be the graph obtained after removing at most 1

edge from each Evi ∈ Er. By Proposition 2.5, G′′ is persistent. Therefore, G′ contains

a set of redundant edges Er ∈ E′.
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4

5

(a) Begin by adding vertex

1 and 2 to V and edge
−→
21

to E.

1 2

3

4

5

(b) Graph after adding

vertex 3 to V and edges
−→
31

and
−→
32 to E.

1 2

3

4

5

(c) Graph after adding

vertex 4 to V and edges
−→
41,

−→
42, and

−→
43 to E.

1 2

3

4

5

(d) Final graph, after
adding vertex 5 to V and

edges
−→
52,
−→
53, and

−→
54 to E.

Figure 3.7: Construction of a persistent formation with redundancy using Algorithm
3.

We now work through an example formation with 5 vertices using the above algorithm.

Diagrams of each step are shown in Figure 3.7. We begin by designating vertex 1 to be

vL and 2 to be vC , respectively. We construct two new sets V = {1, 2} and E = {−→21}.
We select vi = 3 ∈ V0, add edges

−→
31 and

−→
32 to E and add vertex 3 to V . We then

select vi = 4 ∈ V0. Because V 6= {vL, vC}, we randomly select 3 vertices from V : vj = 1,

vk = 2 and vl = 3. We add edges
−→
41,
−→
42 and

−→
43 to E and vertex 4 to V . Finally, we select

vi = 5 ∈ V0 and select 3 vertices at random from V : vj = 4, vk = 2, and vl = 3. We add

edges
−→
54,
−→
52, and

−→
53 and add vertex 5 to V . Finally, we output the graph G = (V,E).

With this construction method, we see that the proportion of the number of edges to

the number of vertices is much higher than in other construction techniques. Notice

that in formations with greater than 3 vertices, all edges are redundant except three:

vCvL and the two edges added in step 1 of Algorithm 3. We therefore determine that

the probability that the loss of an edge will not affect the persistence of the formation at

1− (3/m), where m is the number of edges. Even for small formations, such as the one

built in Figure 3.7 the probability of that persistence will not be affected is good – in

this example, it is ≈ 67%. Notice that as m grows large, the probability that persistence

will not be affected approaches 1.

We note that because this construction technique is purely additive and relatively simple,

it could be used to rebuild a persistent formation after the loss of a vertex in a group of

robots which are all able to maintain the same number of constraints. In addition, we

note that because of the large number of edges, the total sensing cost associated with

formations created using this method is relatively high. We leave further investigation

and simulation of this construction as future work.



Chapter 4

Simulating Persistent Formations

with Redundancy

To verify and evaluate the performance of our theoretical results, we simulated for-

mations constructed with two of the three construction algorithms. In addition, we

utilize the simulations in order to identify interesting research questions. In this chap-

ter, we discuss the set-up, results, and analysis of our simulation experiments. Our goal

was to analyze the behavior of the formations by specifying a repeatable path for the

leader. The followers then used on-board sensors to determine the distance between

themselves and other robots in the group and then moved to a position which satis-

fied the pre-determined distance constraints they were trying to maintain. We repeated

this experiment using persistent formations with and without redundancy in order to

quantitatively compare their performance.

In Section 4.1, we discuss more specific information pertaining to the robots, formations,

and paths used in the simulations. Section 4.2 contains information on the data collected

and the analysis of those data.

4.1 Set-up

Formations

We simulated three different formations whose graphs are shown in Figure 4.1(a), 4.1(b),

and 4.1(c). We number the formations 1, 2, and 3, where 1 is the smallest formation

with 4 vertices (Figure 4.1(a)) and 3 is the largest formation with 16 vertices (Figure

4.1(c)). We note that for all three formations, vertex 1 has been denoted the leader and

vertex 2, the co-leader.

23
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(a) Formation 1.

1 2

3 4

5 6

7 8

(b) Formation 2.
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5 6
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13 14

15 16

(c) Formation 3.

Figure 4.1: Formations used in simulation experiments.

Notice that the persistent leader-follower orientation of the K4 rigidity circuit serves

as a “seed” formation for all of our simulated formations. Formation 1 is the persis-

tent orientation of the K4 rigidity circuit itself, while formation 2 contains 2 K4 seed

formations, and formation 3 contains 4.

For this thesis project, we did not simulate formations with different seeds. Because of

this, we do not know how the shape of the seed formation affects the performance of the

formation overall and leave this as an avenue for future investigation.

Robots

For our experiments, the type of robot we chose to use was the iRobot Create. The

iRobot Create is a circular differential drive robot; it has a circular body with two

parallel, separately powered wheels on the left and right side of the robot and two

unpowered wheels on the front and back for stability. A diagram of the robot and the

placement of its wheels is shown in Figure 4.2. Because the movement of differential

drive robots is bounded by the direction of their two powered wheels, they can only

move directly forward and backward. To travel in any other direction, the robot must

either first rotate and then move along a straight path or travel along a curved path.

While the center of rotation for a differential drive robot depends on the speed of its two

wheels, the robots in our experiments were programmed to rotate about their center.

Because omnidirectional robots can move directly in any direction without first rotating,

we hypothesize that an omnidirectional robot would be able to reach a fitting location

faster than a differential drive robot. We leave the replication of these experiments using

omnidirectional robots as future work.
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Figure 4.2: Diagram of the location of the wheels on a iRobot Create. The two driven
wheels are on the left and right. The two wheels on the top and bottom are used for

stability.

Followers

In our experiments, each follower vertex is associated with a single Create. We name

this robot after its associated vertex. For example, vertex 4 is associated with robot 4.

At the center of rotation of each follower robot there is:

1. a GPS, used for tracking the movement of each robot throughout the simulation

for data collection;

2. an emitter, which broadcasts an omnidirectional signal on a channel unique to

each robot; and

3. one receiver for each edge out of that vertex “listening” to the channel of the edge’s

target.

For example, the robot associated with vertex 3 in Figure 4.1(a), has two receivers at

its center: a receiver listening to channel 1 and a receiver listening to channel 2. Each

receiver is able to determine both the strength and direction of the received signal.

Leaders & Co-leaders

We treated the leader and co-leader vertices differently from the follower vertices. Instead

of being two separate robots, we chose to attach both the leader and co-leader vertices to

the same robot, which we will refer to as the leader robot. See Figure 4.3 for a diagram of

the placement of vertices on the leader robot. We made this choice to simplify the control

of the formation and let the leader robot control both the translation and rotation of

the formation as a whole. We can set the distance constraint between the co-leader and

leader vertices to be the fixed distance between them on the robot and thus leave the

underlying graph intact.

We place a GPS and emitter at the location of the leader and co-leader vertices on the

leader robot to be used for the same purposes as those on the follower robots. Note that
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1 2

Figure 4.3: Location of the leader vertex (vertex 1) and the co-leader vertex (vertex
2) on the leader robot.

because the leader robot has a fixed size, the distance constraint associated with the
−−−→vCvL edge will always be satisfied. Thus, we did not include a receiver at the location

of the co-leader vertex.

Paths

The path that the leader robot followed is the S-shaped path shown in Figure 4.4. This

path was chosen because it has a combination of straight sections, a right turn, and a left

turn. The radius of curvature is different for the left and right turn as to test how the

formation performed on different types of curves. While we did not test our formations

on other paths, we hypothesize that the type of path matters to the performance of the

formation as a curve whose radius of curvature is small is harder to travel along than a

curve with a larger radius of curvature.

Figure 4.4: Path followed by the leader vertex (vertex 1) and the co-leader vertex
(vertex 2) shown in blue and yellow respectively.

The leader robot is hard-coded to follow this path so that precisely the same path can

be replicated for each experiment. Each simulation experiment can be broken down
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into 2 alternating movement phases: (1) leader movement and (2) follower movement.

During the leader movement phase, the leader robot moves a short distance along the

pre-determined path and then signals that it has reached its final position by changing

the message it is emitting. At this point, the follower movement phase begins. During

this phase, each follower waits until it receives a “go” signal from all of the emitters

which it is listening to. Because we have enforced that our formations are acyclic, we

know that there must exist some ordering of the robots such that the position of each

robot only depends on those which are earlier in the order. If there were a cycle in the

graph, then robots in that cycle would never move because they are each waiting for a

“go” from another robot in the cycle. See Figure 4.5 for an example of how a cycle in a

graph would cause this kind of deadlock. Because our aim was to specifically evaluate

the theoretical model, we chose to use acyclic formations to simplify the control of the

formation, as formations with cycles prompt a more challenging problem of developing

a control scheme that converges.

1 2

3
4

5 6

Figure 4.5: Notice the cycle marked in blue. Robots 3, 4, 5, and 6 are deadlocked
because each is waiting for another in the cycle to reach its final destination.

Once this condition has been met, the follower robot first calculates the location which

would satisfy its constraints. We begin with the pseudocode algorithm for determining

that location for a robot v which is associated with a vertex with out-degree 2 to edges

with targets i and j:

1. Using the signal strength and direction received from the emitters on robot i and
j, calculate the location of i and j on a local coordinate system with the origin at
the center of v.

2. Calculate the intersection point(s) of two circles centered at the local coordinates
of i and j whose radii are the length of the distance constraints associated with
edges

−→
vi and

−→
vj.

3. Select the closer intersection point.

See Figure 4.6 for a diagram of this procedure. Note that the numerical equations for

this procedure are rather complicated and can be found in Appendix A. For followers
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with an out-degree of 3, the above algorithm is repeated three times, once with each pair

of 2 edges. The final 3 points are averaged together to obtain the location which this

follower robot will attempt to move to. We note that theoretically, the 3 optimal points

determined by the procedure will be exactly the same, but because of error in sensing

and satisfaction of constraints, we average the points to get the best approximation

possible.

v

i

j

(a) Begin with two unit
vectors, each pointed in
the direction of emitters at
the location of vertices i
and j.

v

i

j

(b) Create a circle cen-
tered at the locations i
and j with radii equal to
the d(vi) and d(vj) respec-
tively and find the intersec-
tion points (marked here in
orange).

i

v

j

(c) Select the closer inter-
section point (marked here
in red).

Figure 4.6: Example of how follower robots determine the next fitting location.

Once a robot has determined its target location, it begins the process of moving to that

location, as follows:

1. Calculate the vector between current location and target location.

2. Rotate until robot is parallel to the vector (within a 0.02 m margin).

3. If the target point is in front, move forward.

4. If the target point is behind, move backward.

5. Stop when within 0.01 m of target location.

6. Emit signal confirming robot has reached its target location.

See Figure 4.7 for a diagram of each step of this pseudocode.

The goal of our experiment was to compare the performance of formations with re-

dundant edges to the formations obtained by removing a selection of those redundant

edges. In our experiments, we chose to simulate a mechanical failure by randomly “dis-

abling” one receiver on each robot with an out-degree of 3. For each of our formations

with redundancy, we ran our experiment once with all redundant edges intact to obtain

a control. Then, we randomly removed an edge from each set of redundant edges to
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v

Emitting: 0

(a) In Step 1 and 2, the robot cal-
culates the vector between itself and
the location which satisfies its con-
straints and then rotates so its head-
ing is parallel to that vector.

v

Emitting: 0

(b) In Step 3, the robot moves for-
ward to the point.

v
Emitting: 1

(c) Finally, once the robot has
reached that location, it begins
emitting a confirmation signal.

Figure 4.7: Example of how a follower robot reaches the nearest location which
satisfies all of its constraints.

obtain a random minimally persistent formation and simulated that formation. We re-

peated this 20 times for each formation, randomly removing different redundant edges

at the start of each simulation.

4.2 Results & Analysis

During each experiment, we recorded the location of each robot every 64 milliseconds

using the GPS units attached to them. At the end of each experiment, the lists of

locations were output as text files and stored for further analysis.

In order to compare the performance of each formation, we define a metric for compar-

ison. Because we aim to analyze the persistence of the formations, we chose to focus

on the distance between where a robot was at a particular time in the simulation and

where it should have been if the global shape of the formation did not change at all.

For a robot i, we call the distance between the predicted location p∗i and the realized

location pi the error. See Figure 4.8 for a diagram of the error.

p*i

pi

error

Figure 4.8: Let pi be the actual location of the robot in simulation and let p∗i be the
predicted location. The distance between pi and p∗i is the error.

Because our simulation experiments alternated between two movement phases (leader

movement and follower movement) and robots wait for a “go” signal from all of the

robots upon which their location depends before they move during those phases, there
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are portions of the simulation where the formation is distorted while robots move to

their next location or wait for the correct signal. For the analysis of the formation, we

filter out these steps and instead focus only on samples from the time step immediately

before the leader phase begins again - a moment where we assume that all follower robots

have moved to the location which satisfies their constraints best.

Because the leader robot (containing both the leader and co-leader vertices) was fol-

lowing hard-coded instructions, we did not analyze its behavior. Instead, we used the

locations of the leader and co-leader vertices to define translation and rotation matrices

which, when applied to the initial locations of each follower robot, gave a list of points

where each robot should have been if the formation had not changed shape at all. Using

that list, we calculated the error for each robot over every selected time stamp. We

found the maximum, minimum, and mean error for each follower robot during each

simulation and then found the mean of maximums, mean of minimums, and mean of

means for all robots in a particular formation over all simulation experiments. We mark

the formations with redundant edges as the control and the formations which had edges

randomly removed the random. The results of our data analysis are shown in Table 4.1.

Mean of minimums Mean of means Mean of maximums

Formation 1 control 0.0132058± 0.004 0.0173324± 0.006 0.021459± 0.010

Formation 1 random 0.0131554± 0.004 0.0179166± 0.006 0.0235468± 0.010

Formation 2 control 0.00826846± 0.004 0.0810221± 0.011 0.191657± 0.034

Formation 2 random 0.00769588± 0.004 0.0872681± 0.012 0.261483± 0.104

Formation 3 control 0.0087836± 0.004 0.0766168± 0.051 0.362899± 0.361

Formation 3 random 0.00835823± 0.004 0.0608315± 0.045 0.197745± 0.162

Table 4.1: Simulation data: Mean values with standard deviation across all simula-
tions with a constraint accuracy threshold of 0.02m.1

Notice that for each formation, the mean of means error is roughly the same for the

control as the random. The theoretical model predicts that there should be no difference

between the control and random formations, and while we do see a slight difference

between the two, it is within a reasonable margin of error. Therefore, our results validate

the behavior predicted by the theoretical model.

1For a comparison of scale, the smallest constraint satisfied by a robot is 1.0m.



Chapter 5

Future Work

The main research question addressed in this thesis is: How can we construct persistent

multi-robot formations which are able to retain persistence after the failure of sensors

used to maintain constraints? By approaching the problem in two different ways, first by

extending the existing persistence theory to incorporate redundancy and then validating

the theory through simulation, we were able to identify future research directions in both

theory and simulation.

We defined a new class of formations called persistence circuits which become minimally

persistent after the loss of any edge and presented an algorithm for their construction.

However, we also showed that persistence circuits cannot be leader-follower formations.

Because we wanted to focus specifically on leader-follower formations for this project,

we defined a more restricted notion of redundancy that is compatible with them and

proposed three different methods for their construction. Through tracking robots in

simulation experiments we compared the performance of formations with redundant

edges and those without. After analyzing the data we collected, we showed that there

was no significant difference between the execution of the two groups of formations.

This project begins to lay down the foundation for the simulation of persistent multi-

robot formations and the inclusion of redundancy in those formations, but it leaves

many opportunities for further investigation and research. For example, the simulation

experiments that we ran for this thesis revealed that there are factors which are not

accounted for by the pure theoretical model such as the path followed, collisions, sensor

error, robot type, and noise. We do not yet understand what effects these other factors

have or what other external factors exist that we haven’t even identified yet.

We can continue to use simulation as a tool for evaluating behavior and identifying

other research problems, but modify the set-up in order to focus on specific aspects of

31
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the problem. For example, we can choose to focus on simulating formations which are

based upon seed formations other than the persistent orientation of K4 to see what affect

that has on the performance of the formation overall, or simulate formations constructed

using the trilateration construction technique discussed in Section 3.4.



Appendix A

Java code for determining points which satisfy two distance

constraints

double lStrength = rec1.getSignalStrength();

double rStrength = rec2.getSignalStrength();

double lDistance = java.lang.Math.sqrt(1/lStrength);

double rDistance = java.lang.Math.sqrt(1/rStrength);

double[] lDirection = rec1.getEmitterDirection();

double[] rDirection = rec2.getEmitterDirection();

// (a,c) is the local coordinate of the emitter received by rec1. Likewise, (b,d) is the local

coordinate of the emitter received by rec2.

double a = lDirection[0] * lDistance;

double b = rDirection[0] * rDistance;

double c = lDirection[2] * lDistance;

double d = rDirection[2] * rDistance;

//length1 and length2 are the lengths of the distance constraint to be kept from the robots

at (a,c) and (b,d) respectively.

double r = length1;

double s = length2;

//The following is calculating the two intersection points of two circles: (1) centered at

(a,c) with radius r, and (2) centered at (b,d) with radius s

double f = Math.pow(c, 2) - 2*c*d + Math.pow(d, 2) - Math.pow(r, 2) - Math.pow(s,

2);

double g = Math.pow(c-d, 2);

33
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double term1 = Math.pow(a, 3) - Math.pow(a, 2)*b + Math.pow(b, 3) + b * (Math.pow(c,2)

- 2*c*d + Math.pow(d, 2) + Math.pow(r,2) - Math.pow(s,2));

double term2 = a * (-Math.pow(b,2) + Math.pow(c,2) - 2*c*d + Math.pow(d,2) -

Math.pow(r, 2) + Math.pow(s, 2));

double term3 = Math.pow(a,4) - (4 * Math.pow(a, 3) * b) + Math.pow(b,4) + Math.pow(c,4)

- (4 * Math.pow(c, 3) * d) + (6 * Math.pow(c,2) * Math.pow(d, 2)) - ( 4 * c *

Math.pow(d, 3)) + Math.pow(d, 4) - (2 * Math.pow(c, 2) * Math.pow(r, 2)) +(4 *

c * d * Math.pow(r ,2)) - (2 * Math.pow(d, 2) * Math.pow(r, 2)) + Math.pow(r, 4) - (2

* Math.pow(c,2) * Math.pow(s, 2)) + (4 * c * d * Math.pow(s, 2)) - (2 * Math.pow(d,

2) * Math.pow(s, 2)) - (2 * Math.pow(r, 2) * Math.pow(s, 2)) + Math.pow(s, 4) +(2 *

Math.pow(b,2) * f) - (4 * a * b * (Math.pow(b,2) + f)) + (2 * Math.pow(a, 2) * (3 *

Math.pow(b, 2) + f));

double term4 = 2 * (Math.pow(a, 2) - 2*a*b + Math.pow(b, 2) + g);

term3 = Math.sqrt((-1/g) * term3);

// (x1, y1) and (x2, y2) are the points where both length1 and length2 are satisfied.

double x1 = (term1 + term2 - g * term3)/term4;

double x2 = (term1 + term2 + g * term3)/term4;

double y1Numerator = (Math.pow(r,2) - Math.pow(s, 2)) - (Math.pow(a,2)- Math.pow(b,

2)) - (Math.pow(c, 2) - Math.pow(d, 2)) + 2 * x1 * ( a - b);

double y2Numerator = (Math.pow(r,2) - Math.pow(s, 2)) - (Math.pow(a,2)- Math.pow(b,

2)) - (Math.pow(c, 2) - Math.pow(d, 2)) + 2 * x2 * ( a - b);

double denominator = -2 * (c - d);

double y1 = y1Numerator / denominator;

double y2 = y2Numerator / denominator;
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