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Abstract. In a 2010 paper, De Loera et al. explore the use
of polynomial ideals to determine properties of graphs. Here we
present an exposition of the results in said paper on k-colorability
and Hamiltonicity of graphs, as well as the improvements on these
results made by Li et al. in 2015. We provide detail and back-
ground necessary for an undergraduate reader. Additionally, we
provide an explicit formula for the Nullstellensatz certificate of
non-2-colorability of a graph, and find the graph with smallest or-
der that has a linear Nullstellensatz certificate of non-3-colorability
but does not contain an odd wheel.
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1. Introduction

Graph theory is a valuable tool for solving a range of real-world prob-

lems. Social networks, class schedules of students, genetic links between

species, and linguistic patterns can all be described with graphs. We

will use the following notation for graphs.

Definition 1.1. An undirected graph G = {V (G), E(G)} consists

of a set of vertices V (G) and a set of two-element subsets of V (G), the

edge set E(G).

A directed graph G = {V (G), A(G)} consists of a set of vertices

V (G) and a set of ordered two-element subsets of V (G), the set of arcs

(or directed edges) A(G).

In either case, we say that G has order |V (G)|.

When there is no confusion about which graph we are discussing, we

will abbreviate V (G) and E(G) as V and E, respectively.

Example 1.2. Figure 1 displays a graphG where V (G) = {v1, v2, v3, v4, v5}

and E(G) = {{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v5}}.

Definition 1.3. A graph G is k-colorable if we can assign each vertex

in G a (not necessarily unique) label from the set {1, . . . , k} such that

no pair of adjacent vertices have the same label.
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Figure 1. A graph of order five.

The chromatic number of G is the smallest number k such that

G is k-colorable.

Example 1.4. The graph in Figure 1 is 3-colorable. For example, we

can let v1 and v5 have color 1, v2 and v3 have color 2, and v4 have

color 3. This graph is not 2-colorable, since v1, v2, and v4 must all be

different colors.

Graph coloring problems arise in many settings. For example, to

coordinate the class schedules of a group of students, we could assign

a vertex of a graph to each class, and include an edge between every

pair of vertices where there is a student taking both classes. Then the

chromatic number of the graph is the number of class periods necessary

to accommodate every student. While stating a problem in this way

is simple and intuitive, determining an arbitrary graph’s chromatic

number remains a hard question.

We can use systems of polynomials to characterize the properties

of many graphs. It is quite computationally intensive to determine

whether a given graph satisfies the algebraic characterization of certain

properties, but algorithms such as the Nullstellensatz Linear Algebra

algorithm (NulLA) of De Loera et al. [5] provide relatively efficient

tools for such problems.
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The following is an exposition of the results of a paper of De Loera et

al. [4] and an improvement on one such result by Li et al. [9]. Section

2 offers a brief introduction of the algebraic concepts that will come

up, in subsections on Elementary Algebra, Complex Roots of Unity,

Monomials, and Polynomial Rings and Ideals. In the last subsection

of this section, we present a proof of the Weak Nullstellensatz, which

we will later use in Section 3.

With this background in hand, we proceed to a discussion of the

content of [4]. In Section 3 we explore how Section 2 of [4] relates the

3-colorability of a graph to a set of polynomials, and show how the

feasibility of the system–and thus the 3-colorability of the graph–can

be determined using the Nullstellensatz. We then present a combina-

torial characterization of some non-3-colorable graphs as laid out in [9].

Among these are graphs with odd wheels as subgraphs, and we include

examples of these, as well as of graphs that satisfy the characterization

but do not contain an odd wheel. The smallest of these is shown in

Figure 10, and we prove that there are no smaller such graphs.

Section 4 is original work considering how the methods in Section

2 of [4] can be applied to the simpler case of 2-coloring graphs. We

find that all non-2-colorable graphs have a Nullstellensatz certificate of

degree one, and state the aforementioned certificate explicitly.

In Section 5, we discuss Section 3 of [4] and its algebraic methods of

determining whether a graph is uniquely Hamiltonian. We go through

the proof, and consider the merits of their encodings and definitions,
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noting subtle requirements of the central polynomial system that the

authors left for the reader.
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2. Algebra

Our work centers on algebraic solutions to various problems in graph

theory, and these solutions all involve systems of polynomials with co-

efficients in a field. We will now define the algebraic concepts necessary

to our later arguments.

2.1. Elementary Algebra. In this section, we define some basic ob-

jects in Abstract Algebra, and give a few of their properties. These

objects will be used to prove Theorem 2.36, and throughout Sections

3, 4, and 5.

Definition 2.1. A ring R is a non-empty set with two binary opera-

tions (here we use addition and multiplication) where for all a, b, c ∈ R,

(1) Addition is commutative; a+ b = b+ a.

(2) Addition is associative; (a+ b) + c = a+ (b+ c).

(3) There exists an additive identity 0 ∈ R such that

a+ 0 = 0 + a = 0.

(4) Every element has an additive inverse; there exists −a ∈ R such

that a+ (−a) = (−a) + a = 0.

(5) Multiplication is associative; a(bc) = (ab)c.

(6) The distributive property holds; a(b+ c) = ab+ ac and

(a+ b)c = ac+ bc.
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A commutative ring R is a ring in which multiplication is com-

mutative, i.e. where ab = ba for all a, b ∈ R

If a ring R has unity, then there exists a multiplicative identity

1 ∈ R where 1 · a = a · 1 = a for all a.

Definition 2.2. A field is a commutative ring with unity in which

every nonzero element has a multiplicative inverse. [6]

Example 2.3. The rational numbers Q are an infinite field.

The arguments below often center on finite fields, such as F2 = {0, 1}

and F3 = {0, 1, 2}. The binary operations in F2 and F3 are addition

and multiplication modulo 2 and 3, respectively. For instance, 1+1 = 0

and 1 · 1 = 1 in F2, and 2 + 2 = 1 and 2 · 2 = 1 in F3.

Definition 2.4. The characteristic of a field is the smallest positive

number of times 1 can be added to itself in which the result is zero. If

there is no such number, we say the field has characteristic zero.

Example 2.5. Here are the characteristics of some familiar fields.

(1) F2 has characteristic 2.

(2) F3 has characteristic 3.

(3) Q has characteristic 0.

Definition 2.6. A field is algebraically closed if every nonconstant

single-variable polynomial with coefficients in the field has a root in

the field.

Lemma 2.7. Every algebraically closed field is infinite.
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Proof. We will prove this by contradiction. Suppose K is an alge-

braically closed field, but is finite, containing n elements a1, ..., an.

Then

f(x) = (
n∏
i=1

(x− ai)) + 1

gives f(ai) = 1 for all 1 ≤ i ≤ n. Then f is a single-variable polynomial

with coefficients in K, but f has no roots in K, and so K cannot be

algebraically closed.

Thus, if K is algebraically closed, K has an infinite number of ele-

ments. �

2.2. Roots of unity. Many of the polynomial systems used in [4]

involve numbers known as roots of unity. This section provides back-

ground on these numbers, which are useful in constructing polynomial

systems because a system involving roots of unity usually restricts the

form of solutions to be roots of unity as well. This gives us a finite,

and often small, set of possible solutions to check. Systems using roots

of unity appear in Propositions 3.1 and 5.3.

Definition 2.8. Let k be a positive integer. A k-th root of unity is

a number ω in a field K such that ωk = 1.

We say that ω is a primitive k-th root of unity if ω is a k-th root

of unity but is not a j-th root of unity for any j < k.

Example 2.9. Here are some examples of roots of unity.

(1) 1 is a k-th root of unity for any positive integer k.

(2) 1 and -1 are the square roots of unity (k = 2).

(3) 1, -1, i, and -i are the fourth roots of unity.
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If ω is a primitive k-th root of unity, we can express any k-th root

of unity in the form ωj where 0 ≤ j < k. Each of the distinct k-th

roots of unity have different values of j when written in this manner,

which supports the following result: In an algebraically closed field

whose characteristic does not divide k, there are exactly k k-th roots

of unity [8]. These form a cyclic group generated by a primitive k-th

root of unity, so we know that a primitive k-th root of unity exists in

any algebraically closed field whose characteristic does not divide k.

Theorem 2.10. For k > 1, the sum of all k-th roots of unity is zero.

Proof. Let S = 1 + ω+ ω2 + · · ·+ ωk−1 be the sum of the k-th roots of

unity, where ω is a primitive k-th root of unity.

Then ωS = ω(1 + ω + ω2 + · · · + ωk−1) = ω + ω2 + · · · + ωk−1 + ωk

However, since ωk = ω0 = 1,

ω + ω2 + · · ·+ ωk−1 + ωk = 1 + ω + ω2 + · · ·+ ωk−1.

In other words, ωS = S. Since k > 1 and ω is a primitive k-th root of

unity, ω 6= 1. Thus, if ωS = S, S = 0. �

2.3. Monomials. In this section we define monomials, and some mono-

mial orderings. This will prepare us for the discussion of polynomials

in the following subsection.

Definition 2.11. A monomial is a product of some number of (not

necessarily distinct) variables.

The degree of a monomial is the number of factors in the product.
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Example 2.12. The monomial x21x2x
4
3 has degree 7.

Polynomials are linear combinations of monomials, where each mono-

mial is multiplied by some coefficient from the field K.

We often need to choose a way to order a set of monomials. In the

arguments below we use two monomial orderings, lexicographic (lex)

order, and graded lexicographic (grlex) order.

Definition 2.13. Let a = (a1, ..., an) and b = (b1, ..., bn) ∈ Zn≥0. We

say a is greater than b in lex order, or equivalently a >lex b if, in the

vector difference a−b ∈ Zn≥0, the leftmost nonzero entry is positive. We

will write xa >lex x
b if a >lex b, where xa is shorthand for xa11 x

a2
2 · · ·xann .

Definition 2.14. Let xa and xb be monomials. We say xa is greater

than xb in grlex order, or equivalently xa >grlex x
b, if xa has a higher

degree than xb, or if the two monomials have equal degree and

xa >lex x
b.

Example 2.15. In grlex order, x1x
4
2 > x31 > x21x2 > x21 > x22.

Given a monomial ordering, we can define some key parts of a poly-

nomial, which we will use to prove Proposition 2.39 and Lemma 5.14.

Definition 2.16. Fix a monomial order, and let f be a nonzero poly-

nomial.

• The leading monomial of f , LM(f), is the largest monomial

in f under the fixed monomial ordering.

• The leading coefficient of f , LC(f), is the coefficient that

appears with LM(f) in f .
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• The leading term of f , LT (f), is the product LC(f) ·LM(f).

Example 2.17. Let f = 3x1x
4
2 + 2x21 + 5x2.

In grlex order, LM(f) = x1x
4
2, LC(f) = 3, and LT (f) = 3x1x

4
2. In

lex order, LM(f) = x21, LC(f) = 2, and LT (f) = 2x21.

2.4. Polynomial Rings and Ideals. In this section, we discuss poly-

nomial ideals and varieties, building understanding toward our use of

these objects in proving Theorem 2.36, and throughout the discussions

in Section 3 and beyond.

Definition 2.18. Let K be a field. We denote by K[x1, . . . , xn] the

ring of polynomials in n variables with coefficients in K.

Example 2.19. The ring of polynomials in two variables with coef-

ficient 0 or 1 is written F2[x, y]. The nonzero elements of this ring

all have the form
∑

xpyq where the exponents on each x or y are

nonnegative (possibly zero) integers.

The set of monomials in n variables is a subset of K[x1, . . . , xn].

Definition 2.20. Let P be a system of polynomials in K[x1, . . . , xn].

The variety of P , abbreviated V(P ), is the set of solutions in K for

which each polynomial in the system is equal to zero. Elements of the

variety have the form (a1, a2, . . . , an) for ai ∈ K.

Example 2.21. Varieties in any field K can have a finite number of

elements, an infinite number of elements, or be empty.

• If P = {x1 + x2, 2x1}, then V(P ) = {(0, 0)}.
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• If Q = {x1 + x2, 2x1 + 2x2}, then V(Q) = {(x,−x)|x ∈ K}.

• If S = {x1 + x2, 1}, then V(S) = ∅.

Definition 2.22. An ideal I of a commutative ring R is a subset of

the ring with the following properties:

• 0 ∈ I.

• if f ∈ I and g ∈ I, then f + g ∈ I.

• if f ∈ I and r ∈ R, then fr ∈ I.

Example 2.23. The even integers 2Z are an ideal of the integers Z:

• 0 ∈ 2Z

• If f, g ∈ 2Z then f = 2p and g = 2q for some integers p and q.

Then f + g = 2p+ 2q = 2(p+ q) ∈ 2Z.

• If f ∈ 2Z and r ∈ Z, then f = 2p for some integer p, and

fr = 2pr = 2(pr) ∈ 2Z.

Example 2.24. The zero ideal {0} is an ideal of any ring R.

• 0 ∈ {0}

• There is only one element in {0}, and 0 + 0 = 0 ∈ {0}.

• For any r ∈ R, by definition r · 0 = 0 ∈ {0}.

Lemma 2.25. Let I be an ideal of a commutative ring R (with unity).

We have the unity element 1 ∈ I if and only if I = R.

Proof. If 1 ∈ I and g ∈ R, then since ideals absorb products in the

ring, 1 · g = g ∈ I. Therefore, R ⊆ I, and by definition of an ideal

I ⊆ R. Therefore, I = R.

If I = R, it is clear that as 1 ∈ R, 1 ∈ I as well. �



16

Lemma 2.26. Let K be a field. The only ideals of K are {0} and K

Proof. Let I be an ideal of K, and suppose we have a 6= 0 ∈ I. As K is

a field, there exists a−1 ∈ K, so by product absorbtion, a−1a = 1 ∈ I,

and therefore I = K. Thus if an ideal of K has nonzero elements, it is

K itself, so by Example 2.24, {0} and K are the only ideals of K. �

Definition 2.27. We say that an ideal of K[x1, . . . , xn] is generated

by a set of polynomials f1, . . . , fs in K[x1, . . . , xn] if every element in

I can be written as h1f1 + h2f2 + · · · + hsfs for some h1, . . . , hs in

K[x1, . . . , xn].

We can then write I = 〈f1, . . . , fs〉, and we say that f1, . . . , fs is a

basis of I.

Example 2.28. We would like to be sure that I = 〈f1, . . . , fs〉 is an

ideal.

Since 0 ∈ K[x1, . . . , xn], 0 · f1 = 0 ∈ I.

Suppose g1 = h1f1+h2f2+· · ·+hsfs and g2 = m1f1+m2f2+· · ·+msfs

are in I, where hi,mi ∈ K[x1, . . . , xn]. Then

g1 + g2 = (h1f1 +m1f1) + · · ·+ (hsfs +msfs)

= (h1 +m1)f1 + · · ·+ (hs +ms)fs.

Since the ring K[x1, . . . , xn] is closed under addition, each sum hi+mi ∈

K[x1, . . . , xn], so g1 + g2 ∈ I.

Suppose g = h1f1 + h2f2 + · · · + hsfs is in I and r ∈ K[x1, . . . , xn].

Then gr = rh1f1 + rh2f2 + · · · + rhsfs. Since the ring K[x1, . . . , xn]
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is closed under multiplication, each product rhi ∈ K[x1, . . . , xn], so

gr ∈ I.

Hence, I = 〈f1, . . . , fs〉 is an ideal.

The generating set of an ideal in K[x1, . . . , xn] is not unique, as we

can add elements of the ideal to an existing generating set to make a

larger generating set. Further, an ideal does not have a unique minimal

generating set. This can cause problems when we try to determine if a

given polynomial is in an ideal.

One way to determine ideal membership is that if a polynomial f has

remainder zero upon division by a generating set of I, then f is in I.

However, the inverse of this statement, “if f does not have remainder

zero upon division by a given generating set of I, then f is not in I,”

does not hold. It is possible for f to have a nonzero remainder on

division by some generating set of I, but still be a member of I. This

is because f might have different remainders on division by different

generating sets of the ideal.

The following definition is therefore quite useful, as the generating

sets in this category all produce the same remainder from a given poly-

nomial.

Definition 2.29. Fix a monomial order. A finite subsetG = {g1, . . . , gt}

of an ideal I is a Gröbner basis of I if

〈LT (I)〉 = 〈LT (g1), . . . , LT (gt)〉

where 〈LT (I)〉 is the ideal generated by the leading terms of all poly-

nomials in I. [2]
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Example 2.30. Let I = 〈x3−2xy, x2y−2y2 +x〉, and use grlex order.

{x3 − 2xy, x2y − 2y2 + x} is a basis of I, but not a Gröbner basis of

I because x2 = −y(x3−2xy) +x(x2y−2y2 +x) is in I, but the leading

terms of these functions are x3 and x2y, and x2 6∈ 〈x3, x2y〉.

However, {x3−2xy, x2y−2y2 +x, x2, xy, 2y2 +x} is a Gröbner basis

of I. (This may not be intuitively clear, but we will discuss a means of

checking that it is true below.)

Definition 2.31. A Gröbner basis G = {g1, . . . , gt} of a polynomial

ideal I is a reduced Gröbner basis of I if the following hold for all

1 ≤ i ≤ t

(1) LC(gi) = 1

(2) No monomial of gi lies in 〈LT (G\{gi})〉.

Example 2.32. Let I = 〈x2, y2 + x〉, and use grlex order. The set

G = {x2, y2 + x} is a reduced Gröbner basis of I.

Unlike Gröbner bases in general, reduced Gröbner bases are unique.

Definition 2.33. Let f and g be nonzero polynomials in K[x1, . . . , xn].

The s-polynomial of f and g is

s(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g

where xγ is the least common multiple of LM(f) and LM(g).

Example 2.34. We see that

s(x2, y2 + x) =
x2y2

x2
x2 − x2y2

y2
(y2 + x) = x2y2 − x2y2 − x3 = x3.
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Theorem 2.35. (Buchberger’s Criterion) A generating set G = {g1, . . . , gt}

of an ideal I is a Gröbner basis of I if and only if the s-polynomial

s(gi, gj) for all pairs i 6= j has remainder zero on division by the poly-

nomials in G.

A proof of this theorem can be found in 2.6, Theorem 6 of Cox et al.

[2].

2.5. The Nullstellensatz. We now have the background necessary to

prove an important theorem in algebraic geometry, which we will apply

in Section 3.

Theorem 2.36. (Weak Nullstellensatz) [2] Let K be an algebraically

closed field and let I ⊂ K[x1, . . . , xn] be an ideal. I will satisfy V(I) = ∅

if and only if I = K[x1, . . . , xn].

We note that by Lemma 2.25, 1 ∈ I if and only if I = K[x1, . . . , xn].

First assume that I = K[x1, . . . , xn]. Then 1 ∈ I, and it follows that,

since 1 6= 0, V(I) = ∅.

We will now prove the other part of the if and only if statement:

that I ( K[x1, . . . , xn] implies that V(I) 6= ∅. This proof follows the

one provided in [2], with added detail and all exercises worked out.

The body of this proof centers on the following operation on poly-

nomials in the ideal I.

Definition 2.37. Given a number a ∈ K and a polynomial

f ∈ K[x1, . . . , xn], define f = f(x1, . . . , xn−1, a). In other words, f is

f evaluated at xn = a, and doing this gives us a polynomial in the

subring K[x1, . . . , xn−1].
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Lemma 2.38. The set

Ixn=a = {f |f ∈ I}

is an ideal of K[x1, . . . , xn−1].

Proof. Let z = 0 be the zero polynomial. As I is an ideal, z ∈ I.

Evaluating z at xn = a still gives 0, so z = 0 ∈ Ixn=a.

Let f, g ∈ I. Then f + g ∈ I, and f, g, f + g ∈ Ixn=a. We can see

that f(x1, . . . , xn−1, xn)+g(x1, . . . , xn−1, xn) = (f+g)(x1, . . . , xn−1, xn)

by the usual polynomial properties. From this we see that

f(x1, . . . , xn−1, a) + g(x1, . . . , xn−1, a) = (f + g)(x1, . . . , xn−1, a), or

equivalently f + g = f + g. We know f + g ∈ Ixn=a, so f + g ∈ Ixn=a

and we have closure.

Let f ∈ I, h ∈ K[x1, . . . , xn]. Then hf ∈ I, so f, hf ∈ Ixn=a. We

know that hf = hf(x1, . . . , xn−1, a) = h(x1, . . . , xn−1, a)f(x1, . . . , xn−1, a)

= hf since h is not a function of xn. Thus hf ∈ Ixn=a and Ixn=a absorbs

products. Therefore, Ixn=a is an ideal of K[x1, . . . , xn−1]. �

With this ideal in hand, we present the following claim:

Proposition 2.39. Given that K is algebraically closed and that

I ( K[x1, . . . , xn], there exists a ∈ K such that Ixn=a ( K[x1, . . . , xn−1].

Now we will prove the claim using two cases.

Proof. We first look at the case where I ∩K[xn] 6= {0}; in other words,

where I contains single-variable polynomials in xn. Let f ∈ I ∩K[xn]

be a nonzero polynomial of degree r. We also know that f is not
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constant, because if it were, it would have an inverse in K such that

f · f−1 = 1 ∈ I ∩ K[xn] ⊆ I, and we know that as I ( K[x1, . . . , xn],

1 6∈ I.

Since K is algebraically closed, we can write f = c
∏r

i=1(xn − bi)mi ,

where c, bi ∈ K and mi ∈ N for 1 ≤ i ≤ r, and taking c 6= 0.

Suppose that Ixn=bi = K[x1, . . . , xn−1] for 1 ≤ i ≤ r. Then

1 ∈ Ixn=bi for all i, so for every i there exists some Bi ∈ I such that

Bi(x1, . . . , xn−1, bi) = 1. Then

1 = Bi(x1, . . . , xn−1, bi) = Bi(x1, . . . , xn−1, xn − (xn − bi))

by a simple substitution, which we can rewrite as

1 = Bi(x1, . . . , xn) + Ai(xn − bi)

for some Ai ∈ K[x1, . . . , xn].

To see that this is true, consider an arbitrary monomial in

Bi(x1, . . . , xn−1, bi). If it contains no factors of bi = xn − (xn − bi),

then it is already a monomial in Bi. If instead the monomial contains

a factor bji = (xn− (xn− bi))j, then using the binomial theorem we can

expand the monomial into factors of x1, . . . , xn−1 multiplied by

(xjn+ (terms divisible by (xn−bi))). Then the term containing xjn above

is a monomial in Bi, and the latter terms, when divided by (xn − bi),

are monomials in Ai. Applying this method to all monomials in Bi, we

will be left with the correct Ai.
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We can then multiply the equations 1 = Bi + Ai(xn − bi) over

1 ≤ i ≤ r, repeating the i-th factor mi times, to obtain the following:

1 =
r∏
i=1

(Ai(xn − bi) +Bi)
mi = A

r∏
i=1

(xn − bi)mi +B

with A =
∏r

i=1A
mi
i ∈ K[x1, . . . , xn] and B being the sum of all terms

but the first in the expansion of
∏r

i=1(Ai(xn − bi) + Bi)
mi . We know

that B ∈ I because each term in B is a multiple of some Bi ∈ I.

We see that
∏r

i=1(xn − bi)mi = c−1f from our definition of f above,

and since c, c−1 ∈ K[x1, . . . , xn], we have c−1f ∈ I. Then by properties

of ideals, Ac−1f +B = 1 ∈ I.

This contradicts I ( K[x1, . . . , xn]. Therefore, it must be true that

Ixn=bi 6= K[x1, . . . , xn−1] for some i. That bi is the desired a for the

claim.

In the second case, I ∩ K[xn] = {0}, in other words, there are no

single-variable polynomials in xn contained in I.

Let {g1, . . . , gt} be a Gröbner basis of I for lex order with

x1 > · · · > xn, and write

gi = ci(xn)xαi + (terms less than xαi)

where ci(xn) ∈ K[xn] is nonzero (but possibly constant), and xαi is

a monomial in x1, . . . , xn−1. This means that LM(ci(xn)xαi) is the

leading monomial of gi.

By Lemma 2.7, K is infinite. Since we have a finite number t of

polynomials ci(xn), each having a finite number of roots, we know we
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can find some a ∈ K that is not a root of any ci(xn). This means

ci(a) 6= 0 for all i.

We will now show that the polynomials gi = gi(x1, . . . , xn−1, a),

(1 ≤ i ≤ t) form a basis of Ixn=a.

Let f ∈ I. Then f ∈ Ixn=a. Further, as {gi} is a Gröbner basis of I,

f =
∑t

i=1 higi for some hi ∈ K[x1, . . . , xn]. Then

f =
t∑
i=1

higi

by polynomial properties. Thus every f in Ixn=a can be written as a

combination of gi, so {gi} is a basis of Ixn=a.

Substituting xn = a in gi = ci(xn)xαi + (terms less than xαi), it is

clear that LT (gi) = ci(a)xαi since ci(a) 6= 0. We also note that xαi 6= 1,

otherwise gi = ci(xn) ∈ I ∩ K[xn] = {0}, which is a contradiction

because ci(xn) is nonzero. This shows that the LT (gi) are nonconstant

for all 1 ≤ i ≤ t.

We will show in Lemma 2.40 that {gi} is a Gröbner basis of Ixn=a.

It follows that 1 6∈ Ixn=a since no LT (gi) can divide 1, as the leading

terms are nonconstant. Thus Ixn=a 6= K[x1, . . . , xn−1], which is what

we want to show. �

Lemma 2.40. Let I be an ideal with Gröbner basis {g1, . . . , gt}. Then

{gi} is a Gröbner basis of Ixn=a.

Proof. Let us take a pair gi, gj in the Gröbner basis of I, and consider

S = cj(xn)
xγ

xαi
gi − ci(xn)

xγ

xαj
gj
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where xγ = lcm(xαi , xαj). Note that S ∈ I.

We can see that xγ > LT (S) because the terms with LT (gi) and

LT (gj) cancel, so LT (S) is the maximum of

LT (cj(xn))
xγ

xαi
· a monomial less than xαi

and

LT (ci(xn))
xγ

xαj
· a monomial less than xαj .

It is intuitively clear that dividing xγ by a monomial and then multi-

plying it by a smaller monomial will yield a result smaller than xγ. We

also know that xαi and xαj are nonconstant, so they have some factor

of x1, . . . , xn−1 to a power m ≥ 1. Since LT (ci(xn)), LT (cj(xn)) are

both functions of only xn, multiplying this term into the result we had

before to form LT (S) will not increase the product in lex order enough

to change the inequality. Therefore, xγ > LT (S).

Since S ∈ I, we can write S =
∑t

l=1 hlgl for some hl ∈ K[x1, . . . , xn].

Then evaluating at xn = a gives

cj(a)
xγ

xαi
gi − ci(a)

xγ

xαj
gj = S =

t∑
l=1

hlgl.

Since LT (gi) = ci(a)xαi , S = s(gi, gj), the s-polynomial for gi, gj, up

to the nonzero constant multiple ci(a)cj(a).

We want to find an lcm representation s(gi, gj) =
∑t

l=1 hlgl where

lcm(LM(gi), LM(gj) > LT (hlgl) for all hlgl 6= 0. If we can express all

s-pairs in this manner, by the extension of Buchberger’s Criterion in

Chapter 2.9 Theorem 6 of [2], {gi} is a Gröbner basis of Ixn=a.
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Consider an arbitrary polynomial f ∈ I. We know that LT (f) cor-

responds to some term φ in f . Either φ contained some factor of xn,

in which case that factor becomes a constant in f but nothing else is

changed, and φ > LT (f) in lex order, or φ contained no factor of xn,

and φ = LT (f). Then we have φ ≥ LT (f), and by the definition of

the leading term, LT (f) ≥ φ ≥ LT (f).

Then xγ > LT (S) and LT (S) ≥ LT (S) imply

xγ > LT (S) = LT (hlgl)

for all hlgl 6= 0.

Since xγ = lcm(xαi , xαj) = lcm(LM(gi), LM(gj)), we have an lcm

representation s(gi, gj) =
∑t

l=1 hlgl where

lcm(LM(gi), LM(gj)) > LT (hlgl)

for all hlgl 6= 0, as desired. �

Proof. (Second direction of Theorem 2.36, the Weak Nullstellensatz)

By Proposition 2.39, we can use induction to find a set of elements

a1, . . . , an ∈ K for which Ixn=an,...,x1=a1 ( K.

By Lemma 2.26, the only ideals of K are {0} and K, so

Ixn=an,...,x1=a1 = {0}. It is equivalent to say that (a1, . . . , an) ∈ V(I),

since evaluating all elements of the ideal at (a1, . . . , an) makes all ele-

ments equal to zero. Therefore, V(I) 6= ∅ and the theorem is true. �
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3. Graph Coloring

This section looks at graph coloring from an algebraic perspective,

specifically focusing on ways to determine if a graph is 3-colorable.

Throughout this section, we will let K be a field with characteristic

relatively prime to k, the number of colors used.

In Section 3.1, we consider a polynomial system that determines

if a graph is k-colorable. In Section 3.2, we define a Nullstellensatz

certificate of the infeasability of a system. In Section 3.3, we present

a combinatorial characterization of the non-3-colorability of a graph.

Finally, in Section 3.4, we consider examples of graphs that satisfy this

characterization.

3.1. Bayer’s Formulation. To begin, we will present a polynomial

system related to the chromatic number of a graph [1].

Proposition 3.1. (Bayer’s Formulation) Let G = (V,E) be an undi-

rected simple graph (that is, with at most one edge between any pair

of vertices) on vertices V = {1, ..., n}. Fix a positive integer k and let

K be a field with characteristic relatively prime to k. The polynomial

system

JG = {xka − 1 = 0, xk−1a + xk−2a xb + ...+ xk−1b = 0 | a ∈ V, {a, b} ∈ E}
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has a common zero over the algebraic closure of K if and only if the

graph G is k-colorable.

The following proof was written independently.

Proof. First we will prove the forwards direction. If JG has a common

zero, we have xka = 1. Then xa is a kth root of unity, so we can write

xa = ωka for some ka ∈ {0, ..., k − 1}, where ω is a primitive k-th root

of unity. Substituting for xa and xb in the equation xk−1a + xk−2a xb +

...+ xk−1b = 0, we have

k∑
j=1

ω((k−j)ka+(j−1)kb) = 0

Suppose that xa = xb for some {a, b} ∈ E, in other words that the

vertices a and b in V have the same color. Then ka = kb, since there

is only one ka ∈ {0, ..., k − 1} satisfying xa = ωka for a given kth root

of unity xa. If ka = kb, then (k − j)ka + (j − 1)kb = (k − 1)ka for all

j ∈ {1, ..., k}. This gives us

k∑
j=1

ω((k−j)ka+(j−1)kb) =
k∑
j=1

ω(k−1)ka = kω(k−1)ka 6= 0.

This contradicts the fact that JG has a common zero, so xa 6= xb if

{a, b} ∈ E, and thus G is k-colorable.

Now we will prove the backwards direction. If G is k-colorable, for

any {a, b} ∈ E, we can color a and b with different kth roots of unity

xa = ωka , xb = ωkb . Then xka − 1 = 0 for all a ∈ V . As above, we can
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write xk−1a + xk−2a xb + ...+ xk−1b as

k∑
j=1

ω((k−j)ka+(j−1)kb).

If {a, b} ∈ E, then xa 6= xb, so ka 6= kb. We will show by contradiction

that every term in the sum above is unique. Let m,n ∈ {1, ..., k} such

that m 6= n, and suppose that

(k −m)ka + (m− 1)kb = (k − n)ka + (n− 1)kb.

We can rewrite this equation as

((k−m)− (k−n))ka = ((n−1)− (m−1))kb or (n−m)ka = (n−m)kb,

which gives us ka = kb. This is a contradiction, as we know ka 6= kb.

Therefore (k −m)ka + (m− 1)kb 6= (k − n)ka + (n− 1)kb if m 6= n, so

each term in the sum
k∑
j=1

ω((k−j)ka+(j−1)kb) is a different kth root of unity. There are k terms

in the sum, so all kth roots of unity must be included. Since the sum

of all kth roots of unity is zero, we have

xk−1a + xk−2a xb + ...+ xk−1b =
k∑
j=1

ω((k−j)ka+(j−1)kb) = 0

if {a, b} ∈ E. Thus, if G is k-colorable, JG has a common zero. Hence,

JG has a common zero if and only if G is k-colorable. �

3.2. Nullstellensatz Certificates of Infeasability. Now that we

have established this correspondence, we would like a method of deter-

mining if a system such as JG has a common zero. To find one, let us

begin with a definition.
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Definition 3.2. Let S = {f1 = 0, . . . , fr = 0} be a system of poly-

nomial equations with coefficients in K. The Nullstellensatz certifi-

cate of infeasability of S is an equation

1 =
r∑
i=1

βifi

for some polynomials β1, . . . , βr ∈ K[x1, . . . , xn]. [4]

Corollary 3.3. (Corollary to the Weak Nullstellensatz) A system of

polynomials with coefficients in K has no solution if and only if the

system has a Nullstellensatz certificate of infeasability. [4]

Proof. Let S = {f1 = 0, . . . , fr = 0} be a system of polynomial

equations with coefficients in K. We will first consider the back-

wards implication. If S has a Nullstellensatz certificate of infeasabil-

ity, there is a set of polynomials β1, . . . , βr ∈ K[x1, . . . , xn] such that

1 =
r∑
i=1

βifi. In other words, 1 ∈ 〈S〉. Then by Lemma 2.25, we see

that 〈S〉 = K[x1, . . . , xn]. By the Weak Nullstellensatz, the variety

V(S) = ∅.

Now consider the forwards implication. If S has no solution, then

the variety V(S) = ∅. By the Weak Nullstellensatz, this means

〈S〉 = K[x1, . . . , xn]. Then 1 ∈ 〈S〉, so by definition of the ideal gener-

ated by S, there are some polynomials β1, . . . , βr ∈ K[x1, . . . , xn] such

that 1 =
r∑
i=1

βifi. �

Thus, we can show that a graph G is not k-colorable by finding a

Nullstellensatz certificate of infeasability for the system JG.
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3.3. Characterizing Non-3-Colorable Graphs. The first main sec-

tion of [4] presents a combinatorial characterization of graphs that have

a linear Nullstellensatz certificate of non-3-colorability (that is, all of

the polynomials in the certificate have degree less than or equal to 1).

While their characterization is sound, and the proof relatively straight-

forward, it requires covering an undirected graph with directed edges

in one of two ways. Building on this work, the authors in [9] give a

simpler characterization, which is the one we shall present here.

To understand the characterization in [9], we need the following def-

initions.

Definition 3.4. A path of length k in a graph G is a list of vertices

v1, v2, . . . , vk+1 where each vi ∈ V (G) is distinct and {vi, vi+1} ∈ E(G)

for each 1 ≤ i ≤ k. If the above are the only edges in G, we say that

G itself is a path.

A list of vertices v1, v2, . . . , vk+1 where {vi, vi+1} ∈ E(G) for each

1 ≤ i ≤ k, but the vi ∈ V (G) are not required to be distinct, is called

a walk.

Example 3.5. In Figure 2, v1, v4, v5, v3 is a path of length three in the

graph. On the other hand, v1, v4, v3, v1 is not a path, because a vertex

is repeated.

The graph in Figure 3 is a path of length three.

Note: A path of length zero is a single vertex.

Definition 3.6. A cycle of length k in a graph G is a list of vertices

v1, v2, . . . , vk, v1 where each vi ∈ V (G) is distinct and {vi, vi+1} ∈ E(G)
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v1

v2

v3

v4

v5

Figure 2. The same graph of order five, reprinted for convenience.

v1

v2

v3

v4

Figure 3. A path of length three.

for each 1 ≤ i ≤ k − 1, and {vk, v1} ∈ E(G). If the above are the only

edges in G, we say that G itself is a cycle.

Example 3.7. In Figure 2, v1, v4, v5, v3, v1 is a cycle of length four in

the graph. On the other hand, v1, v4, v3, v5 is not a cycle, because it is

not closed.

The graph in Figure 4 is a cycle of length four.

v1

v2

v3

v4

Figure 4. A cycle of length four.

Definition 3.8. If two vertices in a graph are connected by an edge,

we say that the vertices are adjacent. Further, we call each of these

vertices incident to the edge between them.

It is occasionally expedient to stretch this definition and refer to an

edge as incident to a vertex rather than the reverse.
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Example 3.9. In Figure 2, the vertices v1 and v2 are adjacent, and

both are incident to the edge {v1, v2}.

In addition to these elementary definitions, we will use a definition

introduced in [9].

Definition 3.10. [9] A graph G with vertex set V = {v1, . . . , vn} and

edge set E is covered by length 2 paths if there exists a set C of

length 2 paths in G such that

(1) each edge in E appears in an even number of paths in C,

(2) the number of paths vivkvj in C in which k < i, j or k > i, j is

odd, and

(3) if vi, vj ∈ V but {vi, vj} 6∈ E, then the number of paths in C

with vi and vj as endpoints is even.

Note that the term “covered” is misleading, as not all edges nor

vertices of a graph need be included in the set of length 2 paths that

“cover” it.

Example 3.11. We can cover the complete graph (where all vertices

are adjacent) of order four, K4, with the following set of length 2 paths:

C = {v2v1v3, v3v1v4, v2v1v4}

(see Figure 5). To be certain we have satisfied Definition 3.10, consider:

The edges {v1, v2}, {v1, v3} and {v1, v4} appear twice in C, while

the edges {v2, v3}, {v3, v4} and {v2, v4} appear zero times in C. This

satisfies condition (1) of Definition 3.10.
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v1

v2

v3v4

Figure 5. K4 covered by length 2 paths.

All three paths in C are of the form vivjvk in which j < i, k, so there

is an odd number of them. This satisfies condition (2) of Definition

3.10.

As all vertices in K4 are adjacent, we need not consider condition

(3), so this covering of K4 satisfies Definition 3.10.

We will now define a class of graphs that can be covered by length

2 paths.

Definition 3.12. A graph G of order n is a wheel if its edge set is as

follows:

E(G) = {{v1, v2}, {v2, v3}, . . . ,{vn−2, vn−1}{vn−1, v1},

{v1, vn}, {v2, vn}, . . . ,{vn−1, vn}}

We say thatG is an odd wheel if the length of the outer cycle v1, . . . , vn−1, v1

is odd, that is if n is even. If a wheel is not odd, it is even.

Example 3.13. Some small wheels appear in Figure 6. The complete

graph K4 can also be referred to as the wheel W3. We note that the

wheels are indexed by the number of vertices on the outer cycle.
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v4

v2

v3v1

v5

v2

v3v4

v1

v6

v2

v3

v4v5

v1

Figure 6. K4 = W3, W4, and W5.

This proposition and its proof are new work.

Proposition 3.14. An odd wheel can be covered by paths of length two

in accordance with Definition 3.10 for any ordering of its vertices.

Proof. Let W be the odd wheel of order 2n. Let v2n be the center

vertex of the wheel, and consider the following set of paths of length

two:

C = {vi, v2n, vi+1|1 ≤ i ≤ 2n− 2}
⋃
{v2n−1, v2n, v1}.

There are 2n−1 paths in C. Each edge not incident to v2n is covered by

no paths in C, while each edge incident to v2n is covered by two paths

in C. Hence, C satisfies condition i) of Definition 3.10. Additionally,

all pairs of non-adjacent vertices in W are connected by no paths in C,

so C satisfies condition iii) of Definition 3.10.

Now, we define a new ordering by assigning each vertex of W a

unique label from the set {1, 2, ..., 2n}. Let j be the label assigned to

v2n. We will consider the set S+
j of vertices whose labels are greater

than j, and the set S−j of vertices whose labels are less than j. Note

that all non-center vertices of W are in exactly one of S+
j or S−j .
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We can then partition C into the subset A of paths where both

endpoints are in either S+
j or S−j , and the subset B of paths where

one endpoint is in each of S+
j and S−j . Since |C| = |A| + |B| is odd,

|A| and |B| have different parity. To show that C satisfies part ii)

of Definition 3.10, we must show that |A|, the number of paths in C

where the endpoints are either both greater than or both less than the

midpoint, is odd.

All paths in C have endpoints that are adjacent, so to find |B| we

need only consider the number of edges along the outer cycle of W that

connect vertices in S+
j and S−j . Either one of S+

j or S−j is empty, in

which case B is empty, or there is some number m of disjoint paths

in the outer cycle of W where all vertices in the path are in S+
j . The

two endpoints of each of these disjoint paths are both incident to edges

that connect vertices in S+
j and S−j . As the paths are disjoint, each

endpoint of a path contributes exactly one to |B|, and we conclude that

|B| = 2m, which is even. Then |A| is odd, and C satisfies part ii) of

Definition 3.10.

Therefore, W can be covered by paths of length two regardless of

how its vertices are ordered. �

Having now solidified our understanding of Definition 3.10, we can

approach the combinatorial characterization in [9] directly.

For ease, however, we will prove a short lemma first.

Lemma 3.15. Let G be a graph with V (G) = {v1, . . . , vn} that is

covered by a set C of length 2 paths. The following statements are

equivalent.[9]



36

(1) The number of paths vivkvj in C in which k < i, j or k > i, j is

odd.

(2) Let A be the sum over all pairs i < j of the number of length

2 paths in C containing vi and having vj as an endpoint. Then

A is odd.

(3) Let B be the number of pairs vi, vj ∈ V (G) with i < j such that

the number of length 2 paths in C containing vi and having vj

as an endpoint is odd. Then B is odd.

Li et al. left the proof of this lemma to the reader. We include it

here.

Proof. Consider a path vivkvj ∈ C. We will assume without loss of

generality that i < j, since we consider vivkvj and vjvkvi to be the

same path in the undirected graph.

In our first case, assume i < k < j. Then when calculating A,

vivkvj is counted both as a path in C containing vk and having vj as an

endpoint and as a path in C containing vi and having vj as an endpoint.

Since vivkvj is counted exactly twice, there are an even number of terms

from this kind of path in A.

Next, consider a path vivkvj where i < j < k. Then when calculating

A, vivkvj is counted only once, as a path in C containing vi and having

vj as an endpoint. Then there are an odd number of terms from this

kind of path in A.

Finally, consider a path vivkvj where k < i < j. Then when calculat-

ing A, vivkvj is counted both as a path in C containing vk and having

vj as an endpoint and as a path in C containing vi and having vj as an
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endpoint, but further as a path in C containing vk and having vi as an

endpoint. In other words, paths of this form are counted three times,

and there are an odd number of terms from this kind of path in A.

If the number of paths vivkvj in C in which k < i, j or k > i, j is

odd, there are an odd number of paths in C that contribute an odd

number to the sum A, and all the rest of the paths contribute an even

number. Hence, A is odd. If the number of paths vivkvj in C in which

k < i, j or k > i, j is even, there are an even number of paths in C

that contribute an odd number to the sum A, and all the rest of the

paths contribute an even number. Hence, A is even, and (1) and (2)

are equivalent statements.

We can break the sum A into two parts. One is the sum of the

number of paths in C containing vi and having vj as an endpoint over

such pairs i < j where this number is even–in other words, the sum

over the pairs not counted in B. This first sum is clearly even, as all of

its terms are even. The other part of A is the sum of the number of

paths in C containing vi and having vj as an endpoint over the B pairs

i < j where this number is even. This second sum has B terms, each

of which is odd.

Thus if B is even, the two parts of A are both even, and A is itself

even. If B is odd, one part of A is even and the other is odd, and A is

odd. Therefore, (2) and (3) are equivalent statements. �

Note that if G is covered by length 2 paths, by Definition 3.10 the

three statements are true as well as equivalent.

Now we present the combinatorial characterization from [9].
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Theorem 3.16. A graph G has a linear Nullstellensatz certificate of

non-3-colorability over F2 if and only if G can be covered by length 2

paths. [9]

Before we prove this theorem, we will provide some setup, and then

discuss an error in the proof in [9]. Following this discussion, we provide

a proof which corrects the error.

We are looking for a Nullstellensatz certificate of infeasability of the

system

JG = {x3a − 1 = 0, x2a + xaxb + x2b = 0 | a ∈ V, {a, b} ∈ E}

where we take our polynomials to have coefficients in F2 (We can use

this finite field because we are considering 3-colorability, and 3 is rel-

atively prime to 2). To begin the proof in [9], the authors state (and

prove in their Appendix A) that JG and the system

F = {x2ixj+xix2j+1 = 0, x2ixk+x
2
jxk+xix

2
j+xix

2
k = 0|{vi, vj}, {vj, vk} ∈ E}

have the same solution set, so if 1 is a degree one combination of poly-

nomials in JG, 1 is also a degree one combination of polynomials in F .

Since we know that G has a linear Nullstellensatz certificate of non-3-

colorability if and only if 1 is a degree one combination of polynomials

in JG, it is sufficient to show that 1 is a degree one combination of

polynomials in F .

First, suppose G is covered by a set C of length 2 paths. We will

consider a subset H of F that is determined by the paths in C. Let H

be the set containing the polynomials
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(1) x2ixk + x2jxk + xix
2
j + xix

2
k for each path vivjvk ∈ C.

(2) x2ixj + xix
2
j + 1 for each pair vi, vj ∈ V (G) with i < j such that

the number of length 2 paths in C containing vi and having vj

as an endpoint is odd.

To show that 1 is a degree one combination of polynomials in H,

and therefore in F , consider the non-constant monomials in H. All of

them have the form x2rxs, where vr and vs can be any vertices in G.

We will show that each of these monomials appears an even number of

times in polynomials in H. This will imply that all non-constant terms

in
∑

h∈H h vanish, because our coefficients are in F2.

Remark 3.17. It is at this point that an error appears in the proof

presented in [9].

The authors claim there are four ways the monomial x2rxs can appear,

counting:

(a) one for each path in C with vr and vs as endpoints.

(b) one for each path in C with vr as the middle vertex and vs as an

endpoint, as well as

(c) one if the number of paths in C containing vr with vs as an endpoint

is odd, and

(d) one if the number of paths in C containing vs with vr as an endpoint

is odd.

If this were true, we would not be able to cancel the non-constant

monomials in all cases. To see this, consider the following.
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Since we are working in F2, the combined contribution of (a) and (b)

is the parity of the number of paths in C of the form vrvivs or vivrvs for

any vi ∈ V (G). We then see that (c) also contributes the parity of the

number of paths in C of the form vrvivs or vivrvs, since these are the

two forms a path containing vr with vs as an endpoint could take. By

Definition 3.10, the number of paths containing the edge {vr, vs}–that

is, paths of the form vivrvs or vivsvr–is even. Therefore the number

of paths in C of the form vivrvs has the same parity as the number

of paths of the form vivsvr. This means that, as (d) contributes the

parity of the number of paths in C of the form vrvivs or vivsvr, the

combined contribution of (a) and (b) is equal to the contribution of (c)

and to the contribution of (d). Then if the number of paths containing

vr with vs as an endpoint is odd, x2rxs is left with a coefficient of 1 in

F2, so the non-constant monomials would not necessarily cancel.

Fortunately, the monomial x2rxs does not appear exactly as claimed

above. We will now present a proof that fixes the error.

Proof. First, consider the backwards direction. Recall that to show

that 1 is a degree one combination of polynomials in JG, it is sufficient

to show that 1 is a degree one combination of polynomials in F , for

instance of the polynomials in H ⊂ F :

(1) x2ixk + x2jxk + xix
2
j + xix

2
k for each path vivjvk ∈ C.

(2) x2ixj + xix
2
j + 1 for each pair vi, vj ∈ V (G) with i < j such that

the number of length 2 paths in C containing vi and having vj

as an endpoint is odd.
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Examining the polynomials in H, we find that the monomial x2rxs ap-

pears in one of these three ways (the third depending on whether r > s):

for each vertex vi ∈ V (G), there is

(a) one for each path vrvivs ∈ C (from the first or last term in a

polynomial of the form (1)).

(b) one for each path vivrvs ∈ C (from one of the middle terms in a

polynomial of the form (1)), and either

(c) one if the number of paths vivrvs and vrvivs ∈ C over all i is odd

and r < s, or one if the number of paths vivsvr and vrvivs ∈ C over

all i is odd and r > s (from one of the first two terms of polynomial

of the form (2)).

By Definition 3.10, the number of paths in C of the form vivrvs

has the same parity as the number of paths of the form vivsvr, so the

contribution of (c) is the same whichever of r and s is greater. It

is clear that when r < s, the number of paths that contribute to the

parity of (c) is equal to the number of paths that count in the combined

contribution of (a) and (b), since they are exactly the same set of paths.

Then whichever of r and s is greater, in F2 the combined contribution

of (a) and (b) is equal to the contribution of (c), so their sum will be

0 in F2, and all non-constant monomials will cancel.

Now that we know that all non-constant monomials in
∑

h∈H h van-

ish, we must only determine the constant term in the sum. Only the

polynomials of the form (2) above contribute a constant to
∑

h∈H h,

and each of these polynomials contributes exactly one to the constant

term. So the constant term is simply the parity of the number of pairs
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vi, vj ∈ V (G) (i < j) such that the number of length 2 paths in C

containing vi and having vj as an endpoint is odd.

Since G is covered by the set C of length 2 paths, by Lemma 3.15 the

number of pairs of this form is odd, so the constant term in
∑

h∈H h is

1 in F2.

Thus 1 is a combination of polynomials in H, and therefore also of

polynomials in JG.

Now we will consider the forwards direction. Suppose that JG has

a linear Nullstellensatz certificate of infeasability. Then 1 is a degree

one combination of polynomials in F , so there is some set H ⊆ F such

that
∑

h∈H h = 1.

We then take J ⊆ H to be the polynomials in H of the form

x2ixk+x2jxk+xix
2
j +xix

2
k, and construct C to consist of the paths vivjvk

where the polynomial of the form above has a nonzero coefficient in∑
h∈J h. We will show that C is a covering of G according to Definition

3.10.

Suppose {vr, vs} ∈ E, and let Sr,s be the sum of the coefficients of

the monomials x2rxs and xrx
2
s that appear in

∑
h∈J h. We know that∑

h∈H h = 1, and the only summand of Sr,s in
∑

h∈H h and not in∑
h∈J h is x2rxs + xrx

2
s + 1, so Sr,s is 0 in F2.

The contribution of a single polynomial x2ixk +x2jxk +xix
2
j +xix

2
k in∑

h∈J h to Sr,s is 1 when {vr, vs} is an edge on the path vivjvk, 2 if vr

and vs are the endpoints of vivjvk, and 0 otherwise. As Sr,s is 0 in F2,

the edge {vr, vs} lies on an even number of paths in C, and condition

i) of Definition 3.10 holds.
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Each edge {vi, vj} with i < j contributes a 1 to the sum
∑

h∈H h.

Because the monomial x2ixj appears an even number of times in H, and

once in H\J , it appears an odd number of times in J . We know that

x2ixj appears once in J for each path in C containing vi and having vj

as an endpoint.

Since the number of 1s appearing in
∑

h∈H h is odd, there are an

odd number of monomials x2ixj in H\J and in J to cancel. This means

there are an odd number of pairs i < j such that the number of length

2 paths in C containing vi and having vj as an endpoint is odd. By

Lemma 3.15, we have condition ii) of Definition 3.10.

If vr, vs ∈ V but {vr, vs} 6∈ E, then any x2rxs term in
∑

h∈H h is also

in
∑

h∈J h. Thus the coefficient of x2rxs in
∑

h∈J h is 0 in F2. As x2rxs

only appears once in the polynomial in J corresponding to the path

vivjvk when vr and vs are endpoints of the path. Hence the number

of paths whose endpoints are vr and vs is even, and condition iii) of

Definition 3.10 holds. �

Since the combinatorial characterization relies on an ordering of the

vertices of the graph, the following corollary is useful in ensuring that

any ordering will satisfy the characterization.

Corollary 3.18. If a graph can be covered by paths of length two in

accordance with Definition 3.10 for some ordering of its vertices, it can

be covered by paths of length two for all orderings of its vertices.

Proof. Let G be a graph. By Theorem 3.16, if G can be covered by

paths of length two, G has a degree one Nullstellensatz certificate of
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non-3-colorability. Then we can find this certificate explicitly. Re-

ordering the vertices of G will not alter the Nullstellensatz certificate,

as changing the labels on the vertices does not change the correspon-

dence between vertices and variables in JG. Then the reordered graph

has a degree one Nullstellensatz certificate of non-3-colorability, and by

Theorem 3.16, it too can be covered by paths of length two. �

3.4. Graphs That Can Be Covered by Length 2 Paths. Now

that we have a combinatorial characterization of graphs that have linear

Nullstellensatz certificates of non-3-colorability, we will consider some

broad examples of graphs that can be covered by length 2 paths.

We saw in Proposition 3.14 that all odd wheels can be covered by

length 2 paths, so by Theorem 3.16, all odd wheels have linear Null-

stellensatz certificates of non-3-colorability.

With the following definition, we can extend this fact to find more

examples of graphs that can be covered by length 2 paths.

Definition 3.19. A graph H is a subgraph of a graph G if V (H) ⊆

V (G) and E(H) ⊆ E(G).

A graph H is an induced subgraph of a graph G if V (H) ⊆ V (G)

and E(H) = {{u, v}|u, v ∈ V (H) and {u, v} ∈ E(G)}.

Any graph is a subgraph (indeed, an induced subgraph) of itself.

Example 3.20. Figure 8 shows a subgraph of the graph in Figure 7.

Figure 9 shows the induced subgraph of the graph in Figure 7 on the

vertices v1, v2, and v4.
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v1

v2

v3

v4

v5

Figure 7. The same graph of order five, reprinted again.

v1

v2
v4

Figure 8. A subgraph.

v1

v2
v4

Figure 9. The induced subgraph on vertices v1, v2, and v4.

If some subgraph G′ of a graph G has a linear Nullstellensatz cer-

tificate of non-3-colorability, then G has one as well–in fact, the same

one will work. This is true because JG′ ⊆ JG, so if we have

1 =
r∑
i=1

βifi

for some linear polynomials β1, . . . , βr ∈ K[x1, . . . , xn], where all

fi ∈ JG′ , then it is clear that

1 =
r∑
i=1

βigi

for gi ∈ JG and some linear polynomials β1, . . . , βr ∈ K[x1, . . . , xn],

because we can set βi = 0 for any gi not in JG′ .
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Therefore, it is certainly true that all graphs containing odd wheels

as subgraphs can be covered by length 2 paths, and so have linear

Nullstellensatz certificates of non-3-colorability by Theorem 3.16.

However, there are graphs that have linear Nullstellensatz certificates

of non-3-colorability but do not contain an odd wheel. We will now

present an example of this kind.

Example 3.21. The graph in Figure 10 is not 3-colorable, and has

a Nullstellensatz certificate of degree one. Additionally, it does not

contain an odd wheel.

v1

v2

v3

v4

v5

v6

v7

Figure 10. A graph that is not 3-colorable and contains
no odd wheels, covered by length two paths.

This graph can be covered by a set of length 2 paths as follows:

C = {v1v3v2, v1v3v4, v3v2v5, v3v4v5, v2v5v7, v4v5v6, v6v5v7}

This satisfies Definition 3.10: there are three paths in C whose mid-

point is greater than or less than both endpoints, every edge in the

graph is contained in an even number of paths in C, and the only non-

adjacent endpoints of a path in C, v3 and v5, are the endpoints of two

paths in C.

It would be useful to know if this example is the smallest graph

that can be covered by length 2 paths (i.e. has a linear Nullstellensatz
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certificate of non-3-colorability) but contains no odd wheels. Clearly

all graphs of order less than four are 3-colorable, as we can assign each

vertex a different color. Further, the only graph of order four that is

not 3-colorable is K4, which is an odd wheel.

Proposition 3.22. All graphs of order less than seven are either 3-

colorable or contain an odd wheel.

We will prove this proposition in two parts. We have already dis-

cussed graphs of order less than five, so we will prove first that the

proposition holds for graphs of order five, and then that it holds for

graphs of order six.

The following definitions facilitate our notation in the proof.

Definition 3.23. Let v be a vertex of a graph G. The neighborhood

of v, denoted N (v), is the set of vertices of G that are adjacent to v.

The closed neighborhood of v, denoted N [v], is N (v) ∪ {v}.

Example 3.24. In Figure 10, N (v1) = {v2, v3, v4}.

Definition 3.25. The degree of a vertex v ∈ V (G) is the number of

vertices in V (G) that are adjacent to v: that is, the size of N (v).

Example 3.26. In Figure 10, v1 has degree three, while v5 has degree

four.

Definition 3.27. Let v be a vertex of a graph G. We denote by G\{v}

the graph with vertex set V (G)\{v} and edge set

E(G)\{{x, v} ∈ E(G)|x ∈ V (G)}.
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v1

v2

v3

v4 v6

v7

Figure 11. Deleting v5 from Figure 10.

v1

v2

v4 v6

v7

Figure 12. Deleting v3 and v5 from Figure 10.

In other words, G\{v} is the graph obtained from G by removing the

vertex v and all edges incident to v. This process is called deletion,

and can be applied to a single vertex or to a set of vertices.

Example 3.28. Deleting v5 from the graph in Figure 10 gives us the

graph in Figure 11.

Deleting v3 and v5 from the graph in Figure 10 gives us the graph in

Figure 12.

Definition 3.29. A graph G is bipartite if V (G) = V1 ∪ V2 with

V1 ∩V2 = ∅, and every edge in G has one endpoint in V1 and one in V2.

We can see from this definition that a graph is bipartite if and only

if it is 2-colorable.

Example 3.30. The graph in Figure 13 is bipartite: we can partition

the vertices into the sets V1 = {v1, v3} and V2 = {v2, v4}.
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v1

v2

v3

v4

Figure 13. The same path of length 3.

Theorem 3.31. A graph is bipartite if and only if it contains no odd

cycles [7].

Proof. (Proof of Proposition 3.22, Order Five) We know by Theorem

3.16 and Proposition 3.14 that graphs containing an odd wheel are not

3-colorable, and in fact that they have a degree one Nullstellensatz

certificate of non-3-colorability. It remains to show that all graphs of

order five and six that do not contain odd wheels are 3-colorable.

Suppose we have a connected graph G of order five (we can view

chromatic number in terms of connected components, so disconnected

graphs of order five can be considered as sets of smaller graphs for our

purposes) that does not contain an odd wheel. Deleting an arbitrary

vertex v from G gives us a graph G\{v} of order four. Since G did not

contain an odd wheel, neither does G\{v}. Because all non-3-colorable

graphs of order four contain K4, it follows that G\{v} is 3-colorable.

Note that if G\{v} is 2-colorable, then G is 3-colorable. Also, since

G\{v} is 3-colorable, if |N (v)| ≤ 2 we clearly have one of the three

colors available for v. Therefore, assume that |N (v)| ≥ 3.

If N (v) contains a 3-cycle, then G contains K4. We know that N (v)

contains at most four vertices, so since G contains no odd wheels, N (v)

contains no odd cycles. By Theorem 3.31, N (v) is bipartite and hence

2-colorable.
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Suppose we have colored N (v) using colors 1 and 2. We can safely

give v color 3. There is at most one vertex in G\N [v], since v has

at least three neighbors, and G has order five. If there are no such

vertices, we have already colored G. If there is one, giving it color 3

provides the desired 3-coloring. Thus, G is 3-colorable, so all graphs of

order five that do not contain odd wheels are 3-colorable. �

Proof. (Proof of Proposition 3.22, Order Six) Now suppose we have a

connected graph H of order six that does not contain an odd wheel.

Deleting an arbitrary vertex v from H gives us a graph H\{v} of order

five. Since H did not contain an odd wheel, neither does H\{v}. We

have shown that all non-3-colorable graphs of order five contain K4, so

it follows that H\{v} is 3-colorable, for the same reasons as above. We

see again that since G\{v} is 3-colorable, if |N (v)| ≤ 2 we clearly have

one of the three colors available for v, so we assume that |N (v)| ≥ 3.

If N (v) contains a 3-cycle, then H contains K4, and if N (v) is a

5-cycle, then H is W5. We know that N (v) contains at most five

vertices, so if H contains no odd wheels, N (v) contains no odd cycles.

By Theorem 3.31, N (v) is bipartite and hence 2-colorable.

Suppose we have colored N (v) using colors 1 and 2. We can safely

give v color 3. There are at most two vertices in H\N [v]. If there are no

such vertices, we have a 3-coloring of H, and if there is one such vertex,

giving it color 3 provides the desired 3-coloring, so suppose there are

exactly two vertices in H\N [v], which we shall call w1 and w2. If they

are not adjacent, both of them can have color 3. If they are adjacent,

and both are adjacent to vertices in N (v) with different colors, they
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v2

v

v3

w2w1

v1

Figure 14. When w1 and w2 are both are adjacent to
vertices in N (v) with different colors and have one neigh-
bor in common.

must have at least one neighbor in common. (This is because N (v)

has three elements, so if they are colored with two colors there is some

vertex that does not share a color with the other neighbors of v.) If w1

and w2 are both are adjacent to vertices in N (v) with different colors

and have one neighbor in common, then H is W5, an odd wheel (see

Figure 14). If they have two or more neighbors in common, then H

contains K4, an odd wheel. Therefore, if H does not contain an odd

wheel, at least one of w1 and w2 is not adjacent to two differently-

colored elements of N (v). Then we can assign that vertex either color

1 or 2, and the other can have color 3, which gives us a 3-coloring of

H.

Hence, H is 3-colorable, so all graphs of order six that do not contain

odd wheels are 3-colorable. Thus we have shown that our statement

holds for all graphs of order less than seven.

�
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4. 2-Colorability

In the previous sections, we discussed a combinatorial characteri-

zation of graphs that have linear Nullstellensatz certificates of non-

3-colorability. It is of interest to consider whether there is a simi-

lar characterization of graphs that have linear Nullstellensatz certifi-

cates of non-2-colorability. In this section we find a characterization of

such graphs, and determine their Nullstellensatz certificates of non-2-

colorability explicitly.

Our task is much easier in this case because we can already char-

acterize graphs that are not 2-colorable: by Theorem 3.31 they are

exactly those graphs that contain an odd cycle. Thus we only need to

consider which of these graphs have linear Nullstellensatz certificates

of non-2-colorability.

Proposition 4.1. Let C2k−1 be a cycle of length 2k − 1. For sim-

plicity, label the vertices 1, 2, . . . , 2k − 1 in order around the cycle.

Let {f1, . . . , f2k−1} be the subset of JC2k−1
where fi = x2i − 1, and

let {g1, . . . , g2k−1} be the subset of JC2k−1
where gi = xi + xi+1 for

1 ≤ i ≤ 2k − 2 and g2k−1 = x1 + x2k−1.

N(C2k−1) = 2f1 +
k∑
i=1

2x1g2i−1 +
k−1∑
i=1

x1g2i = 1

is a degree one Nullstellensatz certificate of non-2-colorability of C2k−1.
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Proof. First note that C2k−1 is 2-colorable if and only if JC2k−1
has a

common zero over F3, so we consider N(C2k−1) over F3. In other words,

terms in a sum will cancel if their coefficients add up to a multiple of

three.

Certainly N(C2k−1) has the form
∑

hi∈JC2k−1

βihi where the βi are poly-

nomials of degree at most one. So to show that we have a degree

one Nullstellensatz certificate, we need only justify our claim that

N(C2k−1) = 1. To see this, we will examine each monomial in N(C2k−1)

individually.

The monomial x21 appears in f1, x1g1, and x1g2k−1, with coefficient

2 in each case. Thus we have (2 + 2 + 2)x21 = 0, and x21 cancels in

N(C2k−1).

Each monomial x1xi where i 6= 1 appears in x1gi−1 and x1gi. In

all cases, one of x1gi−1 and x1gi is even and the other is odd, so x1xi

appears once with coefficient 1 and once with coefficient 2. Thus x1xi

cancels in N(C2k−1).

Finally, the term −1 in appears only in f1, where it has coefficient

2. As −2 = 1 in F3, we are left with N(C2k−1) = 1. �

It is clear that if a subgraph of a graph G has a degree one Nullstel-

lensatz certificate of non-2-colorability, then G has such a certificate

also. In fact, we can use the same one.

Thus, any graph containing an odd cycle has a degree one Nullstel-

lensatz certificate of non-2-colorability, which can be defined explicitly

from the Proposition above. Since all non-2-colorable graphs contain
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an odd cycle, we have shown that all non-2-colorable graphs have a

Nullstellensatz certificate of degree one.

Example 4.2. We will find a degree one Nullstellensatz certificate of

non-2-colorability for C3. Label the vertices of the three-cycle from

{1, 2, 3}, and consider the following polynomials: f1 = x21 − 1,

f2 = x22 − 1, f3 = x23 − 1, g1 = x1 + x2, g2 = x2 + x3, g3 = x1 + x3.

Applying Proposition 4.1, we use coefficients from F3 and take

2f1 + 2x1g1 + x1g2 + 2x1g3

= 2x21 − 2 + 2x1(x1 + x2) + x1(x2 + x3) + 2x1(x1 + x3)

= (2 + 2 + 2)x21 + (2 + 1)x1x2 + (1 + 2)x1x3 − 2 = −2 = 1.

Therefore, 2f1 + 2x1g1 + x1g2 + 2x1g3 = 1 is a degree one Nullstel-

lensatz certificate of non-2-colorability for C3.
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5. Hamiltonian graphs

In this section, we discuss the third section of [4], which deals with

a class of graphs that we will now define.

Definition 5.1. A Hamiltonian cycle of a graph G is a subgraph of

G that is a cycle on the same number of vertices as G.

If a graph G contains a Hamiltonian cycle, we say that G is Hamil-

tonian.

Example 5.2. The graph in Figure 15 is Hamiltonian; v1, v2, v4, v5, v3, v1

is a Hamiltonian cycle.

v1

v2

v3

v4

v5

Figure 15. A Hamiltonian graph.

On the other hand, the graph in Figure 16 is not Hamiltonian.

v1

v2

v3

v4

Figure 16. Paths are not Hamiltonian.

We can detect a Hamiltonian cycle in a graph using a system of

polynomials, similar to our method of determining whether or not a
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graph is k-colorable. The method below can be used for both directed

and undirected graphs.

This section of [4] introduces an ideal whose variety is nonempty

if and only if the associated graph is Hamiltonian, and uses Gröbner

bases to show how this ideal can be written as an intersection of other

ideals, allowing us to characterize uniquely Hamiltonian graphs.

In Section 5.1, we introduce the Hamiltonian ideal and consider sub-

tle requirements of its definition. In Section 5.2, we explore an algebraic

encoding of cycles in a graph, and discuss properties of the ideal gen-

erated by said encoding. In Section 5.3, we present the decomposition

of the Hamiltonian ideal into an intersection of cycle ideals.

5.1. The Hamiltonian Ideal. In the following proposition, we define

the Hamiltonian ideal of a graph G.

Proposition 5.3. Let G = (V,A) be a simple directed graph on vertices

V = {1, . . . , n}. Assume that the characteristic of K is relatively prime

to n and that ω ∈ K is a primitive n-th root of unity. Consider the

following system in K[x1, . . . , xn]:

HG = {xni − 1,
∏

j∈δ+(i)

(ωxi − xj) | i ∈ V }.

Here, δ+(i) denotes those vertices j where there is an arc going from i

to j in G. The system HG has a solution over K if and only if G has

a Hamiltonian cycle.

As stated, we can only prove one part of the if and only if statement.

We will discuss the other part below.
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Certainly, if G is Hamiltonian, HG has a solution over K. We will

follow the argument of Lemma 3.8 in [4].

Proof. Choose a starting vertex in a Hamiltonian cycle in G and label

it ω0 = 1. Then successively label vertices along the cycle with one

higher power of ω than the previous vertex. All labels xi are nth roots

of unity, so all equations of the form xni − 1 = 0 in HG hold. Further,

every vertex is connected by an arc to a vertex labeled with the next

higher power of ω, so all equations of the form
∏

j∈δ+(i)(ωxi − xj) = 0

in HG hold. Therefore, HG has a solution over K. �

However, there are graphs that have a solution to HG over K that

are not Hamiltonian. For instance, we will show that all trees (graphs

containing no cycles) have a solution to HG over K, and because a

graph must contain at least one cycle to be Hamiltonian, these are

clearly false positives. To show this, we must first prove the following

two lemmas.

Lemma 5.4. Let T be a directed tree of order n. T contains a vertex

of outdegree 0.

Proof. Suppose that all vertices in T have outdegree of at least one.

Then given any vertex v ∈ V (T ) there exists a directed walk beginning

at v that does not terminate, since every vertex on the walk is incident

to a directed edge to a vertex on which the walk can continue. The tree

has finite order, so if the walk does not terminate it must eventually

repeat some number of vertices; in other words, the walk contains a

cycle. However, a graph containing a cycle is not a tree, so we have
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a contradiction. Therefore, there is some vertex in T with outdegree

0. �

Lemma 5.5. Let T be a directed tree of order n. Given any vertex

v ∈ V (T ), there is a directed path from v to some vertex of outdegree

0.

Proof. Since T has finite order, the length of a directed walk in T

beginning at v is bounded by the argument in Lemma 5.4. This means

that there is a longest directed walk in T that begins at v. Let w be

the last vertex of this walk. If w has outdegree at least one, then we

can extend our longest walk to include another vertex, contradicting

the fact that the walk from v to w was the longest walk beginning at

v. Therefore, w has outdegree 0. Since T is a tree, there are no cycles

in the walk, and since T is (simply) directed, no edges in the walk can

be repeated without the walk containing a cycle, so no vertices in the

walk are repeated. Thus our walk is in fact a directed path from v to

a vertex of outdegree 0. �

Theorem 5.6. Let T be a directed tree of order n. There is a solution

to HT over K.

Proof. We will label the vertices of T as follows: If the shortest path

from a vertex i ∈ V (T ) to a vertex of outdegree 0 has length k, then let

xi = ωn−k. Note that the power of ω will never be negative, as T has

order n. We know that all vertices in T can be labeled this way because

Lemma 5.5 states that all vertices in T are at the beginning of some

path to a vertex of outdegree 0, and so each has some minimal path
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length k that can be used to define the vertex’s associated variable in

HT .

All variables in HT are assigned n-th roots of unity, so the equations

in HT of the form xni − 1 = 0 hold for all i ∈ V (T ). Further, for k ≥ 1,

following the shortest path from a vertex that is k edges away from a

vertex of outdegree 0 brings us to a vertex that is k − 1 edges away

from the same endpoint. Therefore, each vertex is incident to at least

one arc leading to a vertex labeled with one higher power of ω, so the

equations in HT of the form
∏

j∈δ+(i)(ωxi − xj) = 0 also hold, as only

one factor in the product needs to equal zero to satisfy the equation.

Thus, we have a solution to HT . �

Trees are not the only non-Hamiltonian graphs that have a solution

to HG.

Example 5.7. The directed 3-cycle C3 in Figure 17 with

V (C) = {v1, v2, v3} and Arcs(C) = {{v1, v2}, {v1, v3}, {v2, v3}} has

HC = {x31−1 = 0, x32−1 = 0, x33−1 = 0, (ωx1−x2)(ωx1−x3) = 0, ωx2−x3 = 0}.

This system has a solution: x1 = 1, x2 = ω, x3 = ω2 will satisfy HC .

v1

v2

v3

Figure 17. A directed cycle of length 3.

Example 5.8. The graph in Figure 18 with vertex set V = {v1, v2, v3, v4}

and directed edges Arcs = {{v1, v2}, {v2, v3}, {v3, v1}, {v1, v4}} has
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HG = {x41 − 1 = 0, x42 − 1 = 0, x43 − 1 = 0, x44 − 1 = 0,

(ωx1 − x2)(ωx1 − x4) = 0, ωx2 − x3 = 0, ωx3 − x1 = 0}.

This system has a solution: x1 = 1, x2 = ω2, x3 = ω3, x4 = ω will

satisfy HG.

v1

v2

v3v4

Figure 18. A directed graph of order four.

This trend might lead us to believe that all graphs that have a vertex

of outdegree zero (none of which are Hamiltonian) have solutions toHG,

but while this is a necessary condition (we claim) for non-Hamiltonian

graphs to have solutions to HG, it is not sufficient.

Example 5.9. The graph in Figure 19 with vertex set

V = {v1, v2, v3, v4, v5} and directed edges

Arcs = {{v1, v2}, {v2, v3}, {v3, v1}, {v4, v1}, {v4, v5}} has

HG = {x51 − 1 = 0, x52 − 1 = 0, x53 − 1 = 0, x54 − 1 = 0, x55 − 1 = 0,

ωx1 − x2 = 0, ωx2 − x3 = 0, ωx3 − x1 = 0, (ωx4 − x1)(ωx4 − x5) = 0}.

The vertex 5 has outdegree 0, but there is no solution to HG. This

is because x1 = ωx3 = ω(ωx2) = ω(ω(ωx1)) because each of these

vertices has outdegree one, so there are no choices for assigning their

variables. Since ω is a primitive 5th root of unity, ω3 6= 1, so there is

no solution to HG.
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v1

v2

v3v4

v5

Figure 19. A directed graph of order five.

However, we can characterize some graphs G that we can be sure are

Hamiltonian if and only if HG has a solution.

Proposition 5.10. Let G be a simple directed graph of order n where

all vertices have outdegree at least one. If HG has a solution over K,

then G is Hamiltonian.

Proof. If HG has a solution over K, then the equations in HG of the

form xni − 1 = 0 ensure that every vertex in G is labeled with some

power of ω. Every vertex i ∈ V (G) has outdegree at least one, which

means there is an equation in HG of the form
∏

j∈δ+(i)(ωxi−xj) = 0 for

each vertex i. Since HG has a solution over K, this means that every

vertex is connected by an arc to a vertex labeled with the next higher

power of ω. In other words, there is a directed path from a vertex

labeled 1 to a vertex labeled ω to one labeled ω2, and so on. We know

that ω a primitive nth root of unity, so the nth vertex on this path,

labeled ωn−1 must be connected by an arc to a vertex labeled ωn = 1.

Because G has order n, and there have been n vertices on our path,

each with different labels, there is only one vertex in G labeled 1: the

vertex that began our path. Then our path must close up to become a

cycle of length n, which means that G is Hamiltonian. �
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Notice that all points in the variety V(HG) have the form

(ωi, ωi+1, ωi+2, . . . , ωi+(n−1))

for some integer i.

We should note that this argument follows the line of Lemma 3.8 in

[4], but that it did not hold for all connected directed graphs as claimed

there. Restricting the outdegree of G is crucial to the proof.

There is an alternative way to restrict the outdegree of G, which is

even simpler, but subtle. If we specify that the empty product (the

product of no factors) is 1, then if δ+(i) is empty (i.e. vi has outdegree

0) we are left with
∏

j∈δ+(i)(ωxi − xj) = 1. As 1 6= 0, this will mean

that HG has no solution, as desired.

It is likely that the authors of [4] had this in mind when formu-

lating the system. However, the distinction is subtle enough to lead

students without significant background astray, and so this fact and

the consequences of its validity were worth exploring here.

5.2. Cycle Ideals. We proceed to a definition that will allow us to

express the cycles in G algebraically.

Definition 5.11. (Cycle encodings). Let ω be a fixed primitive k-th

root of unity. If C is a directed cycle of length k in a directed graph,

with vertex set V (C) = {v1, . . . , vk} (we can assume without loss of

generality that the vertices are indexed in order around the cycle), the

cycle encoding of C is the following set of k polynomials:
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gi =

 xvk−i
− ωk−ixvk i = 1, . . . , k − 1

xkvk − 1 i = k

We may consider undirected cycles to be doubly-covered directed

cycles; we let an edge {vi, vi+1} in C correspond to two arcs in C: the

arc from vi to vi+1, and the arc from vi+1 to vi. We can choose either

direction to travel around a doubly-covered undirected cycle.

If C is a doubly-covered cycle of length k in a directed graph, with

vertex set V (C) = {v1, . . . , vk}, the cycle encoding of C is the following

set of k polynomials:

gi =


xvi + (ω2+i−ω2−i)

(ω3−ω) xvk−1
+ (ω1−i−ω3+i)

(ω3−ω) xvk i = 1, . . . , k − 2

(xvk−1
− ωxvk)(xvk−1

− ω−1xvk) i = k − 1

xkvk − 1 i = k

To see that this definition is a valid algebraic expression of cycles,

consider the correspondence between the set of gi and the given cycle.

In the directed case:

Certainly if we take a directed cycle in a directed graph, we can write

it as a set of polynomials by choosing one of the vertices to be the first

(that is, v1).

If two cycles C1 and C2 have the same encoding set of polynomials,

they must contain the same vertices, as the variables in the set of

polynomials correspond to the vertices in the cycle. Also, these vertices

must appear in the same order, since ωj appears in the same polynomial

as the variable corresponding to the j-th vertex of the cycle, and ωj is
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unique for 1 ≤ j ≤ k. Therefore, C1 and C2 are the same cycle, and

the correspondence from the set of gi to the cycle is well-defined.

In the doubly-covered undirected case:

Again, the definition of the encoding allows us to write an undirected

cycle as a set of polynomials, this time by choosing a pair of adjacent

vertices to be vk and vk−1, thus fixing our choice of both the endpoint

and the direction we are going around the cycle.

It is harder to see that the correspondence is well-defined in the undi-

rected case, if only because the encoding is non-intuitive and contains

many terms. We see again that two cycles C1 and C2 with the same

encoding set of polynomials must contain the same vertices, for the

reasons stated above. We also know that the last two vertices in C1

must be the last two vertices in C2 because only gk has degree k, and

only gk−1 has degree 2. Then we need to ensure that the first k − 2

vertices of the two cycles are also in the same order. As the term xvi

appears only in the polynomial gi for 1 ≤ i ≤ k − 2, knowing that the

i-th polynomials in the encodings of C1 and C2 are equal is enough to

ensure that the i-th vertex of C1 is also the i-th vertex of C2. Then C1

and C2 are the same cycle in this case as well, and the correspondence

from the set of gi to the cycle is well-defined.

The correspondence is not one to one in either case, however. Taking

any one of the k vertices of C to be v1 will result in a different encoding

of C, so there are k possible encodings of any directed cycle of length

k. For an undirected cycle of length k, there are two possible directions
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to encode the cycle for any starting vertex we choose, so there are 2k

possible encodings of any undirected cycle of length k.

It is worth a brief explanation as to why the encoding of an undi-

rected cycle is so complicated compared to that of a directed one. The

encoding is designed so that the terms cancel at certain points, so its

form is a result of reverse-engineering. We will discuss this cancellation

more below, after the proof of Lemma 5.19.

Definition 5.12. (Cycle Ideals). The cycle ideal associated to a cycle

C is HG,C = 〈g1, . . . , gk〉 ⊆ K[xv1 , . . . , xvk ], where the gi are the cycle

encoding of C. [4]

Lemma 5.13. If the leading monomials of a generating set F = {f1, . . . , fs}

of an ideal I ⊂ K[x1, . . . , xn] are relatively prime, then F is a Gröbner

basis of I. (Exercise 2.6.11 in [2])

Proof. We will prove the contrapositive of this statement.

Fix a monomial order. Suppose that a generating set F = {f1, . . . , fs}

of an ideal I ⊂ K[x1, . . . , xn] is not a Gröbner basis of I.

Then there is some g ∈ I such that LT (g) is not in 〈LT (F )〉. This

means that LT (g) = cr for some monomial r ∈ K[x1, . . . , xn] that is

less than any LM(fi) in the given monomial order, and some c ∈ K.

Then LM(g) = r.

We also know that since F generates I, g = h1f1+ · · ·+hsfs for some

hi ∈ K[x1, . . . , xn]. Then certainly LM(g) = LM(h1f1 + · · ·+hsfs), so

LM(h1f1 + · · ·+ hsfs) = r.



66

The only way that the leading monomial of the sum h1f1 + · · ·+ hsfs

can be less than the leading monomials of all generators fi is if

LM(hjfj) = LM(htft) for some pair j 6= t, which makes the leading

terms cancel. This implies that LM(hj)LM(fj) = LM(ht)LM(ft). If

LM(hj) = LM(ht), then LM(fj) = LM(ft), which means the leading

monomials of F are not relatively prime, and we are done. Therefore,

assume without loss of generality that LM(hj) > LM(ht). Then we

can divide both side of the equation by the smaller monomial and still

be left with a monomial equation:

LM(hj)

LM(ht)
LM(fj) = LM(ft).

This means that the monomial LM(ft) is a multiple of LM(fj), and

therefore the leading monomials of F are not relatively prime.

Hence, if F is not a Gröbner basis of I, the leading monomials of F

are not relatively prime, and the lemma is true. �

Lemma 5.14. The cycle encoding polynomials F = {g1, . . . , gk} are a

reduced Gröbner basis for the cycle ideal HG,C with respect to any term

order in which xv1 > xv2 > · · · > xvk .

Proof. First note that the leading monomials in a cycle encoding of a

doubly covered cycle or a directed cycle of length k are

{xv1 , . . . , xvk−2
, x2vk−1

, xkvk}

or

{xv1 , . . . , xvk−1
, xkvk},
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respectively. We observe that the monomials in each set are relatively

prime. Therefore by Lemma 5.13, F is a Gröbner basis for HG,C .

In the directed case, the monomial xvk−i
appears only in gi, and the

monomials 1 and xkvk only appear in gk. Further, the monomial xvk that

appears in gi for 1 ≤ i ≤ k− 1 is not in 〈LT (HG,C)〉, and so cannot be

in 〈LT (HG,C\{gi})〉. Thus, no monomial in gi is in 〈LT (HG,C\{gi})〉,

and F is a reduced Gröbner basis of HG,C .

In the undirected case, the monomial xvi appears only in gi for

1 ≤ i ≤ k − 2, the monomials x2vk−1
, x2vk , and xvk−1

xvk appear only

in gk−1, and the monomials 1 and xkvk only appear in gk. Further,

the monomials xvk−1
and xvk that appear in gi for 1 ≤ i ≤ k − 2

are not in 〈LT (HG,C)〉, and hence are not in 〈LT (HG,C\{gi})〉. Thus,

no monomial in gi is in 〈LT (HG,C\{gi})〉, and F is again a reduced

Gröbner basis of HG,C . �

Lemma 5.15. The ideal HG,C has |V(HG,C)| = k if C is directed.

Proof. Fix any monomial order in which xv1 > xv2 > · · · > xvk . We

saw above that {gi} form a Gröbner basis for HG,C .

This means that every point in V(HG,C) must be a solution to gi for

all i.

To find a solution to gk = xkvk − 1, we must set xvk = ωj to be some

k-th root of unity (1 ≤ j ≤ k). Fixing this value leaves us with a

system of k linear equations coming from the gi, which we express in
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an augmented k × k matrix as follows:

1 0 . . . 0 −ω 0

0 1 . . . 0 −ω2 0

...
...

. . .
...

...
...

0 0 . . . 1 −ωk−1 0

0 0 . . . 0 1 ωj


Conveniently, this matrix is already in Reduced Row-Echelon form.

We note that all entries below the diagonal are zero, and that the

diagonal itself is entirely comprised of ones. This means we have a

pivot in every column of the matrix, so it has a unique solution. In

other words, this matrix represents exactly one point in V(HG,C).

Now, there were k choices for our value of xvk = ωj, meaning that

the degree of HG,C is k. Each choice gives us a distinct augmented

matrix: the left-hand side will be the same for all k values of j, but the

right-hand side will be different for each value of j (since the k k-th

roots of unity are unique). We have found k points in V(HG,C), and we

know that we have considered all possible points, as any other value we

assign to xvk will not be a solution to gk. Therefore, |V(HG,C)| = k. �

Lemma 5.16. The ideal HG,C has |V(HG,C)| = 2k if C is undirected.

Proof. Again we must find a solution for all gi, so to solve

gk = xkvk − 1 = 0, we set xvk = ωj (1 ≤ j ≤ k). We must also solve

gk−1 = (xvk−1
− ωxvk)(xvk−1

− ω−1xvk) = 0. To do this, we will choose

one of the quadratic’s two factors to be zero: either xvk−1
= ωxvk , or

xvk−1
= ω−1xvk . (Note that since C is a cycle, it has length k ≥ 3,
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so ω 6= ω−1 and the two factors are distinct.) Fixing these two values

gives us a system of k linear equations, which we again express in an

augmented k × k matrix:

1 0 . . . 0 1 (1−ω4)
(ω3−ω) 0

0 1 . . . 0 (ω4−1)
(ω3−ω)

(ω−1−ω5)
(ω3−ω) 0

...
...

. . .
...

...
...

...

0 0 . . . 1 (ω2+(k−2)−ω2−(k−2))
(ω3−ω)

(ω1−(k−2)−ω3+(k−2))
(ω3−ω) 0

0 0 . . . 0 1 α 0

0 0 . . . 0 0 1 ωj


where α is either ω or ω−1. This matrix is also in Reduced Row-

Echelon form, and again all entries below the diagonal are zero, and

the diagonal is entirely comprised of ones. Thus we have a pivot in

every column of the matrix, so it has a unique solution, and represents

exactly one point in V(HG,C).

As before, there were k choices for our value of xvk = ωj, but now

there are also two choices for α. This gives us a total of 2k choices,

meaning that HG,C has degree 2k. We will show that each choice results

in a distinct augmented matrix. The key fact to note is that there is

exactly one way to write a matrix in reduced row-echelon form.

If we look at two matrices with the same j value and different α

values, they will have two distinct reduced row-echelon forms, and so

be different matrices. The same is true of two matrices with the same

α value and different j values. This means we have found 2k points in

V(HG,C). We know that any j value other than the k we considered

that we assign to xvk will not be a solution to gk, and any α value other
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than the two we considered will not be a solution to gk−1. Therefore,

|V(HG,C)| = 2k. �

Now that we know the size of its variety, we can explore some other

properties of the ideal HG,C .

Definition 5.17. An ideal I is radical if fm ∈ I for some integer

m ≥ 1 implies f ∈ I.

The radical of an ideal I is the ideal

√
I = 〈f |fm ∈ Ifor some integer m ≥ 1〉.

Then I is radical if and only if I =
√
I. [2]

Example 5.18. The ideal 〈x1x2〉 ⊂ K[x1, . . . , xn] is radical. If

fm ∈ 〈x1x2〉, then fm = hx1x2 for some h ∈ K[x1, . . . , xn]. Suppose

f 6∈ 〈x1x2〉. Then x1x2 does not divide f . However, if x1x2 does not

divide f , there is no way the x1x2 can divide fm, since the only factors

of fm are f . By contradiction, f is in 〈x1x2〉, and hence the ideal is

radical.

Lemma 5.19. The ideal HG,C is radical.

To prove this, we must first give a definition.

Definition 5.20. An ideal I is zero-dimensional if its variety V(I)

contains finitely many points.

The degree of a zero-dimensional ideal is the number of points in

its variety, counted according to multiplicity.
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Proof. By Theorem 2.10 of [3], since the degree of HG,C is equal to

|V(HG,C)|, HG,C is radical. �

In Lemma 5.15 and Lemma 5.16, we found the size of V(HG,C), but

we can go further and explicitly describe the points in the variety.

In the directed case, we find that the point

(ω, ω2, . . . , ωk)

is in the variety, and therefore all cyclic permutations of this point are

in the variety as well (these look like the point given, except that every

term is multiplied by ωi for some 1 ≤ i ≤ k).

To check this, for each 1 ≤ i ≤ k − 1 evaluate

gi(ω, ω
2, . . . , ωk) = ωk−i − ωk−iωk = ωk−i − ωk−i = 0

as ωk = 1. Further, any k-th root of unity will be a solution to

gk = xkvk − 1, so the point is in V(HG,C) as desired.

In the undirected case, we find that both the points

(ω, ω2, . . . , ωk) and (ωk, ωk−1, . . . , ω)

are in the variety, along with all the cyclic permutations of each.
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To check this, for each 1 ≤ i ≤ k − 2 evaluate

(ω3 − ω)gi(ω, ω
2, . . . , ωk)

= (ω3 − ω)ωi + (ω2+i − ω2−i)ωk−1 + (ω1−i − ω3+i)ωk

= ω3+i − ω1+i + ω1+i+k − ω1−i+k + ω1−i+k − ω3+i+k

= 0

as ωk = 1, and

(ω3 − ω)gi(ω
k, ωk−1, . . . , ω)

= (ω3 − ω)ω1−i + (ω2+i − ω2−i)ω2 + (ω1−i − ω3+i)ω

= ω4−i − ω2−i + ω4+i − ω4−i + ω2−i − ω4+i

= 0.

Further,

gk−1(ω, ω
2, . . . , ωk) = (ωk−1 − ωk+1)(ωk−1 − ωk−1)

= (ωk−1 − ωk+1)(0)

= 0

and

gk−1(ω
k, ωk−1, . . . , ω) = (ω1−(k−1) − ω1−k+1)(ω1−(k−1) − ω(1−k)−1)

= (0)(ω1−(k−1) − ω(1−k)−1)

= 0
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so both points are solutions to gk−1, and any k-th root of unity will be

a solution to gk = xkvk − 1, so the point is in V(HG,C) as desired.

5.3. Decomposition of the Hamiltonian Ideal. We now under-

stand important properties of the cycle ideals HG,C of G, but we must

consider how these relate to the Hamiltonian ideal HG.

Lemma 5.21. Let G be a connected directed or doubly-covered undi-

rected graph on n vertices. Then

V(HG) =
⋃
C

V(HG,C),

where the union is over all Hamiltonian cycles C in G.

Proof. By Proposition 5.10, every point in V(HG) has the form

p1 = (ωi+1, ωi+2, . . . , ωi+k) (or possibly p2 = (ωi+k, ωi+k−1, . . . , ωi+1)

if G is undirected) if we index the vertices so that some Hamiltonian

cycle of G is written Ci = {v1, v2, . . . , vn}. Then the point p1 or p2 is in

V(HG,Ci
), as we found in our discussion of variety membership above,

and

V(HG) ⊆
⋃
C

V(HG,C).

From said discussion we also know that every point in V(HG,Ci
) has

the form p1 = (ωi+1, ωi+2, . . . , ωi+k) (or possibly

p2 = (ωi+k, ωi+k−1, . . . , ωi+1) if G is undirected), again indexing the

vertices of G so that Ci = {v1, v2, . . . , vn}. Further, as every point in
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C

V(HG,C) is in V(HG,Ci
) for some i, we can use the indexing appro-

priate to Ci to write any point in
⋃
C

V(HG,C) in the form of p1 (p1 or

p2 if G is undirected).

From our proof of the first part of Proposition 5.3, we see that points

of the form of p1 (p1 or p2 if G is undirected) are in V(HG), so

⋃
C

V(HG,C) ⊆ V(HG).

Thus, the equality holds. �

We will now make a brief detour to present a few properties about

intersecting ideals.

Theorem 5.22. (4.3 Theorem 15 in [2]) If I and J are ideals in

K[x1, . . . , xn], then V(I ∩ J) = V(I) ∪ V(J).

Theorem 5.23. (4.3 Proposition 16 in [2]) If I and J are ideals in

K[x1, . . . , xn], then
√
I ∩ J =

√
I ∩
√
J.

Theorem 5.24. (The Strong Nullstellensatz, 4.2 Theorem 6 in [2]) Let

K be an algebraically closed field. If I is an ideal in K[x1, . . . , xn], then

I(V(I)) =
√
I.

From this, we have enough information to prove the decomposition

theorem that is the culmination of Section 3 of [4].

Theorem 5.25. Let G be a connected directed graph on n vertices.

Then

HG =
⋂
C

HG,C
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where the intersection is over all Hamiltonian cycles C in G.

Proof. Recall that

HG = {xni − 1 = 0,
∏

j∈δ+(i)

(ωxi − xj) = 0 | 1 ≤ i ≤ n}

where δ+(i) denotes those vertices j where there is an arc going from i

to j in G.

Since HG contains a square-free single variable polynomial in each

variable (the generator of the form xni − 1), by Proposition 2.7 of [3],

HG is radical. Then by Theorem 5.24 we see that

HG = I(V(HG))

and by Lemma 5.21 this implies

HG = I(
⋃
C

V(HG,C))

for Hamiltonian cycles C in G. By Theorem 5.22, we can then write

the union of varieties as a variety of intersections:

HG = I(V(
⋂
C

HG,C)).

From Lemma 5.19 we know that HG,C is radical, so by Theorem 5.23⋂
C

HG,C is radical as well. Therefore by Theorem 5.24

I(V(
⋂
C

HG,C)) =
⋂
C

HG,C .
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Then

HG =
⋂
C

HG,C

as desired. �

Definition 5.26. If a graph has only one Hamiltonian cycle, (assuming

that we regard cycles as the same if we can write them in the same way

by choosing a different starting vertex or, if the graph is undirected, a

direction) we say the graph is uniquely Hamiltonian.

This means that for a uniquely Hamiltonian directed graph there are

n possible ways to write down a cycle of length n, and for a uniquely

Hamiltonian undirected graph there are 2n possible ways to write down

a cycle of length n.

Corollary 5.27. A graph G is uniquely Hamiltonian if and only if the

Hamiltonian ideal HG is of the form HG,C for some length n cycle C.

Proof. If G is uniquely Hamiltonian, then the n or 2n ways of writing

down the Hamiltonian cycle all correspond to the same ideal HG,C .

Then there is only one element in the intersection of Hamiltonian Cycle

Ideals, so

HG =
⋂
C

HG,C = HG,C .

If HG = HG,C for some length n cycle C, then
⋂
C

HG,C = HG,C , so

there can only be one distinct ideal in the intersection. Since we took

the intersection over all Hamiltonian cycles, it follows that there is only

one Hamiltonian Cycle Ideal. Then G must be uniquely Hamiltonian.

�
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From this corollary, we can check if a given graph is uniquely Hamil-

tonian using the following algorithm:

(1) Compute a reduced Gröbner basis of HG.

(2) Check that this basis has the form of an ideal HG,C .

While this is a short algorithm, finding Gröbner bases is computa-

tionally intensive, and takes longer than polynomial time (a measure

of complexity) to complete.

Finally, we will look at some examples of Theorem 5.25.

v1

v2

v3v4

Figure 20. A directed K4 graph.

Example 5.28. Let G be the directed K4 graph in Figure 20, and let

ω be a primitive 4th root of unity. The ideal HG ⊆ K[x1, x2, x3, x4] is

generated by the polynomials

{x4i − 1|1 ≤ i ≤ 4}∪{(ωx1 − x2), (ωx2 − x3)(ωx2 − x4),

(ωx3 − x1)(ωx3 − x4), (ωx4 − x1)}.

Given the ordering x1 > x2 > x3 > x4,

{x44 − 1, x1 − ωx4, x2 − ω2x4, x3 − ω3x4}
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is a reduced Gröbner basis of HG, as well as a generating set for the

Hamiltonian cycle idealHG,C with C = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)}.

v1

v3

v2

v4

Figure 21. An undirected graph of order four.

Example 5.29. Let G be the undirected graph in Figure 21, and again

let ω be a primitive 4th root of unity. The ideal HG ⊆ K[x1, x2, x3, x4]

is generated by the polynomials

{x4i − 1|1 ≤ i ≤ 4}∪{(ωx1 − x2)(ωx1 − x4),

(ωx2 − x1)(ωx2 − x3)(ωx2 − x4), (ωx3 − x2)(ωx3 − x4),

(ωx4 − x1)(ωx4 − x2)(ωx4 − x3)}.

We see that G has eight directed cycles:

C1 = {(v1, v2), (v2, v3), (v3, v4), (v4, v1)},

C2 = {(v2, v3), (v3, v4), (v4, v1), (v1, v2)},

C3 = {(v3, v4), (v4, v1), (v1, v2), (v2, v3)},

C4 = {(v4, v1), (v1, v2), (v2, v3), (v3, v4)},
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C5 = {(v1, v4), (v4, v3), (v3, v2), (v2, v1)},

C6 = {(v4, v3), (v3, v2), (v2, v1), (v1, v4)},

C7 = {(v3, v2), (v2, v1), (v1, v4), (v4, v3)},

C8 = {(v2, v1), (v1, v4), (v4, v3), (v3, v2)}.

This means that G is uniquely Hamiltonian.

Given the ordering x1 > x2 > x3 > x4,

{x44 − 1, x1 + x3 +
ω2 − 1

ω3 − ω
x4, x2 +

ω−1 − ω
ω3 − ω

x4, (x3 − ωx4)(x3 − ω−1x4)}

is a reduced Gröbner basis of HG, as well as a generating set for the

Hamiltonian cycle ideal HG,C1 .
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6. Conclusion and Further Questions

From the examples we have explored, it is clear that the polynomial

method is a powerful tool in analysis of graphs. The proofs that are

entirely based in graph theory, such as that of Proposition 3.22, and

those that are more algebraic, such as that of Lemma 3.16, comple-

ment one another, and provide a range of options for mathematicians

exploring a graph’s properties.

Further research could consider what graphs have linear Nullstellen-

satz certificates of non-4-colorability, or examine the degree of Nullstel-

lensatz certificates of non-3-colorability for planar graphs, or perhaps

polytopes.

It would be satisfying to find a graph-theoretic proof of Corollary

3.18, though initial attempts led to no significant insight on how this

might be done.

We have verified that the graph in Figure 10 has the least number of

vertices of any graph that has a linear Nullstellensatz certificate of non-

3-colorability but does not contain an odd wheel. However, we have

not rigorously checked that it has the least number of edges of any

graph of this type, so the question of whether it is truly the smallest

remains open.
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