
I give permission for public access to my thesis and for any copying to be done at

the discretion of the archives librarian and/or the College librarian.

Signature Date

1

Abstract

Proteins are one of the most important biological structures found in nature. Con-

sequently, the ability to determine a protein’s function quickly and accurately is of

considerable importance to the scientific community. Many modern computational

techniques seek to solve this problem by using available structural information to

classify proteins in order to infer protein function.

Most current protein classification systems use a combination of automated tech-

niques and manual curation. Even so, some levels for certain systems rely solely on

expert analysis. Generally, in these circumstances, the characteristics of the group-

ing are considered too broad or vague for automated techniques. The architecture

level of CATH is one such example.

This thesis explores the application of rigidity theory to the physical structure

of proteins in automated protein classification by augmenting standard protein

data (in the form of secondary structure information) with rigidity data. Machine

learning algorithms are used to perform the classification.

We evaluate the effect of the rigidity data on the accuracy of these algorithms.

Specifically, we focus on three architectures within the Mainly Alpha class: orthog-

onal bundle, up-down bundle, and alpha/alpha barrel.

2

Automated Protein Classification

Using Rigidity Analysis

Courtney Schirf

Professor Audrey St. John, Faculty Advisor

Presented to the faculty of Mount Holyoke College in partial fulfilment

of the requirements for the degree of Bachelor of Arts with Honours

May 2011

Acknowledgements

First, I would like to thank my wonderful advisor, Audrey, for her support and

direction, not only as my thesis advisor, but also as my academic advisor, and for

introducing me to the field of rigidity theory, of which until recently I was wholly

unaware and with which I find myself now greatly intrigued.

I wish to thank my parents for having inculcated me with a strong sense of

curiosity and a love for natural sciences, and for teaching me never to shy away

from things technical or difficult.

Finally, I would like to thank all of my family and friends for their unconditional

support and for their willingness to help proofread and edit the thesis presented

herein, even when the subject material was not always scintillating.

1

Contents

1 Introduction 8

1.1 Problem statement . 9

1.2 Related Work . 10

1.2.1 Automated Protein Classification 10

1.2.2 Machine Learning in Automated Protein Classification 12

1.2.3 Rigidity Analysis of Proteins 12

1.3 Contributions . 13

1.4 Structure of thesis . 13

2 Background 15

2.1 Protein Biology . 15

2.2 The CATH System . 18

2.3 Rigidity Theory . 23

2.4 Machine Learning . 29

3 Methods 32

3.1 Choosing a classification hierarchy 32

3.2 Choosing the rigidity information . 33

3.3 An overview of the analysis . 34

3.4 Implementation details . 35

3.4.1 Choosing training and test sets 35

3.4.2 Collecting the baseline feature set 39

2

CONTENTS 3

3.4.3 Augmenting the baseline feature set with rigidity data 39

3.4.4 Running the training and testing sets 41

4 Results 43

4.1 Comparison of baseline feature sets 43

4.2 Results from FIRST . 44

4.3 Comparison of baseline feature set and augmented feature set 47

5 Conclusions and Future Work 48

A Selected Python Scripts 50

A.1 Getting Files from the PDB Server 50

A.2 Finding all Chains for a Given Domain 55

A.3 Finding the Size of the Largest Rigid Cluster 56

B Selected Bash Scripts 60

B.1 Batch Processing using REDUCE (Hydrogen Bond Additions) . . . 60

B.2 Batch Processing for FIRST Software 61

C Tutorial on Using the Scripts 63

C.1 Overview . 63

C.2 Preliminary steps . 64

C.2.1 Creating a list of the proteins 64

C.2.2 Collecting the PDB and FASTA files 65

C.2.3 Finding the chain names for each protein 66

C.3 Collecting secondary structure information from ProtScale 66

C.4 Collecting rigidity data . 66

C.4.1 Prepping the data with REDUCE 66

C.4.2 Run FIRST . 67

C.4.3 Get the size of the largest rigid cluster for each protein . . . 67

C.4.4 Parse the rest of the FIRST output 68

CONTENTS 4

C.4.5 Compiling the output into a single file 68

C.5 Reference charts . 69

C.5.1 Subprocesses reference . 69

C.5.2 I/O reference . 71

List of Figures

1.1 A ribbon model of example protein human cytochrome p450 reduc-

tase, courtesy of Dr. Christopher Maronic, Dr. Bettie Sue Master’s

Lab, University of Texas Health Science Center at San Antonio . . . 9

1.2 SCOP hierarchy for example domain human cytochrome p450 2c8 . 11

1.3 Example of the CATH hierarchy . 12

2.1 Central dogma of protein formation 16

2.2 An example α helix (J. José Bonner) 17

2.3 An example β-pleated sheet (Brooks/Cole) 17

2.4 Generalised form of a helix–turn–helix motif (Scott Freeman’s Bio-

logical Science, Prentice Hall) . 18

2.5 Triose phosphate isomerase, an example of an alternating α/β protein

(Richard Wheeler, 2006) . 20

2.6 Ribonuclease A, an example of an α+ β protein (The Full Wiki) . . 20

2.7 A monomer of a sucrose-specific porin, an example of a β barrel

protein (The Full Wiki) . 21

2.8 Examples of the thrombin, subunit H topology (beta barrel architec-

ture, Mainly Beta class) . 22

2.9 An example of a rigid bar-and-joint structure with 3 bars and 3 joints 23

2.10 An example of a body-bar-hinge structure 24

5

LIST OF FIGURES 6

2.11 (a) A flexible pentagon-shaped graph; (b) A minimally rigid pentagon-

shaped graph; (c) A rigid pentagon-shaped graph with one overcon-

straint (shown in gold) . 25

2.12 An example of a flexible structure with a rigid component (shown in

gold) . 27

2.13 Machine learning diagram, training the algorithm 29

2.14 Machine learning diagram, running the test set 30

3.1 Example proteins from each of the architectures analysed in this study

(orthogonal bundle, up-down bundle, alpha/alpha barrel) 33

3.2 Overview of the steps involved in the analysis 34

3.3 An example of WEKA’s output from the GUI 42

4.1 Example of output in FIRST’s main results file 45

4.2 Example of FIRST output visualised through PyMol, where different

colours represent different rigid components 46

List of Tables

2.1 CATH sequence family levels with corresponding sequence similarity

thresholds . 23

3.1 Domains of the original ProtScale set 36

3.2 Secondary structure prediction tests 37

3.3 Domains in the training set (derived from the PDB select set) 38

3.4 Domains in the test set (derived from the PDB-40D set) 39

3.5 Rigidity information gathered . 40

4.1 Results of baseline feature sets: the ProtScale set and the 40D-Select

set . 44

4.2 PDB files on which FIRST failed along with error messages (training

and test sets) . 44

4.3 Results of architecture level classification on baseline and augmented

feature sets . 47

C.1 Reference chart for running this analysis on a given set of proteins . 70

C.2 Reference chart for the input and output files and directories for each

step . 72

7

Chapter 1

Introduction

Proteins are one of the most vital and versatile biological structures found in nature.

They range from the incredibly complex, like hemoglobin, which is composed of four

sub-units and which carries oxygen in red blood cells, to the simple, like kyotorphin,

a dipeptide which facilitates pain regulation in the brain [45].

In every case, they play a crucial role in all aspects of our day-to-day existence,

from the membrane proteins that transport calcium and potassium into cells to the

polymerases which replicate DNA and RNA to the antibodies that fight infections;

and, in every case, the protein’s physical shape, or conformation, determines its

function. An example of a protein’s structure is given in Figure 1.1.

In light of this, it is not surprising that currently one of the important areas of

biology and bioinformatics is inferring protein function from data such as sequence

and structural information.1 This is particularly important for researchers who

have discovered a novel protein and are trying to determine its function and for

researchers trying to design proteins for drug therapy.

It is understood that proteins with similar shapes often perform similar functions,

and current techniques are using available structural data to infer protein function

(indeed, the entire field of structural bioinformatics is dedicated to the analysis
1The reader who is less familiar with the biology behind protein formation is encouraged to refer

to Section 2.1, where this topic is treated in more detail.

8

CHAPTER 1. INTRODUCTION 9

Figure 1.1: A ribbon model of example protein human cytochrome p450 reductase,
courtesy of Dr. Christopher Maronic, Dr. Bettie Sue Master’s Lab, University of
Texas Health Science Center at San Antonio

of the structure–function relationship in macromolecules) [6, 20]. These systems

classify proteins based on different kinds of similarity, so that the structure of a new

protein can be compared against the structures of known proteins. After the new

protein is classified, we can infer that its function is similar to the function of the

other proteins in the same class (or other level of the appropriate hierarchy).

1.1 Problem statement

Assigning each protein to the appropriate class is a slow and labour–intensive pro-

cess. It often requires a human researcher to carefully analyse a protein’s structure

then classify the protein manually.

However, there is an abundance of raw data for proteins whose structures have

been resolved. Now, the problem is to design systems to compare new protein

structures against known ones in order to classify them. These systems often take

a hierarchical form, where proteins grouped at lower levels of the hierarchy show a

greater level of similarity than proteins grouped at the top levels of the hierarchy.

CHAPTER 1. INTRODUCTION 10

Creating methods to automate this procedure is the problem of automated

protein classification. These methods significantly speed up protein classification,

which is of interest to the scientific community in light of not only the sheer amount

of data currently available, but the rate at which such information is growing. For

example, the CATH database (to be discussed in more detail in Sections 1.2 and 2.2)

contained 86,151 domains in 2006. The 2010 release contained 152,920 domains.

Many current protein hierarchies use automated procedures at lower levels of

the hierarchy. However, some still rely on manual inspection for the higher levels,

which are considered too broad and subjective for current automation techniques

[39].

1.2 Related Work

In this section, we give a brief overview of related work in the areas of automated

protein classification and rigidity analysis, and we describe some of the machine

learning algorithms used. More detailed background information is given in Chapter

2.

1.2.1 Automated Protein Classification

The field of automated protein classification has been studied extensively since the

early 1990s. For a general survey of some of the major systems, see [23]. Principally,

most of the systems in this area are concerned with classifying proteins by secondary

structure. The two most popular structurally-based protein classification systems,

CATH and SCOP, are primarily manual systems that use a few automated methods

[20, 39, 33].

These systems classify proteins according to pre-defined classes. It is then pos-

sible that a classification scheme based on the data alone may reveal connections

between some proteins that would not have been seen using the current classification

methods.

CHAPTER 1. INTRODUCTION 11

Both CATH and SCOP are hierarchical systems, where each level of the hierarchy

is pre-determined. The CATH database is based on domain similarity, while the

SCOP database is built on evolutionary relationships (mainly from sequence data),

although domain information is also used [20]. Domains are compact areas of a

protein that are capable of folding and functioning independently of all other areas.

The SCOP (structural classification of proteins) database organises proteins

in a hierarchy in the following order: classes, folds, superfamilies, and families [33].

Figure 1.2 shows how the SCOP database is organised, using the domain cytochrome

p450 2c8 as an example.

Figure 1.2: SCOP hierarchy for example domain human cytochrome p450 2c8

The CATH database is named after the organisation system it uses: class,

architecture, topology (or fold), and homologous superfamily. An example of the

CATH hierarchy is given in Figure 1.3.

CHAPTER 1. INTRODUCTION 12

Figure 1.3: Example of the CATH hierarchy

1.2.2 Machine Learning in Automated Protein Classification

The application of machine learning to biological problems is a well-established

approach in the field of bioinformatics, particularly for protein fold recognition

and protein classification [52, 21]. Such techniques have been used for general

problems, including predicting protein structure [27] or classifying proteins [7], to

more specific problems, such as identifying key amino acid positions in pathological

immunoglobin-type beta domains [53].

1.2.3 Rigidity Analysis of Proteins

In general, rigidity theory is concerned with analysing rigid and flexible regions of

an object. It has recently been applied to proteins. One such example is the FIRST

software from Arizona State University [28, 14].

CHAPTER 1. INTRODUCTION 13

To date, FIRST has been used to identify rigid regions of proteins (namely,

hemoglobin) for the purposes of drug design [8], identifying a protein folding core

[24], and analysing the protein-protein complex formed H-Ras and C-Raf1 (types of

kinases) [18].

Section 2.3 discusses how FIRST represents proteins and theory behind the

analysis.

1.3 Contributions

The work of this thesis is aimed at improving the current methodology for auto-

mated protein classification by augmenting current standard protein quantizations

with data garnered from rigidity analysis. Our results show that the inclusion of

even basic rigidity information improved the accuracy of several machine learning

techniques on a difficult dataset.

Because rigidity theory has only recently been employed for protein structure

analysis, it is possible, given the promising nature of our results, that such a tech-

nique will become a common tool for protein classification.

1.4 Structure of thesis

The following chapters give some background into the problem of automated protein

classification and rigidity analysis, discuss the approach used in this study, and

provide a discussion of the results.

Chapter 2 gives an overview of the core biological concepts referenced throughout

the thesis and of the machine learning techniques used. Chapter 3 describes the

methodology used in choosing a hierarchy to work with, in gathering the requisite

data, and in performing the classification. Chapter 4 presents our results; we then

discuss the conclusions drawn from these results in Chapter 5 and propose some

future areas of research.

Sample Python and bash scripts may be found in the appendices, along with a

CHAPTER 1. INTRODUCTION 14

brief tutorial on how to use these scripts in order to perform the same analysis on

a different set of proteins.

Chapter 2

Background

In this chapter we introduce some basic protein biology concepts that are necessary

to understand this study; we discuss some details of the the specific protein hierarchy

(CATH) within which we worked; we give an overview of the theory behind the

rigidity analysis we use; and, we give short descriptions of the machine learning

techniques used to preform the classification.

2.1 Protein Biology

For the reader unfamiliar with the relevant biology concepts behind protein forma-

tion, we provide a brief overview of these ideas here. The central dogma of protein

formation is DNA −→ RNA −→ protein,1 meaning that DNA is transcribed to RNA

which is translated into a sequence of amino acids. Each amino acid is connected

to the other by a peptide bond. This primary structure of a protein is often termed

“beads–on–a–string,” where each amino acid is a “bead” [6].

Depending on the specific properties of each amino acid and those of its neigh-

bours,2 the string will bend to form the protein’s secondary structure, mainly α-

helices (Figure 2.2) and β-pleated sheets (Figure 2.3). Because the formation of
1Technically, the last step should read ‘polypeptide,’ as the term ‘protein’ implies a tertiary

structure, but this distinction is not always maintained, nor will it be here. For the purposes of
this paper, the terms protein and polypeptide will be used interchangeably.

2Specifically, the placement of hydrogen atoms.

15

CHAPTER 2. BACKGROUND 16

Figure 2.1: Central dogma of protein formation

these structures is dependent only on neighbouring groups of amino acids (i.e., be-

cause these are local structures), both α-helices and β-pleated sheets can exist in a

single protein structure [6, 20].

Some amino acids3 then form peptide bonds between the secondary structures,

giving a protein its tertiary structure, also called a protein’s fold.4

Proteins are comprised of domains: compact, stable regions of a protein that fold

and function semi-independently of the rest of the protein. It should be noted that

domain determination is normally a manual and subjective process. At the moment,

the research group that resolves a protein structure usually describes which areas

are domains; then other groups reference this literature.

This subjectivity arises from the lack of a single, universally accepted definition

for what comprises a domain; the most common definition is that given above [42,
3Primarily methionine and cysteine, since these contain sulfur, which is necessary for the for-

mation of disulfide bridges.
4Although the formation primary, secondary, and tertiary structures are often thought of (and

taught as) an ordered process, it should be noted that these steps often occur in tandem in the cell.

CHAPTER 2. BACKGROUND 17

Figure 2.2: An example α helix (J. José
Bonner)

Figure 2.3: An example β-pleated sheet
(Brooks/Cole)

43]. Despite this, starting in the late 1970s, work has been done to automate domain

determination [9, 43, 1].

Protein domains are comprised of multiple motifs, three-dimensional structures

that occur in multiple proteins. Usually, these are combinations of secondary struc-

tures, but sometimes certain combinations of amino acids can also be considered

motifs. Some common motifs include the helix–turn–helix motif (Figure 2.4) and

the four–helix bundle [6, 20].

Each of these structures can be useful for classifying proteins. Domains in partic-

ular are usually conserved among evolutionarily related proteins [20]. Thus, protein

classification is primarily done by a secondary structure grouping, domain similarity,

and motif similarity.

Sequence data has been used traditionally for this purpose, but it has some

limitations. First, nucleic acid sequences can be similar by chance, especially if

the sequences are short. Second, not all parts of a nucleic acid sequence are used

to create proteins. This is primarily true of DNA, where certain sequences called

introns are removed in the transcribed RNA. Nor is it always clear which genes

CHAPTER 2. BACKGROUND 18

Figure 2.4: Generalised form of a helix–turn–helix motif (Scott Freeman’s Biological
Science, Prentice Hall)

encode which proteins [20].

Structural data, on the other hand, is more difficult to obtain. Although the

actual methods by which this data is obtained is beyond the scope of this project,

it is worth saying a few words about them to put this study in context. The main

difficulty in determining a protein’s structure is simply that proteins are too small to

be directly seen using any technology currently available [6]. Consequently, indirect

methods are used, but these have their drawbacks. Crystallography, for example,

forces proteins, which are not (completely) rigid, into a rigid conformation. This

can, and often does, produce small conformational changes in a protein’s side chains

or change the orientation of some molecules in the structure [20]. Moreover, it

is extremely expensive and time-consuming to use purely biological methods to

determine protein structure and function. Whole wet labs often spend several years

resolving the structure of a single protein.

2.2 The CATH System

The main goal of this project is to evaluate the effect of rigidity data on the accuracy

of machine learning techniques when classifying proteins at one of the higher, more

subjective hierarchy levels [39]. Specifically, we are interested in the architecture

CHAPTER 2. BACKGROUND 19

level of CATH, so we will discuss this particular hierarchy in more detail.

Unlike SCOP, CATH is a more structurally based classification system. The

motivation for focusing on structural information rather than sequence information

is that proteins within families of structurally related proteins (which have a high

likelihood of performing similar functions) may have low sequence similarity [39].

CATH has four main hierarchy levels, from which its name is derived: Class,

Architecture, Topology, and Homologous families. The reader is encouraged to

look back at Figure 1.3 for a graphical depiction of the general structure of CATH.

To date, CATH contains 1,282 folds and 152,920 domains. Each of these do-

mains are placed into a unique classification using a mix of automated and manual

methods.

The class level is the highest level in the hierarchy, and it refers to the secondary

structure composition of the domains (e.g., the relative number of α-helices and β-

sheets). CATH uses 4 classes: Mainly Alpha, Mainly Beta, Mixed Alpha–Beta,

and Few Secondary Structures. As their names suggest, the Mainly Alpha and

Mainly Beta classes contain mostly α-helices or β-sheets, respectively. The Mixed

Alpha–Beta class contains domains that do not have predominately more α-helices

or β-sheets. Some other systems distinguish Alpha/Beta (α/β) from Alpha + Beta

proteins. The former are distinguished as having alternating α-helices and β-sheets,

while in the latter, these structures occur in different areas of the protein.

A well-cited example of an α/β protein is triose phosphate isomerase, shown in

Figure 2.5 below. Figure 2.6 shows ribonuclease A, an example of an α+ β protein.

The Few Secondary Structures class contains proteins that do not have sufficient

secondary structure information for a classification into any one of the other three

classes. This class has the smallest population of proteins [39].

Classification at the class level is a mix of automated and manual procedures,

where an algorithm is applied that does a first pass at the domains [34]. This

algorithm gives an accuracy of about 90%. Then the proteins are reviewed manually

for the final classification [39, 10, 50].

CHAPTER 2. BACKGROUND 20

Figure 2.5: Triose phosphate isomerase, an example of an alternating α/β protein
(Richard Wheeler, 2006)

Figure 2.6: Ribonuclease A, an example of an α+ β protein (The Full Wiki)

The architecture level is the next level after class, and it describes general

features of the fold shape and the orientation of the secondary structures [50, 39].

CHAPTER 2. BACKGROUND 21

This does not take into account the links between the secondary structures. One

example of an architecture is a β-barrel, such as in the protein structure in Figure

2.7. Other architectures include β − α− β sandwiches and jelly rolls. Classification

at this level is done entirely manually using standard classification descriptions;

there is no automation procedure [39, 41, 11, 10]. Domains for which the secondary

structure arrangement is particularly complex and cannot be classified into known

categories are placed in a general ‘complex’ architecture [39].

Figure 2.7: A monomer of a sucrose-specific porin, an example of a β barrel protein
(The Full Wiki)

The next level is topology, in which proteins are grouped by fold similarity

(i.e., they have a similar arrangement of secondary structures and similar connec-

tions between the secondary structures).5 Examples of topologies include porin

and thrombin, subunit H, which both fall under the beta barrel architecture in the

Mainly Beta class.

The fourth level is homologous families. Proteins grouped at this level have

high structural and functional similarity. For example, two topologies within the

thrombin, subunit H topology are trypsin-like serine proteins and phage tail proteins.

Examples of both kinds of proteins are shown in Figure 2.8 below.
5In CATH, the term topology is used to mean fold.

CHAPTER 2. BACKGROUND 22

(a) Trypsin-like serine protein (b) Phage tail protein

Figure 2.8: Examples of the thrombin, subunit H topology (beta barrel architecture,
Mainly Beta class)

Classification done at the topology and homologous family levels relies heavily

on automation techniques. The main source of automation is a sequence structure

alignment program (SSAP), a technique which has been greatly expanded by the

CATH group [38]. Domains are first scored on a similarity scale from 0 to 100 by

a fast SSAP. Those that have a score of less than 75 are run using a more sensitive

(and also slower) version of the SSAP algorithm. At the end of this process, domains

that have a SSAP score of 70 or higher are put in the same topology. Domains are

assigned to homologous families using a combination of a SSAP score of 80 or higher

and high functional similarity determined by referencing to the literature [39].

The CATH hierarchy has recently added 5 more levels called sequence family

levels, the names of which make up the acronym SOLID. Proteins found together

in any one of these levels have > 35% sequence similarity. Each level after S up to

I indicates a higher degree of sequence identity, as seen in Table 2.1 below. The D

CHAPTER 2. BACKGROUND 23

Level Sequence Identity Overlap
S 35% 80%
O 60% 80%
L 95% 80%
I 100% 80%

Table 2.1: CATH sequence family levels with corresponding sequence similarity
thresholds

level of SOLID is only to give each domain a unique classification [39, 41, 48].

2.3 Rigidity Theory

Rigidity theory provides a rigorous mathematical foundation for efficiently analysing

rigid properties of structures. We are interested in combinatorial rigidity, which

captures rigidity properties by abstracting a structure to an associated graph.

We begin with a description of some of the main types of structures that exist.

The simplest is the bar-and-joint. Joints can be thought of as points or pins. These

joints have degrees of freedom, which intuitively can be thought of as the number of

constraints necessary to rigidify the structure. In 2-dimensional space, joints have

2 degrees of freedom; in 3-dimensional space, they have 3 degrees of freedom.

Figure 2.9: An example of a rigid bar-and-joint structure with 3 bars and 3 joints

Bars connect the joints. They are a kind of constraint on the system, because

they limit how a joint can move. Specifically, they remove 1 degree of freedom (both

in 2- and 3-dimensional space). An example of a simple bar-and-joint structure with

CHAPTER 2. BACKGROUND 24

3 joints and 3 bars is given in Figure 2.9.

Body-and-bar structures are similar. Here, bodies can be thought of as rigid

structures. In 2-dimensional space, they have 3 degrees of freedom; in 3-dimensional

space, they have 6 degrees of freedom. With this structure, we can introduce an-

other constraint called a hinge, which leaves 1 degree of freedom in both 2- and

3-dimensional space (i.e., it removes 2 degrees of freedom in 2-dimensional space

and 5 degrees of freedom in 3-dimensional space). An example of a body-bar-hinge

structure is given in Figure 2.10. In this figure, the purple “blocks” are bodies, the

black lines with circular endpoints are bars, and hinges are represented by the black

lines between the purple “blocks.” Since a hinge may be represented by 5 bars [47],

we focus our discussion on bar constraints.

Figure 2.10: An example of a body-bar-hinge structure

We now formalise the structures described. In all cases, we abstract the structure

to a graph, G = (V,E), where V is a set of vertices and E is a set of edges. In the

bar-and-joint structure, each joint is a vertex in G and each bar is an edge. In the

body-and-bar structure, each body is associated with a vertex and each bar with an

edge.

Let us now associate a distance function, ` : E −→ R, that assigns each edge a

fixed length. A graph and distance function is called a framework.

Now that each edge has a fixed length, it is possible to attach coordinates to

each vertex in some real space Rd, thereby “anchoring” the structure to a particular

form. The coordinates given are called an embedding (also called an injection or a

CHAPTER 2. BACKGROUND 25

realisation).

It is easy to see that a single framework could have multiple embeddings. For

example, consider a translation of the G in Rd space. There are an infinite number of

possible translations; therefore, there are must also be an infinite number of possible

embeddings [19]. We are interested in distinct embeddings, i.e., embeddings that

are not a result of translations or rotations.

We are now in a position to ask: is the embedding rigid? To answer this question,

imagine pushing on the structure in Figure 2.9 (without changing the edge lengths).

No amount of pushing will deform (change the shape of) the structure. Therefore,

Figure 2.9 is rigid.6

(a) (b) (c)

Figure 2.11: (a) A flexible pentagon-shaped graph; (b) A minimally rigid pentagon-
shaped graph; (c) A rigid pentagon-shaped graph with one overconstraint (shown
in gold)

Now consider the structure in Figure 2.11a. If we pushed on that structure, we

could deform it. However, if two bars are added as shown in Figure 2.11b, we can

no longer deform the structure; it is rigid. Consider adding yet another bar as in

Figure 2.11c. Such a bar is an overconstraint because the rigidity information it

adds is redundant: it provides the same rigidity information as the bar added in

Figure 2.11b.

A structure that contains overconstraints such that it remains rigid if any bar is

removed is considered redundantly rigid. A rigid structure that contains no overcon-
6In fact, it is globally rigid, but we will not make this distinction here.

CHAPTER 2. BACKGROUND 26

straints is called minimally rigid. The counting conditions presented in Theorem

2.3.1 define when a structure is generically minimally rigid in the plane [31]. A

full discussion of genericity is not within the scope of this thesis, but, intuitively, a

generic embedding of a structure is one that somehow encompasses the character-

istics of most embeddings for that structure; or, put another way, there is nothing

special about the embedding.

Theorem 2.3.1 (G. Laman, 1970) A graph (V,E) is generically minimally rigid

for dimension 2 if and only if:

1. m = 2n − 3, where m is the total number of edges in the structure and n is

the total number of vertices

2. For all subsets of n′ vertices where n′ ≤ n, m′ ≤ 2n′ − 3, where m′ is the

number of edges spanned by the n′ vertices

A pair of theorems gives us a set of counting properties that define when a body-

and-bar structure is rigid in 3-dimensional space. First, Theorem 2.3.2 defines when

a body-and-bar structure is rigid in 3-dimensional space (no counting conditions

yet) [46].

Theorem 2.3.2 (Tay, 1984) Given a 3-dimensional body-and-bar structure, asso-

ciate a graph by mapping bodies to vertices and bars to edges. The original structure

is rigid if and only if the associated graph is the edge-disjoint union of 6 spanning

trees.

The characterisation of graphs with edge-disjoint union of k spanning trees in

Theorem 2.3.3 gives us the counting properties for rigid body-and-bar structures in

3-dimensional space [37, 49].

Theorem 2.3.3 (Nash-Williams and Tutte, 1961) A graph with m edges and n

vertices is the edge-disjoint union of k spanning trees if and only if:

CHAPTER 2. BACKGROUND 27

1. m = kn− k

2. for all subsets of n′ vertices, m′ ≤ kn′ − k, where m′ is the number of edges

spanned by the vertex set

Even if a whole structure is not rigid, it may be possible that parts of that struc-

ture are. Such parts are called rigid components. An example of such a structure

is shown in Figure 2.12, where the triangular part of the structure (shown in gold)

is rigid, while the square portion is not. The triangle, then, is a rigid component of

the structure.

Figure 2.12: An example of a flexible structure with a rigid component (shown in
gold)

In 3-dimensional space, the bar-and-joint model is not well understood, and is, in

fact, one of the biggest open questions in rigidity theory. Since the body-bar-hinge

model is well-understood in 3-dimensional space, it is the model used by the rigidity

analysis tool, FIRST (Floppy Inclusions and Rigid Substructure Topography) from

Flexweb, which is freely available for academic purposes. In this model, each atom

in the protein is a body. Strong kinds of bonds (e.g., covalent bonds) are represented

CHAPTER 2. BACKGROUND 28

by hinges. Weaker bonds (e.g., hydrogen bonds) are represented as bars.

FIRST analyses this model using a version of the pebble game (briefly described

below), looking for rigid components in the structure. These rigid components are

what are returned by the program. Furthermore, FIRST is able to identify regions

that contain overconstraints. FIRST calls these areas stressed regions. This concept

is important in its application to proteins. For example, hydrogen bonds break and

reform many times over in the same structure. If overconstraints did not exist in this

system (i.e., the protein), the loss of a hydrogen bond would result in the collapse

of the entire structure.

We give an overview of a basic pebble game here to familiarise the reader with

the general idea of the theory behind FIRST’s analysis. More detailed information

about the pebble game in general and FIRST’s 3-dimensional implementation can

be found in [32, 28, 29].

The pebble game is an algorithm used to analyse the rigidity of a structure.

It uses a graph, G, as its input, along with the parameters `, where ` + 1 is the

minimum bound on the number of pebbles (discussed further below), and k, which

is the initial number of pebbles on each vertex and the maximum number of pebbles

that may be present on a vertex at any given time. A graph, D, is created, which

contains no edges but contains all of the vertices in G with k pebbles on each vertex.

When the game is played, edges from G are added to D if and only if the

endpoints, u and v, of that edge have a total of ` + 1 pebbles between them. If

the endpoints do not share enough pebbles, the game is allowed to search for them

according to certain rules. Each time an edge is added into D, a pebble is removed

from u.

After the game is over, we can use information on how many pebbles are left in

the game and whether or not an edge was rejected to infer properties of the original

structure. For example, if exactly ` pebbles remain in the game and no edges were

rejected, then the structure is minimally rigid. If, however, ` pebbles are left in the

game, but at least one edge was rejected, then the original structure contained at

CHAPTER 2. BACKGROUND 29

least one overconstraint. Furthermore, if more than ` pebbles are left, those pebbles

correspond to the degrees of freedom left in the structure [32].

The exact information gathered from FIRST is discussed in Section 3.2.

2.4 Machine Learning

This project relies on machine learning, a subset of artificial intelligence concerned

with discovering rules from a dataset. This discipline is often used for classification

and clustering problems. In supervised machine learning, labelled training data is

sent as input and the algorithm generalises a model from the labels (how this step

is done is specific to the particular algorithm used). Then, unlabelled testing data

is sent as input and the algorithm returns some output, which can be tested to

determine the accuracy of the algorithm [13, 30, 35]. Diagrams of this process are

presented in Figures 2.13 and 2.14.

Figure 2.13: Machine learning diagram, training the algorithm

There are four main supervised machine learning algorithms that will be con-

sidered for this project: Näıve Bayes, support vector machines (SVM), bootstrap

aggregating (bagging), and Adaptive Boosting (AdaBoost). Each will be used at

black–box level.

CHAPTER 2. BACKGROUND 30

Figure 2.14: Machine learning diagram, running the test set

Here we will give a brief overview of these four main algorithms. Information on

the other algorithms used can be found in the cited literature.

Näıve Bayes : Näıve Bayes is a classic statistical algorithm that uses Bayesian

probability models to classify items. The algorithm assumes that the data is

normal, e.g., continuous variables have Gaussian distributions. Furthermore,

the algorithm assumes that the variables are linearly independent [13, 35].

However, this is not usually the case, so Näıve Bayes is often outperformed by

other methods [30].

Support vector machines (SVM) : The central idea of SVM is that of a margin,

either side of a hyperplane. Specifically, this hyperplane separates the two

data classes, so similar elements will be on one side of the hyperplane. The

problem for the algorithm, then, is to find the largest margin (i.e., to maximise

the distance between the hyperplane and the data points).

The exact mathematical model that determines this distance is called a kernel

function, and the general SVM algorithm sums over the results of the kernel

function for each instance. In essence, the kernel function maps the data to

CHAPTER 2. BACKGROUND 31

a higher dimensional space (including infinite dimensional space) because the

given data may not be linearly separable. By moving to a different space, the

hope is to achieve linear separability [5, 30].

Bagging (Bootstrap aggregating) : Bootstrap aggregating is meant to im-

prove classification accuracy, reduce variance, and avoid overfitting. It does so

by generating multiple versions of a classifier and then using those to develop

an aggregated classifier by averaging over the versions.

Experimental evidence suggests that bagging can help improve unstable clas-

sifiers (classifiers where a small change in the training set changes the model

significantly), but can degrade the performance of a stable classifier [3, 4].

Adaptive Boosting (AdaBoost) : AdaBoost is an algorithm, developed by Fre-

und and Schapire in 1996, which “boosts” the performance of a weak algorithm

(a method that does not provide a performance much better than random)

by successively applying the weak algorithm on different distributions of the

training data [15]. This iteration is stopped when some error rate is reached or

when enough weak classifiers have been constructed. Then the classifiers pro-

duced by the weak algorithms are combined into a single composite classifier

[15, 2].

One of the benefits of AdaBoost is that it does not tend to overfit data.

In theory, this is possible if the number of rounds algorithm is run is too

large. However, empirical evidence shows that overfitting is rare even when

the algorithm is run for thousands of rounds [16].

In addition to the five techniques described above, we also ran our data though

the following machine learning algorithms: attribute selected classifier [22], multi-

class classifier [22], decision table [36], and multilayer perceptron (a type of feed-

forward neural network) [40].

Chapter 3

Methods

In this chapter, we present the process for gathering and testing data, including how

the classification hierarchy was chosen and why rigidity analysis was run on whole

proteins instead of domains. The general approach is described first, followed by

some implementation details.

We assume that the reader is familiar with the background material presented

in Chapter 2, in particular, basic protein biology, especially as it relates to protein

structure, and the organisation and procedures used by the CATH hierarchy.

3.1 Choosing a classification hierarchy

An existing classification system was chosen to serve as a benchmark for our results.

The two most popular systems at the moment are CATH and SCOP, which are

both semi-automated. However, as mentioned in Chapters 1 and 2, the process of

classifying domains into architectures in CATH is entirely manual [39, 10]. It was

for this reason that we chose to work within the CATH framework.

In order to make this project feasible, we decided to focus on a few of the most

populous architectures in one of the most populous classes in CATH. The two

most populous classes are Mainly Alpha and Mainly Beta, and we arbitrarily chose

to focus on the Mainly Alpha class. We then chose the three most populated archi-

32

CHAPTER 3. METHODS 33

(a) 2peg (orthogonal bun-
dle) (b) 1k3y (up-down bundle)

(c) 1gai (alpha/alpha bun-
dle

Figure 3.1: Example proteins from each of the architectures analysed in this study
(orthogonal bundle, up-down bundle, alpha/alpha barrel)

tectures within the Mainly Alpha class: orthogonal bundle, up-down bundle, and

alpha/alpha barrel. Examples for sample proteins from each of these architectures

are shown in Figures 3.1a, 3.1b, and 3.1c, respectively.

3.2 Choosing the rigidity information

As was discussed in Section 2.1, a single protein may be comprised of multiple

domains. Since classification is done at the domain level, the data gathered can

either be at the domain level only or at the level of the whole protein. We chose to

run the rigidity analysis on the whole protein instead of each domain.

Our reason for doing so is two-fold: (1) while it is possible to specify chains in

FIRST, doing so would make this process less easy for batch-processing; and more

importantly (2) we are attempting to describe the context in which a given domain

occurs. This means that we end up giving the domain slightly more information

than we might be able to garner from a new domain alone, but it also adds functional

information.

To clarify this reasoning, consider the classification of vehicle parts, such as

wheels, doors, axles, etc. While it seems straightforward to obtain data for each part

in isolation and classify solely by that information, it may be possible to achieve

CHAPTER 3. METHODS 34

better results by taking into account the context in which those parts appear. For

example, if a wheel tends to appear with other wheels and an axel and we save this

information, then next time we see an object which is in conjunction with wheels

and an axel, we will be more likely to classify that object as a wheel.

3.3 An overview of the analysis

We begin with an overview of principal steps of the analysis, which are summarised

in Figure 3.2 and described in more detail below.

Figure 3.2: Overview of the steps involved in the analysis

Step 1 : The first task is to choose training and test sets. This involves

obtaining a list of domains whose structures is known and which have been

classified in the CATH hierarchy. Naturally, not all domains have been given

a classification in CATH, in part because some domains have simply not been

added to the system, and it part because some the PDB files do not meet

CATH’s standards [39].

Step 2 : The baseline feature set (baseFS) is created by choosing and quantify-

ing specific characteristics of each domain in the both the testing and training

CHAPTER 3. METHODS 35

sets. Possible characteristics include the number of α-helices, the number of

β-sheets, or the protein’s refractivity.

Step 3 : Rigidity data is then gathered on the domains in the testing and train-

ing sets by analysing the PDB files using FIRST. The output files from the

software are parsed, and the pertinent information is added to the baseline

feature set to create the augmented feature set.

Steps 4–6 : The baseline and augmented feature sets are sent to each of the ma-

chine learning algorithms. Accuracy measurements are obtained, and the

scores are compared.

3.4 Implementation details

We now delve a little deeper into some of the implementation details for each of the

steps described above.

Readers interested in the details of the scripts and programs used to collect and

process the data are encouraged to consult Appendix C, where these topics are given

extensive treatment.

3.4.1 Choosing training and test sets

Originally, we gathered an initial baseline feature, which we refer to as the ProtScale

set for reasons described later, set containing secondary structure information on

semi-randomly selected domains from the aforementioned architectures in the Mainly

Alpha class.

The domain selection was semi-random in that domains were selected from the

most populous topologies, but also from a wide range of topologies. In order to

achieve this, domains were randomly selected from approximately the top 10 topolo-

gies from each architecture. Some architectures contain more topologies than others

(e.g., the alpha-alpha bundle architecture contains 3 different topologies, while the

CHAPTER 3. METHODS 36

orthogonal bundle architecture contains 270 topologies, up-down bundle architec-

ture contains 97 topologies), so the number of topologies chosen was not even among

the architectures. A full list of the original domains chosen is given in Table 3.1.

2fmp 1y88 2q0z 1jx4 1wcn 1lb2
2h8f 1pk1 1oxj 1sxd 1b4f 1sv0
1x9x 1eca 1s5y 1pbx 2peg 1ith
3d1k 1cg5 2aa1 1la6 1xg0 1xf6
1qgw 1b8d 1eyx 2c7l 1kn1 1all
1b33 2oyh 1fzg 1jy2 1fzc 1gk6
1czq 1jnm 1gu4 1g2c 1k3y 1hqo
2a2r 2c4j 2ww2 2wvx 1mz9 2spc
1ybz 3fp5 2o3s 1rzh 256b 1mc2
2d29 3bb0 2lis 1wpg 1e91 1lb3
1sj8 1h12 1n1b 1okc 1gxm 1nxc
1rwh 1qaz 5eau 1n7o 1x1i 1hn0
1cb8 1x9d 2ri9 3dss 1w6k 2sqc
1n49 1qqf 1ks8 2ahf 1g9g 1gai
1lf6 1ut9 2p0v 2ww3

Table 3.1: Domains of the original ProtScale set

Python scripts were written to automate the process of querying the PDB server

to obtain PDB1 and FASTA2 files for each protein in the set. For about 100 proteins,

this process usually took a couple of minutes.

The secondary structure data for this set was obtained from the ProtScale tool on

the ExPASy proteomics server (Swiss Institute of Bioinformatics) [17, 44]. Data was

collected on 15 properties including secondary structure information and chemical

properties using well-known or standard amino acid scales. For a set of about 100

proteins, this process took several hours to a couple of days, depending on the

average number of chains for each protein. A full listing of this information and the

scales used are given in Table 3.2.

Python and bash scripts were used to automate the process of filling out and

submitting the online ProtScale form and to automate the process of collecting and
1PDB files contain a protein’s structural information in the form of atom and bond information.

FIRST requires PDB files because it needs the atom information.
2FASTA files contain the amino acid sequence for a protein and are separated by chain. Sec-

ondary structure prediction tools usually require FASTA files because they base their predictions
on the properties of the protein’s amino acid composition.

CHAPTER 3. METHODS 37

No. Secondary Structure Prediction Amino Acid Scale Used
1 Molecular weight standard
2 Polarity Zimmerman
3 Bulkiness standard
4 Refractivity refractivity
5 Hydrophobicity Eisenberg et al.
6 HPLC/HFBA retention standard
7 HPLC/TFA retention standard
8 Percent buried residues standard
9 Percent accessible residues standard
10 Average area buried standard
11 Alpha-helix (probabilities) Chou & Fasman
12 Beta-sheet (probabilities) Chou & Fasman
13 Beta-turn (probabilities) Deleage & Roux
14 Total beta strand standard
15 Antiparallel beta-strand standard

Table 3.2: Secondary structure prediction tests

parsing the resulting data.

The machine learning algorithms did not perform very well on the ProtScale set.

Moreover, obtaining the data was time-consuming. Consequently, we decided to

try a third-party feature set that contained secondary structure information (from

[12]). Given how well the machine learning algorithms did on the third-party set,

and that it was a particularly difficult set (discussed below), we decided to use it as

our baseline feature set. The results of the ProtScale set are given in Figure 4.1. It

is evident from this venture that the choice of features is important, as is the choice

of machine learning algorithm.

We decided to work with secondary structure data used by Ding and Dubchak

for protein fold recognition, which are available for use [12]. This dataset was chosen

because both the training and test sets are particularly difficult benchmarks. The

training set is based on the PDB select dataset developed by Hobohm et al. [26, 25].

No two proteins in this dataset have more than 35% sequence identity. The test set

is a subset of the PDB-40D database chosen by the developers of the SCOP database

[33], where proteins with more than 40% sequence similarity have been removed.

For the rest of this thesis, we will refer to these sets together as the 40D-Select set.

CHAPTER 3. METHODS 38

Machine learning algorithms were trained on a subset of 40D-Select training set,

and similarly tested the algorithms on a subset of the testing set. The properties

that made the original datasets difficult (i.e., low sequence identity) still hold for

the subset used in our analysis. Since the domains were not ordered by architecture,

each domain had to be manually annotated to include architecture information. A

total of 118 domains were chosen from these sets as described below:

Of the 605 domains in the training file used in [12], 131 were manually annotated.

Of those, 77 were in the Mainly Alpha class and fell into one of the architectures

being studied. Of those, 1 domain had a PDB file that could not be used by FIRST

and was thrown out of the analysis, leaving 76 instances from this file.

Of the 385 test instances, 104 were manually annotated and 50 fell in to one of

the architectures being studied. Of these instances, 2 domains had PDB files that

could not be used by FIRST and were thrown out of the analysis. That left 48

instances from this file. The total number of instances, then, is 126 domains.

The full list of domains used in the analysis are given below and separated by

training and test set.

3sdha 1flp 2hbg 2mge 1eca 2gdm
1babb 1itha 1ash 1cpca 1grj1 1srya1
1ccr 1cxa 2pac 1enh 1lfb 1aplc
1hdp 1hcra 1ret 1msec1 1leb 1hsta
1hks 1erl 1erd 1lpe 1was 256ba
2hmza 2tmvp 3mdda1 1bcfa 1fha 1riba
1mmob 1bgeb 1lki 1huw 1gmfa 1rcb
1ilk 1rfba 1pou 1lmb3 2cro 1adr
4icb 1rtp1 1rec 2scpa 2sas 1mylb
1cmca 2gsta2 1gsra2 1gsq2 1lpt 1bip
1ezm2 8tlne2 7ccp 1lgaa 1mypa 2cp4
2hpda 1cpt 1poc 1poa 1ppa 1fc2d
1oxy1 1clc1 3hhr1 1ddt3

Table 3.3: Domains in the training set (derived from the PDB select set)

Python scripts were written to parse each annotated file (train and test) and

store the pertinent information in comma-delimited form.

CHAPTER 3. METHODS 39

1hbg 1mba 1lh1 1baba 1alla 1dvh
5cytr 1cc5 351c 1gks 1aofa1 1etpa1
1yrna 1octc1 1res 1pdnc 1igna1 1bia 1
1lea 1aoy 1opc 1etd 1puee 2hts
1dpra1 1fow 2liga 1bbha 1cgo 1cpq
2hmqa 1vtmp 1buca1 1fapb 1bgc 1cnt1
1csga 2int 1hula 3inkc 1jli 1sra
1rro 1osa 1cpo 1 1vfba 1lla 2 1clc 2

Table 3.4: Domains in the test set (derived from the PDB-40D set)

3.4.2 Collecting the baseline feature set

The features chosen by Ding and Dubchack [12] formed our baseline feature set.

These included the percentage composition of the 20 amino acids, transition fre-

quencies, as well as polarity and hydrophobicity information. A more complete

discussion of the feature vectors in these datasets can be found in [12].

3.4.3 Augmenting the baseline feature set with rigidity data

PDB files for structures that were resolved by X-ray crystallography do not con-

tain information on hydrogen bonds. Therefore, we first ran the domains whose

structures had been resolved by crystallography through the command line version

of a program called REDUCE from Duke, which adds back hydrogen bonds using

standard geometric techniques [51]. The latest version (August 2008) was used.

How a structure has been solved is noted in the PDB file, so in order to determine

which structures had been solved by crystallography, we created a script that used

regular expressions to find the appropriate annotation in the PDB file. This step

is important because REDUCE could change the values for hydrogen bonds in files

that already contain such information.

To automate this process, we wrote a bash script and used default values. On a

set of 100 proteins, this step normally took a minute or less.

Rigidity data was collected using the command line version of FIRST from

Flexweb [29, 14], using the default value of -1.0 kcal/mol as the energy cutoff for

CHAPTER 3. METHODS 40

every instance in our test and training sets.

A Perl script was used to create an XML file from the FIRST output containing

body-bar-hinge information. A bash script was written to turn this into a batch

process for all the proteins that were run through FIRST.

Each output file from the perl script was parsed with our own Python script

to find the size of the largest rigid cluster. Specifically, we analysed the body

information from this output and used Python’s minidom module to read in the

XML and find the size of the largest child node, which corresponded to the size of

the largest rigid cluster (i.e., the cluster with the most atoms in it).

Because the minidom module reads in the whole file, we had to make some

modifications to the output file so that the script could complete in a reasonable

amount of time. Since we only needed the body information, files larger than 10 MB

were shortened to include only the body information. In order to do this truncation,

we used Python’s inputfile module to read the file in line by line. The pertinent

information was then copied to a new file (so the original files were left intact).

The size threshold of 10 MB was somewhat arbitrary. Through experimentation we

discovered that it was about this point where the script started to hang up.

The rest of the rigidity data was taken from the results file outputted by FIRST.

Python scripts were written to parse these files. In all, 9 features taken from the

rigidity output were gathered by our scripts and are enumerated in Table 3.5.

No. Rigidity Information
1 size of biggest rigid cluster
2 number of unique residues
3 number of isolated sites
4 number of isolated dimers
5 number of hydrogen bonds included
6 number of hydrophobic tethers included
7 total number of rigid clusters
8 number of stressed regions (regions with at least one overconstraint)
9 number of independent degrees of freedom

Table 3.5: Rigidity information gathered

Running FIRST alone on our protein set took about 10 or 15 minutes. Creating

CHAPTER 3. METHODS 41

the XML files itself was not a lengthy process, but the Perl script did have a tendency

to make the computer overheat after running several analyses in succession, so we

added a sleep command in the batch script for 3 seconds between each analysis.

This meant that, for a protein set of 100, the process of creating the XML files took

about 5–10 minutes.

With file truncation, finding the largest rigid cluster for each of 100 proteins

took about 10–20 minutes, depending on the size of the original file. Parsing the

other FIRST output and compiling that data into a new file took about 10 minutes

in total.

3.4.4 Running the training and testing sets

The secondary structure and rigidity data were each stored in separate files, so

scripts were written to compile this information into two files for both the training

and test set. One file contained only the secondary structure data taken from the

40D-Select set, along with the architecture identifier. The other contained that data

along with the rigidity data.

The machine learning software WEKA was used to perform the classification end

[22]. The software had difficulty reading the CSV files used to store to feature sets,

which is not an uncommon problem. For this reason, the CSV files were converted

to WEKA’s preferred ARFF format using a converter written by the WEKA team.

The training and test sets were manually inputted into WEKA for each of the

machine learning algorithms listed in Section 2.4. The results of this analysis are

given in Chapter 5. A screenshot of the output shown through the WEKA GUI for

our augmented feature set on AdaBoost is given in Figure 3.3.

CHAPTER 3. METHODS 42

Figure 3.3: An example of WEKA’s output from the GUI

Chapter 4

Results

Chapter 3 delineated the approach we took in this study, described the dataset used

for the analysis, and discussed the tools we used. We now present the results at

each step of the analysis in this chapter.

4.1 Comparison of baseline feature sets

As discussed in Chapter 3, we originally developed our own baseline feature set

called the ProtScale set, and then compared the accuracies of the dataset on the 8

machine learning algorithms to those of the the 40D-Select set developed by [12] on

the same machine learning algorithms.

We remind the reader that the latter was hand-chosen to be particularly difficult

and that the domains in the ProtScale set are not the same as those in the 40D-

Select set. Therefore, a direct comparison would be inappropriate. Nevertheless, we

present the accuracies of both sets on each of the machine learning algorithms for

general comparison in Table 4.1 below.

43

CHAPTER 4. RESULTS 44

ML algorithm ProtScale set 40D-Select set % difference
Näıve Bayes 66% 58% +8%

SVM (PolyKernel) 71% 67% +4%
DecisionTree 67% 67% 0%

Attribute Selected Classifier 57% 67% -10%
Multiclass Classifier 52% 58% -6%

Multilayer Perceptron 71% 67% +4%
Bagging 67% 67% 0%

AdaBoost 71% 67% +4%

Table 4.1: Results of baseline feature sets: the ProtScale set and the 40D-Select set

As shown in Table 4.1, the ProtScale set did worse, the same, or only slightly

better than the 40D-Select set, even though the latter was substantially more dif-

ficult. Given that there was no substantial difference in the accuracies, and given

that the difficulty of the latter, we decided to use the 40D-Select dataset as our

baseline feature set instead of the ProtScale set.

4.2 Results from FIRST

Rigidity information was gathered from FIRST, the rigidity analysis tool. Unfortu-

nately, the software was not able to process all of the protein structure files. Table

4.2 summarises those proteins for which FIRST was not able to produce output and

the reason FIRST gave for why this was so.

PDB ID Error raised Set
2lhb The bond distance between intraresidue atoms 246 and 249

exceeds 6 Angstroms.
training

1mdb The bond distance between intraresidue atoms 1209 and
1214 exceeds 6 Angstroms.

test

1fjl Nitrogen 1542 has 5 or more covalently bonded neighbors. test

Table 4.2: PDB files on which FIRST failed along with error messages (training and
test sets)

For each of the PDB files that FIRST was able to process, 9 files were outputted.

We were primarily interested in parsing the main results file. Example contents of

this file for the PDB ID 1oxy are given in Figure 4.1. The full file is much longer than

CHAPTER 4. RESULTS 45

what can be seen in the example, but most of the information of interest appears

near the top of the file, which can be seen in the figure.

Figure 4.1: Example of output in FIRST’s main results file

CHAPTER 4. RESULTS 46

FIRST also outputs a modified PDB file that, when displayed with PyMol (a

protein visualisation software), allows users to visually inspect the results of the

rigidity analysis. When viewed, different coloured region represent different rigid

components found by the program. Example visualisations of some sample proteins

are given in Figures 4.2a and 4.2b below.

The rigidity analysis for 1all almost partitions the domain into two equal halves,

while the rigidity results for PDB ID 1huw show that almost every α-helix was found

to be its own rigid structure.

(a) 1all (b) 1huw

Figure 4.2: Example of FIRST output visualised through PyMol, where different
colours represent different rigid components

CHAPTER 4. RESULTS 47

4.3 Comparison of baseline feature set and augmented

feature set

After running both the training and test sets for our baseline feature set (baseFS)

and our augmented feature set (augFS) on the machine learning (ML) algorithms

detailed in Section 2.4, we obtained the following results:

ML algorithm Accuracy on
baseFS (%)

Accuracy on
augFS (%)

% diff.

Näıve Bayes 58% 67% +9%
SVM (PolyKernel) 67% 69% +2%
DecisionTree 67% 67% 0%
Attribute Selected
Classifier

67% 73% +6%

Multiclass Classi-
fier

58% 69% +11%

Multilayer Percep-
tron

67% 67% 0%

Bagging 67% 67% 0%
AdaBoost 67% 75% +8%

Table 4.3: Results of architecture level classification on baseline and augmented
feature sets

As seen in Table 4.3, at worst, the added rigidity information did not change

performance, and, at best, resulted in as much as a 11% improvement in accuracy.

In the case of AdaBoost, we were able to reach a total accuracy of 75%.

The average improvement across the machine learning algorithms tested is 4.5%.

Chapter 5

Conclusions and Future Work

In this thesis, we looked at the three most populous architectures within the

Mainly Alpha class of CATH: orthogonal bundle, up-down bundle, and alpha/alpha

barrel. We developed training and test sets for a list of domains that fell within

these domains. We had two training and two tests sets—one which corresponded to

the baseline feature set and one which corresponded to the augmented feature set.

We trained 8 machine learning algorithms (Näıve Bayes, SVM, AdaBoost, bag-

ging, an attribute selected classifier, a multiclass classifier, a decision table, and a

multilayer perceptron) first on the baseline training feature set. We then tested this

model on our baseline testing feature set to obtain baseline accuracy scores for the

purposes of comparison. We performed the same process on our augmented feature

sets and obtained those accuracy scores.

Our results show that augmenting current standard protein quantisations with

rigidity information for whole proteins can improve classification accuracy, even on

a particularly difficult protein set. Since we included rigidity information for whole

proteins, this implies that the context in which a domain is found is a valuable

source of information with regard to classification.

Given the range of improvement across the eight machine learning algorithms

tested (0–11%), it is evident that the choice of algorithm is significant.

48

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 49

Future Work: This project was intended as an exploratory study of the appli-

cations of rigidity theory for protein classification. Consequently, the dataset we

tested is relatively small compared to the total number of domains available in

CATH alone. Furthermore, the rigidity information gathered is fairly basic.

Therefore, two obvious areas for further work are: to test our system on a larger

domain collection (ideally, on all the domains currently in CATH) and to gather

more sophisticated rigidity data. The latter may require some experimenting with

the energy cutoff when running the proteins through FIRST. One idea for further

tests is to try getting the largest n rigid clusters, instead of the single largest.

Another possible area of investigation would be to test the effect of rigidity data

of a single domain instead of the whole protein. This would, again, entail some

experimenting with the energy cutoff, as well as experimenting with running single

chains through FIRST. It may turn out that a handful of domains would have to

be analysed individually in order to determine the best value for the energy cutoff

and to determine how the chains should be inputted (e.g., if multiple chains should

be aggregated into a single chain that represents a domain, or if chains should be

analysed separately and the values for each chain then compiled into a single set of

values). Ideally, work in this area should focus on choosing information in such a

way that the requisite processes could be converted to an automated technique.

As we became more familiar with the domains in the architectures we studied,

we noticed that many domains in the same architecture had shape characteristics

distinctive to that architecture. It is then possible that classification accuracy could

be improved with the addition of some kind of shape information. For example,

if we could find an axis that characterises a rigid component, e.g., an α-helix, we

could compute the degree between the axes of several components. This could form

a subset of features in our feature set. It would also be possible to try obtaining

convex hull information for the overall shape of the domain.

It may also be worthwhile to see if adding rigidity information could improve

the accuracy of current automation at the class level of the CATH hierarchy.

Appendix A

Selected Python Scripts

Python scripts were written to gather the necessary PDB and FASTA files and to

automate the collection of data for the feature set.

Much of this data was collected from online tools, which required a programmatic

method for filling out and submitting online forms. The library mechanize was

used to simplify this process. It is necessary to install this library before running

many of the scripts that gather feature data. It may be downloaded from http:

//wwwsearch.sourceforge.net/mechanize/.

A.1 Getting Files from the PDB Server

The following script gets PDB and FASTA files from the PDB server. The IDs of

the proteins to download should be in a text file called allproteins.txt (or you

may choose to rename it). The file should use the CATH’s identification system for

the protein IDs, as the first four characters of this ID correspond to the protein’s

PDB ID.

To increase efficiency, the script will only download the necessary files if they

are not already present in the appropriate folder.

50

http://wwwsearch.sourceforge.net/mechanize/
http://wwwsearch.sourceforge.net/mechanize/

APPENDIX A. SELECTED PYTHON SCRIPTS 51

1##

PDB UTILITY

#

Fetches and downloads PDB and FASTA f i l e s from the PDB se rv e r .

#

6# Wil l only download those f i l e s i f they have not a l r eady been

downloaded .

#

#

Author : Courtney S ch i r f

11# Last Rev i s ion : 7 December 2010

##

import u r l l i b 2 #to open up URLs (cur rent as o f Python 3 . 0)

16import os . path #to t e l l i f a f i l e a l r eady e x i s t s

PROT FP = ’ newAlphaProteins . txt ’

21##

METHOD DEFINITIONS

##

26# Get the PDB (s t r u c t u r a l) f i l e s from the PDB se rv e r f o r every

pro t e in domain in our f i l e

##

def getPDBFiles () :

#read in a f i l e that has the names o f a l l the p ro t e in domains

31# th i s f i l e i s has the CATH names

p r o t e i n s f i l e = open (PROT FP, ’ r ’)

p d b i s s u e f i l e = open (’ pdbFi l e sEr ro r s . txt ’ , ’ a ’)

for l i n e in p r o t e i n s f i l e :

36#the f i r s t 4 cha ra c t e r s o f the CATH name are the domain ’ s PDB ID

pdbnum = l i n e [0 : 4]

#try to connect to the pdb s e r v e r

and get the f i l e f o r the cur rent PDB ID

41try :

APPENDIX A. SELECTED PYTHON SCRIPTS 52

#th i s i s the u r l f o r the pdb f i l e on the pdb s e r v e r

#th i s code i s j u s t f o r . pdb f i l e s , but we

can get other k inds o f f i l e s from the PDB se rv e r

#e . g . to get the FASTA code (sequence data)

46#http ://www. pdb . org /pdb/ f i l e s / f a s t a . txt ? s t r u c t u r e I dL i s t=pdbnum

#the PDB ID i s s t i l l the same :)

pdburl = ’ http ://www. pdb . org /pdb/ f i l e s / ’ + pdbnum + ’ . pdb ’

#copy pdb f i l e from s e r v e r to our own disk ,

51# but only i f we don ’ t a l r eady have i t

f i l ename = ’ pdb f i l e s / ’ + pdbnum + ’ . pdb ’

i f os . path . e x i s t s (f i l ename) :

print ’We a l ready have ’ + pdbnum + ’ . pdb ’ \

56+ ’ so we won\ ’ t get i t again ’

else :

print ”Gett ing ” + pdbnum

f i l e = u r l l i b 2 . ur lopen (pdburl)

f i l e o u t = open (f i l ename , ’w ’)

61f i l e o u t . wr i t e (f i l e . read ())

#c l o s e the f i l e

f i l e . c l o s e ()

66#i f we can ’ t connect to the s e r v e r (may mean the u r l i s wrong or

that the f i l e does not e x i s t) then catch the except ion

and pr in t a l i t t l e message .

except IOError :

print ’ That f i l e does not e x i s t .\n ’

71p d b i s s u e f i l e . wr i t e (pdbnum) ,

##

Get the FASTA (sequence) f i l e s from the PDB se rv e r f o r every

pro t e in domain in our f i l e

76##

def getFASTAFiles () :

#read in a f i l e that has the names o f a l l the p ro t e in domains

th i s f i l e i s has the CATH names

p r o t e i n s f i l e = open (PROT FP, ’ r ’)

81f a s t a i s s u e f i l e = open (’ f a s t aF i l e sE r r o r s . txt ’ , ’ a ’)

APPENDIX A. SELECTED PYTHON SCRIPTS 53

for l i n e in p r o t e i n s f i l e :

#the f i r s t 4 cha ra c t e r s o f the CATH name are the domain ’ s PDB ID

pdbnum = l i n e [0 : 4]

86

#try to connect to the pdb s e r v e r

and get the f i l e f o r the cur rent PDB ID

try :

#Let ’ s get the FASTA f i l e , but only i f we don ’ t a l r eady have i t

91f a s t a u r l = ’ http ://www. pdb . org /pdb/ f i l e s / f a s t a . txt ? ’ \

+ ’ s t r u c t u r e I dL i s t=’ + pdbnum

f i l ename2 = ’ f a s t a f i l e s / ’ + pdbnum + ’ . f a s t a ’

i f os . path . e x i s t s (f i l ename2) :

96print ’We a l ready have ’ + pdbnum + ’ . f a s t a so we won\ ’ t ’ \

+’ get i t again ’

else :

print ”Gett ing FASTA f i l e f o r ” + pdbnum

f i l e = u r l l i b 2 . ur lopen (f a s t a u r l)

101f i l e o u t = open (f i l ename2 , ’w ’)

f i l e o u t . wr i t e (f i l e . read ())

f i l e . c l o s e ()

#i f we can ’ t connect to the s e r v e r (may mean the u r l i s wrong or

106# that the f i l e does not e x i s t) then catch the except ion

and pr in t a l i t t l e message .

except IOError :

print ’ That f i l e does not e x i s t .\n ’

f a s t a i s s u e f i l e . wr i t e (pdbnum) ,

111

##

Check each PDB f i l e and pr i n t out a message i f the s t r u c tu r e

was found through X−ray c ry s t a l l o g r aphy (no hydrogen atoms)

116##

def isPDBCrysto () :

#read in a f i l e that has the names o f a l l the p ro t e in domains

th i s f i l e i s has the CATH names

p r o t e i n s f i l e = open (PROT FP, ’ r ’)

121

#c r ea t e a f i l e to hold the IDs o f the p r o t e i n s that are

made us ing X−ray c ry s t a l l o g r aphy (and thus r e qu i r e

APPENDIX A. SELECTED PYTHON SCRIPTS 54

hydrogens to be added)

x r a y f i l e = open (’ x raypro t e in s . txt ’ , ’ a ’)

126

TEMP counter

count = 0

for l i n e in p r o t e i n s f i l e :

131pdbnum = l i n e [0 : 4]

f i l ename = ’ pdb f i l e s / ’ + pdbnum + ’ . pdb ’

i f os . path . e x i s t s (f i l ename) :

f i l e = open (f i l ename , ’ r ’)

136content = f i l e . read ()

i sCrys to = (content . f i nd (’X−RAY’)) != −1

i f i sCry s to :

141print ’The pdb f i l e ’ + pdbnum + ’ was made by X−ray ’ \

+ ’ c ry s t a l l o g r aphy ’

x r a y f i l e . wr i t e (pdbnum + ’ \n ’)

count += 1

#pr in t count

146

f i l e . c l o s e ()

print ’ There were ’ + s t r (count) + ’ matches . ’

151### END METHOD DEFINITIONS

##

class PDBGetter :

156

def main () :

print s t r . upper (’ Fetching PDB f i l e s ’)

getPDBFiles ()

print ’ \n ’

161print s t r . upper (’ Fetching FASTA f i l e s ’)

#pr in t ’\n ’

getFASTAFiles ()

print ’ \n ’

APPENDIX A. SELECTED PYTHON SCRIPTS 55

print s t r . upper (’ Checking i f made by c ry s t a l l o g r aphy ’)

166#pr in t ’\n ’

isPDBCrysto ()

i f name == ’ ma in ’ :

main ()

A.2 Finding all Chains for a Given Domain

The following script uses the FASTA files to find all the chain letters and/or numbers

for a given domain. It writes the domain’s PDB number and list of chains to a new

file.

This is useful for later calculations involving the domain as a whole, instead of

by chain.

ChainFinder

output f i l e format : pdbnum , ChainLetter , ChainLetter , ChainLetter , . . .

import f i l e i n p u t

5import os . path

import re

FASTA DIR = ” f a s t a f i l e s /”

10OUT FP = ”domainchains . txt ”

IN FP = ” . . / a l l−alpha−p ro t e i n s . txt ” #”newAlphaProteins . txt ”

def par s eFas taF i l e (f i l e p a t h , pdbnum) :

15print f i l e p a t h

i f not os . path . e x i s t s (f i l e p a t h) :

return None

20out = pdbnum + ” , ”

inputobj = f i l e i n p u t . input ([f i l e p a t h])

regex = ”>\w∗”

r e g g i e = re . compi le (regex)

APPENDIX A. SELECTED PYTHON SCRIPTS 56

25

for l i n e in inputobj :

a = r e g g i e . s earch (l i n e)

i f a i s not None :

30out += l i n e [6] + ” , ”

inputobj . c l o s e ()

out = out [0 : l en (out)−1]

print out

35return out

class ChainFinder :

def main () :

40a l l p r o t e i n s = open (IN FP , ” r ”)

#c h a i n s f i l e = open (OUT FP, ”a ”)

c h a i n s f i l e = open (OUT FP, ”w”)

for l i n e in a l l p r o t e i n s :

45su c c e s s = par s eFas taF i l e (FASTA DIR + l i n e [0 : 4] + ” . f a s t a ” , l i n e [0 : 4])

i f su c c e s s i s None :

print ”Something went wrong . ”

else :

c h a i n s f i l e . wr i t e (su c c e s s)

50c h a i n s f i l e . wr i t e (”\n”)

print ”\n”

a l l p r o t e i n s . c l o s e ()

c h a i n s f i l e . c l o s e ()

55

i f name == ’ ma in ’ :

main ()

A.3 Finding the Size of the Largest Rigid Cluster

The following script uses the result of the createXML.pl script to find the size of the

largest rigid cluster. It uses the minidom module to parse the XML file. However,

this requires reading the whole file into memory, which slows down the script if

APPENDIX A. SELECTED PYTHON SCRIPTS 57

the files are large. So, if the file is greater than 20 MBs, FirstXMLParser.py will

essentially create a new file that only copies over the essential XML tags.

import f i l e i n p u t

import os

3import re

from time import s l e e p

import types

from xml .dom import minidom

8

PROBLEMS FP = ”xmlParserProblemDomains4 . txt ”

STATS FP = ”xmlParserStats4 . txt ”

13def f i ndB i gg e s tC lu s t e r () :

#f i l e = open (” . . / pythoncode/ a l l p r o t e i n s . txt ” , ” r ”)

f i l e = open (” . . / a l l−alpha−p ro t e i n s . txt ” , ” r ”)

#Create both f i l e s now , because we ’ l l be doing an append l a t e r .

18p r ob l ems f i l e = open (PROBLEMS FP, ”w”)

p r ob l ems f i l e . c l o s e ()

s t a t s f i l e = open (STATS FP, ”w”)

s t a t s f i l e . c l o s e ()

23for l i n e in f i l e :

pdbnum = l i n e [0 : 4]

#f i l e p a t h = ” . . / pdb merged FIRST output /” + pdbnum + ”/” + pdbnum + ”

postPG BBH . xml”

f i l e p a t h = ” . . / pdb a l pha s f i r s t ou tpu t /” + pdbnum + ”/” + pdbnum + ”

postPG BBH . xml”

28try :

print f i l e p a t h

s i z e = os . path . g e t s i z e (f i l e p a t h)

print ” f i l e s i z e : ” + s t r (s i z e)

33mbs = (s i z e /(1024∗1024 .0))

print ” F i l e = %0.1 f MB” % (mbs)

i f mbs > 15 :

APPENDIX A. SELECTED PYTHON SCRIPTS 58

print ”The f i l e f o r ” + pdbnum + ” i s g r e a t e r than 10 MBs. ”

38print ”Prepar ing to c r e a t e shortened f i l e . ”

newf i l epath = f i l e p a t h [0 : l en (f i l e p a t h)−l en (” . xml”)] + ” mod . xml”

print newf i l epath

43n ew f i l e = open (newf i l epath , ”w”)

regex = ”<points>”

r e g g i e = re . compi le (regex)

inputobj = f i l e i n p u t . input ([f i l e p a t h])

48for l i n e in inputobj :

a = r e g g i e . s earch (l i n e)

i f a i s None :

n ew f i l e . wr i t e (l i n e)

53else :

n ew f i l e . wr i t e (”\ t</BBH>”)

break

inputobj . c l o s e ()

58f i l e p a t h = newf i l epath

#Parse the XML document

xmldoc = minidom . parse (f i l e p a t h)

63#Get a l l a l i s t o f a l l ” po intSet ” e lements

po i n tS e tL i s t = xmldoc . getElementsByTagName (’ po intSet ’)

#Var iab le to hold the s i z e o f the cur rent b i g g e s t c l u s t e r

b i gC lu s t e r = 0 ;

68

for ps in po in tS e tL i s t :

numChildNodes = len (ps . ch i ldNodes)

i f numChildNodes > b igC lu s t e r :

73b i gC lu s t e r = numChildNodes

print ”The b i gg e s t c l u s t e r was : ” + s t r (b i gC lu s t e r) + ”\n”

i f b igC lu s t e r == 0 :

APPENDIX A. SELECTED PYTHON SCRIPTS 59

78p r ob l ems f i l e = open (PROBLEMS FP, ”a”)

p r ob l ems f i l e . wr i t e (pdbnum + ”\n”)

p r ob l ems f i l e . c l o s e ()

else :

s t a t s f i l e = open (STATS FP, ”a”)

83s t a t s f i l e . wr i t e (pdbnum + ” , ” + s t r (b i gC lu s t e r) + ”\n”)

s t a t s f i l e . c l o s e ()

except IOError as e r r o r :

pass

88

s l e e p (2)

f i l e . c l o s e ()

93class FirstXMLParser :

def main () :

f i ndB i gg e s tC lu s t e r ()

i f name == ’ ma in ’ :

98main ()

Appendix B

Selected Bash Scripts

B.1 Batch Processing using REDUCE (Hydrogen Bond

Additions)

The following script runs all proteins whose structures were resolved using X-

ray crystallography (and consequently do no have hydrogen bond data) through

Kinemage’s REDUCE software.

#!/ bin /bash

2

while read l i n e

do

Can ’ t have spaces around the equal s i gn . Otherwise , i t w i l l

think i t ’ s a command and try to run a program .

7#f i l ename =”. ./ pdb f i l e s r e du c ed /${ l i n e : 0 : 4 } . pdb ” ;

f i l ename=” . . / pdb alphas /${ l i n e : 0 : 4 } . pdb” ;

echo ”Running REDUCE on $f i l ename ” ;

. / reduce . 3 . 0 3 . 0 7 0 3 0 7 . macosx . i386 $ f i l ename | t e e ” . . / reduce output /${ l i n e

: 0 : 4 } reduceOutput . txt ”

done < ” . . / alpha−xraypro t e in s . txt ”

12#done < ” . . / pythoncode/ xraypro t e in s . txt ”

60

APPENDIX B. SELECTED BASH SCRIPTS 61

B.2 Batch Processing for FIRST Software

The following script runs all protein domains through FIRST using -1.0 kcal/mol as

the energy cutoff. All output options are turned on (e.g., list of covalent bonds, a

list of hydrophobic tethers). To allow batch processing, all interactions are turned

off.

#!/ bin /bash

3#Create a d i r e c t o r y f o r the output f i l e s i f one does not a l r eady e x i s t

The f o l lwo i n g check w i l l NOT work f o r a l i a s e s / sho r t cu t s / symbol ic l i n k s

outd i r=” f i r s t d ebug ou tpu t ”

i f [! −d ” $outd i r ”] ; then

mkdir ” $outd i r ”

8f i

#The name o f the d i r e c t o r y where the PDB f i l e s are s to r ed .

d i r e c t o r y=”pdb merged” ;

13#The name o f the f i l e conta in ing the PDB IDs o f the domains to be run

pdb f i l e=” . . / pythoncode/ a l l p r o t e i n s . txt ” ;

while read l i n e

do

18pdbnum=”${ l i n e : 0 : 4 } ” ;

f i l ename=” $d i r e c t o r y /$pdbnum . pdb” ;

#Create d i r e c t o r i e s f o r each o f the PDB f i l e s .

Must do t h i s because some o f the non−standard output f i l e s from

23# FIRST (e . g . , hbonds . out) have the same name de sp i t e what PDB f i l e

i s g iven as input , so those f i l e s w i l l c ons tant ly be over−wr i t t en

pdbdir=”$pdbnum” ;

i f [! −d ”$pdbnum”] ; then

28echo ” c r e a t i n g a new d i r e c t o r y named $pdbnum”

cd ” $d i r e c t o r y ”

mkdir ”$pdbnum”

cd ” . . ”

33

APPENDIX B. SELECTED BASH SCRIPTS 62

#Move the PDB f i l e i n to the new f o l d e r which bears i t s name

mv ” $ f i l ename ” ” $d i r e c t o r y /$pdbnum/$pdbnum . pdb”

else

#I f the d i r e c t o r y a l r eady ex i s t s , j u s t p r i n t a message say ing so

38echo ”The d i r e c t o r y $pdbnum al ready e x i s t s ”

f i

#Re−d i r e c t the path to r e f l e c t the new changes

f i l ename=” $d i r e c t o r y /$pdbnum/$pdbnum . pdb”

43

#Run FIRST with a l l o f the output opt ions on and a l l i n t e r a c t i o n s o f f

echo ”Running FIRST on $pdbnum” ;

. /FIRST−6.2.1−bin−32−gcc3 .4.3−none/FIRST −L /home/ c s c h i r f /Documents/ t h e s i s /

f i r s t /FIRST−6.2.1−bin−32−gcc3 .4.3−none ” $ f i l ename ” −E −1.0 −hbout −phout

−covout −non | t e e ” f i r s t o u t p u t /$pdbnum−f i r s t −out . txt ”

done < ” $pdb f i l e ”

Appendix C

Tutorial on Using the Scripts

C.1 Overview

The following sections explain in more detail the scripts used to collect and run the

analysis described in Chapter 3 and describe how to run the analysis on a different

set of proteins.

An executable bash script (runall.sh), contains all the right commands in the

right order, but it is possible (and, indeed, likely) that something may go amiss

during some step which will prevent subsequent steps from executing correctly or

at all. We recommend that you try running this script on a short set of proteins to

get a feel for how it works and where there may be problems with your own dataset

before running it on a list of 100+ proteins.

Output on the command line should help you figure out which script failed

(possible where it failed, as well). If this happens, we recommend you run that script

and the subsequent ones individually. Table C.1 contains a summary of each step

and scripts and files necessary to complete it. Furthermore, Table C.2 summarises

for each step, which files are required for input and which should be expected as

output.

Additionally, as of May 2011, FIRST does not run on the Mac platform, so

either the scripts should be run on a Linux-box or the FIRST analysis should be

63

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 64

done separately (on a Linux platform) from the rest of the analayses. Naturally,

lines in the runall.sh file can be commented out to achieve partial automation.

It must be noted that the scripts to compile and format this data have been less

well written, and are heavily dependent on what software we used to perform the

machine learning, as well as where we had gotten our secondary structure informa-

tion from. So, you might need to write your own script to do this compilation and

formatting.

However, the various files we used to compile this information have most of

the necessary core functionality, and could easily be re-worked to fit a different

application. These files are AugRigidty.py, Domain.py (a Python class), and

Controller.py. The AuxMethods.py file should also prove helpful.

C.2 Preliminary steps

Before we can collect any secondary structure or rigidity data, we first need to gather

all of our initial files. This includes creating a list of the proteins we want and then

downloading the corresponding structure and amino acid composition files (PDB

and FASTA, respectively).

C.2.1 Creating a list of the proteins

The most important file in this process is the allproteins.txt file, which contains

a list of all the proteins on which the analyses are to be run. In this file, each

protein number must be written on a new line. The protein number can either the

CATH number or the PDB ID, because the first 4 characters of the CATH number

is the PDB ID (and the script will only read the first 4 characters of the line).

Additionally, there should be a blank line at the end of the file since several bash

scripts read this file.

If you wish to change the name of the file or put this file in a directory different

from that of the scripts (which we discourage), then you will have to change some

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 65

of the source code to reflect the change.

You’ll probably also need to create another version of this file, but where each

line will also contain the CATH architecture number for that protein (e.g., 1.10)

separated from the PDB ID/CATH number by white space; we used tabs. This file

must be called allproteins-annotated.txt, and should be in the same directory

as allproteins.txt. This information should be used to create the final data

compilation.

Our allproteins file was created by hand.

C.2.2 Collecting the PDB and FASTA files

After the allproteins file has been made, you’re ready to download the PDB and

FASTA files. If you’re running this from the runall.sh script, a directory named

output will be created for you. If not, then you should create a directory with that

name.

Then run the pdbUtitlity.py script. This script should be in the same directory

as the allproteins file. It will create directories in the output folder called pdbfiles

and fastafiles, and query the PDB server for both files and place them into the

appropriate directories. If the script cannot, for whatever reason, find or obtain

either a PDB or FASTA file, it will log that information in pdbFileErrors.txt and

fastaFileErrors.txt, respectively.

This script will also look at the notes sections in each PDB files to determine if

the protein’s structure was resolved using X-ray crystallography. Recall from Section

3.4.3 that proteins for which this is true do not contain hydrogen bond information in

their PDB files, and that this data will have to be added by REDUCE in a later step.

Proteins that fall under this category are logged in a file called xrayproteins.txt,

which is used later.

All of the log files are in the output directory.

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 66

C.2.3 Finding the chain names for each protein

If you are going to gather secondary structure information as well as rigidity in-

formation, you will need to also run the ChainFinder.py script, which parses the

FASTA files to find out the names of each chain for each protein in the set and

compiles that information into a file called domainchains.txt.

C.3 Collecting secondary structure information from

ProtScale

If you would like to gather secondary structure information from ProtScale, run the

ProtScaleFormCompleter.py. This script will create a folder called prot_scale_output.

Within this directory, it will create a new folder or each PDB ID of the form

$pdbID_protscale1 just before it gathers information for that protein.

This script fills out the ProtScale form for each protein chain (the server can only

analyse one chain at a time) and writes the output to a file within its $pdbID_protscale

folder of the form $pdbID$chainID_$scaleName.

Allow lots of time for this script, as it takes at least several hours to run. Our

first time on this step took a good 3 days to complete. You also might need to

restart the script at a different point in the allproteins file, because sometimes the

ExPASy server will be rebooted.

C.4 Collecting rigidity data

C.4.1 Prepping the data with REDUCE

Run the reduce_batch.sh script, which relies on the xrayproteins.txt file created

by the pdbUtility.py script. Because REDUCE changes the actual PDB files, we

suggest making a copy of the PDBs and run REDUCE on the copies. If you are
1The $ symbol will be used to refer to variable names.

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 67

running the runall.sh file, then this will be done for you. The new directory is

called pdbfiles_reduced and is found in the output directory.

All of REDUCE’s output is logged into separate files for each protein and saved

to a new directory called reduce_output. If an error occurs at this step, these

output files might contain information as to why.

Then you will need to merge the REDUCE’d PDBs with the non-REDUCE’d

PDBs. This step is accomplished with the mergeReducedAndRegPDBs.py, which

creates a new directory called pdbfiles_merged, and copies over the PDB files

from the appropriate directories.

C.4.2 Run FIRST

Once we’ve REDUCE’d our protein files, we are ready to run FIRST. As mentioned

above, this software does not work on the Mac platform, so you’ll have to find a

Linux machine for this step.

The magical script you’ll need to run is first_batch.sh, which will create a

new directory within the pdbfiles_merged folder for each domain. It will then

copy the appropriate PDB file into each directory and then run the analysis on the

PDB file. The reason for this is that the filenames for optional FIRST output are

not distinguished by PDB ID, so when running a batch script, the same file will be

overwritten multiple times.

C.4.3 Get the size of the largest rigid cluster for each protein

Run the RunAllCreateXML.sh file to create the body-bar-hinge (BBH) XML files

for each protein in the set. This file requires the createXML.pl file, so make sure

they’re both in the same directory (or change the source code).

This script will create a file of the form $pdbID_postPG_BBH.xml, which is found

in the individual PDB folders.

Then parse those files with the FirstXMLParser.py file. If the original XML

file is over 10 MBs in size, the truncated version of the file will be saved in the form

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 68

$pdbID_postPG_BBH_mod.xml. The original file is left untouched.

The parser script will create a new directory called xml_work in the output

directory. Within that directory, it creates two new files—xmlParserStats.txt

and xmlParserProblemDomains.txt. The first of these contains the largest rigid

cluster data, where each line is of the form $pdbID,$sizeOfLargestRigidCluster.

The second logs any files the script had trouble parsing.

C.4.4 Parse the rest of the FIRST output

Run the RigidityDataCalculator.py file to compile all the rigidity data for each

protein into a single file called RigidityData.txt. The script requires the xmlParserStats

file created in the previous step in order to get the size of the largest rigid cluster

for each protein.

This file is comma-delimited, where the first element of each line is the PDB ID

followed by each of the rigidity values. The order these values are in is noted in the

comments section of the script.

Errors with calculating this data is logged in the ridigityDataCalcProblems.txt

file. Outputted files are put in a new directory called rigidty_output.

C.4.5 Compiling the output into a single file

As mentioned above, this is a more application-specific process, so we’ll leave it to

the user to complete this last part.

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 69

C.5 Reference charts

C.5.1 Subprocesses reference

The following chart contains the basic subprocesses in order of how they should be

run.

No. Step Description Required files

1 Create the allpro-

teins file

Create a file with the

PDB ID or CATH

number of every pro-

tein in your set

none

2 Collect the PDB &

FASTA files

allproteins.txt

pdbUtility.py

3 Run ChainFinder Determine the chain

labels for proteins

allproteins.txt

ChainFinder.py

4 Run ProtScale

script

Run and collect sec-

ondary structure infor-

mation

allproteins.txt

ProtScaleFormCompleter.py

5 Run REDUCE Add back hydrogen

bonds to proteins

whose structures were

resolved using X-ray

crystallography

allproteins.txt

xrayproteins.txt

6 Merge PDBs Merge the non-

REDUCE’d and

REDUCE’d PDB files

into a single location

allproteins.txt

mergeReducedAndRegPDBs.py

7 Run FIRST Collect rigidity data allproteins.txt

first_batch.sh

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 70

8 Create XML files

from FIRST out-

put

allproteins.txt

createXML.pl

runAllCreateXML.sh

9 Parse XML files Get the largest rigid

cluster from each pro-

tein by reading the

XML file

allproteins.txt

FirstXMLParser.py

10 Parse FIRST out-

put and compile

rigidity data

allproteins.txt

RigidityDataCalculator.py

Table C.1: Reference chart for running this analysis on a given set of proteins

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 71

C.5.2 I/O reference

The following chart summarises the input and output (files and directories) for each

step.

No. Step Input files Output files

11 Create the all-

proteins file

none allproteins.txt

allproteins-annotated.txt

12 Collect the

PDB &

FASTA files

allproteins.txt

pdbUtility.py

pdbfiles fastafiles

xrayproteins.txt

pdbFileErrors.txt

fastaFileErrors.txt

13 Run

ChainFinder

allproteins.txt

ChainFinder.py

domainchains.txt

14 Run ProtScale

script

allproteins.txt

ProtScaleFormCompleter.py

prot_scale_output (and appro-

priate files and subdirectories)

15 Run REDUCE allproteins.txt

xrayproteins.txt

alters PDB files

16 Merge PDBs allproteins.txt

mergeReducedAndRegPDBs.py

pdbfiles_merged

17 Run FIRST allproteins.txt

first_batch.sh

individual protein folders, appro-

priate files from FIRST output

18 Create XML

files from

FIRST output

allproteins.txt

createXML.pl

runAllCreateXML.sh

_postPG_BBH.xml files

19 Parse XML

files

allproteins.txt

FirstXMLParser.py

xml_work xmlParserStats.txt

xmlParserProblemDomains.txt

APPENDIX C. TUTORIAL ON USING THE SCRIPTS 72

20 Parse FIRST

output and

compile rigid-

ity data

allproteins.txt

RigidityDataCalculator.py

ridigity_output

RigidityData.txt

rigidtyDataCalcProblems.txt

Table C.2: Reference chart for the input and output files and directories for each
step

Bibliography

[1] Nickolai Alexandrov and Ilya Shindyalov. Pdp: Protein domain parser. Bioin-

formatics, 19(3):429–430, 2003.

[2] Erez Berkovich, Hillel Pratt, and Moshe Gur. Face recognition with biologically

motivated boost features. In Cognitive Vision, 4th International Workshop,

ICVW. Springer, May 2008.

[3] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

[4] Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.

[5] Christopher J. C. Burges. A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2:121–167, 1998.

[6] Neil A. Campbell and Jane B. Reece. Biology. Benjamin Cummings, 7th

edition, 2004.

[7] I-Fang Chung, Chuen-Der Huang, Ya-Hsin Shen, and Chin-Teng Lin. Recogni-

tion of structure classification of protein folding by NN and SVM hierarchical

learning architecture. In ICANN/ICONIP’03 Proceedings of the 2003 joint

international conference on Artificial neural networks and neural information

processing, pages 1159–1167. Springer-Verlag, 2003.

[8] Pietro Cozzini, Glen E. Kellogg, Francesca Spyrakis, Donald J. Abraham,

Gabriele Costantino, Andrew Emerson, Francesca Fanelli, Holger Gohlke,

Leslie A. Kuhn, Garrett M. Morris, Modesto Orozco, Thelma A. Pertinhez,

73

BIBLIOGRAPHY 74

Menico Rizzi, and Christoph A. Sotriffer. Target flexibility: An emerging

consideration in drug discovery and design. Journal of Medical Chemistry,

51(20):6237–6255, October 2008.

[9] Gordon M. Crippen. The tree structural organization of proteins. J. Mol. Bio.,

126(3):315–332, December 1978.

[10] Alison L. Cuff, I. Sillitoe, Tony Lewis, Andrew B. Clegg, Robert Rentzsch,

Nicholas Furnham, Marialuisa Pellegrini-Calace, David Jones, J. M. Thorn-

ton, and C. A. Orengo. Extending CATH: increasing coverage of the protein

structure universe and linking structure with function. Nucleic Acids Research,

39:420–426, November 2010.

[11] Alison L. Cuff, I. Sillitoe, Tony Lewis, Oliver C. Redfern, Richard Garratt, J. M.

Thornton, and C. A. Orengo. The CATH classification revisited: architectures

reviewed and new ways to characterize structural divergence in superfamilies.

Nucleic Acids Research, 37:310–314, 2009.

[12] Chris Ding and Inna Dubchak. Multi-class protein fold recognition using sup-

port vector machines and neural networks. Bioinformatics, 17(4):349–358, 2001.

[13] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, 2001.

[14] Michael F. Thorpe et al. FIRST: Floppy Inclusions and Rigid Substructure

Topography. http://flexweb.asu.edu/software/first/.

[15] Yoav Freund and Robert E. Schapire. Experiments with a new boosting al-

gorithm. In Thirteenth International Conference on Machine Learning, pages

148–156, 1996.

[16] Yoav Freund and Robert E. Schapire. A short introduction to boosting. Journal

of Japanese Society for Artificial Intelligence, 14(5):771–780, September 1999.

[17] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins, R. D. Appel,

and A. Bairoch. Protein identification and analysis tools on the expasy server.

BIBLIOGRAPHY 75

In John M. Walker, editor, The Proteomics Protocols Handbook, pages 571–607.

Humana Press, 2005.

[18] Holger Gohlke, Leslie A. Kuhn, and David A. Case. Change in protein flexibility

upon complex formation: analysis of Ras-Raf using molecular dynamics and a

molecular framework approach. Proteins, 56:322–337, 2004.

[19] Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial Rigidity,

volume 2 of Graduate Studies in Mathematics. American Mathematical Society,

1993.

[20] Jenny Gu and Philip E. Bourne, editors. Structural Bioinformatics. John Wiley

and Sons, Inc, Hoboken, New Jersey, second edition, 2009.

[21] Jayavardhana Gubbi, Alistair Shilton, and Marimuthu Palaniswami. Kernel

methods in protein structure prediction. In Yan-Qing Zhang and Jagath C. Ra-

japakse, editors, Machine Learning in Bioinformatics, chapter 9. Wiley, 2009.

[22] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-

mann, and Ian H. Witten. Weka. In The WEKA data mining software: an

update, volume 11 of SIGKDD Explorations, 2009.

[23] Oktie Hassanzadeh. Automated protein structure classification: A survey. Uni-

versity of Toronto, January 2008.

[24] B. M. Hespenheide, A. Rader, Michael F. Thorpe, and Leslie A. Kuhn. Identify-

ing protein folding cores from the evolution of flexible regions during unfolding.

Journal of Molecular Graphics and Modelling, 21:195–207, 2002.

[25] Uwe Hobohm and Chris Sander. Enlarged representative set of protein struc-

tures. Protein Science, 3:522–524, 1994.

[26] Uwe Hobohm, Michael Scharf, Reinhard Schneider, and Chris Sander. Selection

of representative protein data sets. Protein Science, 1:409–417, 1992.

BIBLIOGRAPHY 76

[27] Sujun Hua and Zhirong Sun. A novel method of protein secondary structure

prediction with high segment overlap measure: support vector machine ap-

proach. J. Mol. Bio., 308:397–407, 2001.

[28] Donald Jacobs, A. Rader, M. Thorpe, and Leslie Kuhn. Protein flexibilty

predictions using graph theory. Proteins, 44:150–165, 2001.

[29] Donald J. Jacobs, Leslie A. Kuhn, and Michael F. Thorpe. Flexible and rigid

regions in proteins. Rigidity Theory and Applications, pages 357–384, 1999.

[30] Sotiris B. Kotsiantis. Supervised machine learning: A review of classification

techniques. Informatica (Slovenia), 31(3):249–268, 2007.

[31] Gerard Laman. On graphs and rigidity of plane skeletal structures. Journal of

Engineering Mathematics, 4:331–340, 1970.

[32] Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse graphs.

Discrete Mathematics, 308(8):1425–1437, 2008.

[33] Loredana Lo Conte, Bart Ailey, Tim J. P. Hubbard, Steven E. Brenner,

Alexey G. Murzin, and Cyrus Chothia. SCOP: A structural classification of

proteins database. Nucleic Acids Research, 28(1):257–259, 2000.

[34] A. D. Michie, C. A. Orengo, and J. M. Thornton. Analysis of domain structural

class using an automated class assignment protocol. J. Mol. Bio, 262:168–185,

1996.

[35] Natasha Mohanty and Audrey Lee-St. John. Shape-based image classification.

CS89 Final Project at UMass Amherst.

[36] Sreerama K. Murthy. Automatic construction of decision trees from data: A

multi-discipline survey. Data Mining and Knowledge discovery, 2:345–389, 1998.

[37] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Jour-

nal London Math. Soc., 36:445–450, 1961. Characterization graphs containing k

BIBLIOGRAPHY 77

edge-disjoint spanning trees with counting properties (including (k, k)-sparsity)

and partition results).

[38] C. A. Orengo, Nigel P. Brown, and William R. Taylor. Fast structure alignment

for protein databank searching. Proteins, 14:139–167, 1992. difficult paper to

get ahold of. there is a scanned copy attached to this entry.

[39] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M.

Thornton. CATH: A hierarchic classification of protein domain structures.

Structure, 5:1093–1108, August 1997.

[40] S. K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets, and classification.

IEEE Transactions on Neural Networks, 3(5):683–697, September 1992.

[41] F. M. G. Pearl, C. F. Bennett, J. E. Bray, A. P. Harrison, N. Martin, A. Shep-

herd, I. Sillitoe, J. M. Thornton, and C. A. Orengo. The CATH database:

an extended protein family resource for structural and functional genomics.

Nucleic Acids Research, 31(1):452–455, 2003.

[42] Jane S. Richardson. The anatomy and taxonomy of protein structure. In

Advances in protein chemistry, volume 34. Academic Press, Inc., 1981.

[43] Asim S. Siddiqui and Geoffrey J. Barton. Continuous and discontinuous do-

mains: An algorithm for the automatic generation of reliable protein domain

definitions. Protein Science, 4:872–884, 1995.

[44] Swiss Institute of Bioinformatics. ExPASy Proteomics Server, 2005.

[45] H. Takagi, H. Shiomi, H. Ueda, and H. Amano. A novel analgesic dipeptide

from bovine brain is a possible met-enkephalin releaser. Nature, 282(5737):410–

2, November 1979.

[46] Tiong-Seng Tay. Rigidity of multi-graphs. I. Linking rigid bodies in n-space.

Combinatorial Theory Series, B(26):95–112, 1984.

BIBLIOGRAPHY 78

[47] Tiong-Seng Tay and Walter Whiteley. Recent advances in the generic rigidity

of structures. Structural Topology, 9:31–38, 1984.

[48] The Orengo Group. CATH. Website, 2008. http://www.cathdb.info/.

[49] William T. Tutte. On the problem of decomposing a graph into n connected

factors. Journal London Math. Soc., 142:221–230, 1961. Characterization of

graphs that can be decomposed into k edge-disjoint spanning trees with (k,

k)-sparsity.

[50] David Whitford. Proteins: structure and function. John Wiley and Sons, Ltd.,

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England,

2005.

[51] J. Michael Word, Simon C. Lovell, Jane S. Richardson, and David C. Richard-

son. Asparagine and glutamine: Using hydrogen atom contacts in the choice of

side-chain amide orientation. J. Mol. Biol., 285:1735–1747, 1999.

[52] Mohammed J. Zaki and Christopher Bystroff, editors. Protein structure pre-

diction. Humana Press, 2nd edition, 2008.

[53] Nela Zavaljevski, Fred J. Stevens, and Jaques Reifman. Support vector ma-

chines with selective kernel scaling for protein classification and identification

of key amino acid positions. Bioinformatics, 18(5):689–696, 2002.

http://www.cathdb.info/

	Introduction
	Problem statement
	Related Work
	Automated Protein Classification
	Machine Learning in Automated Protein Classification
	Rigidity Analysis of Proteins

	Contributions
	Structure of thesis

	Background
	Protein Biology
	The CATH System
	Rigidity Theory
	Machine Learning

	Methods
	Choosing a classification hierarchy
	Choosing the rigidity information
	An overview of the analysis
	Implementation details
	Choosing training and test sets
	Collecting the baseline feature set
	Augmenting the baseline feature set with rigidity data
	Running the training and testing sets

	Results
	Comparison of baseline feature sets
	Results from FIRST
	Comparison of baseline feature set and augmented feature set

	Conclusions and Future Work
	Selected Python Scripts
	Getting Files from the PDB Server
	Finding all Chains for a Given Domain
	Finding the Size of the Largest Rigid Cluster

	Selected Bash Scripts
	Batch Processing using REDUCE (Hydrogen Bond Additions)
	Batch Processing for FIRST Software

	Tutorial on Using the Scripts
	Overview
	Preliminary steps
	Creating a list of the proteins
	Collecting the PDB and FASTA files
	Finding the chain names for each protein

	Collecting secondary structure information from ProtScale
	Collecting rigidity data
	Prepping the data with REDUCE
	Run FIRST
	Get the size of the largest rigid cluster for each protein
	Parse the rest of the FIRST output
	Compiling the output into a single file

	Reference charts
	Subprocesses reference
	I/O reference

