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ABSTRACT

Understanding domain wall (DW) motion in ferromagnetic nanostructures is crucial for

realizing proposed magnetic data storage and logic devices. Simulations o↵er time-wise

and cost-wise e�ciency when testing theories of magnetism, which structure the nucleation,

movement, and annihilation of DWs. During my work with the Aidala Group as summarized

by this thesis, we have explored two topics: One constituted the e↵ects of curvature on DW

motion in elliptical nanorings, and the other did the nucleation of 360� DWs in a wire by

using a local circular field.

In this thesis, we investigate the e↵ects of curvature on DW pinning and motion by studying

elliptical rings via micromagnetic simulations.1 Elliptical rings with constant width have

varying curvature: The minor axis has the lowest curvature and the major the greatest. We

can nucleate DWs anywhere along the ellipse by applying the appropriate uniform magnetic

field. However, DWs do not pin at all locations along the ellipse once the field is removed.

We study the pining and depinning of DWs by applying a slowly increasing elliptical mag-

netic field to determine the magnitude of the field at which DWs begin to move. By varying

the major to minor axis ratio, we examine the e↵ects of curvature on DW pinning: A larger

field is requisite for moving DWs in regions of higher curvature (near the major axis) than

that for lower curvature (near the minor axis). Overall, increasing the major to minor axis

ratio of elliptical nanorings requires an increasing field strength to depin the DWs along the

major axis.

Furthermore, our simulations demonstrate the feasibility of nucleating a 360� DW at a

specific location along a ferromagnetic wire by applying a local circular field that is cen-

3



F. I. Kaya

tered in close proximity to the wire. We simulate the field strength as if from a current

carrying wire, which we can experimentally realize by passing current through the tip of

an AFM.2 The successful nucleation of a 360� DW depends on the dimensions of the fer-

romagnet, on the strength of the circular field, and on the distance of the center of the

field from the wire. Once a 360� is nucleated, its position shifts with time. We use notches

to pin the 360� DWs. We explore the optimal size and spacing of notches that allow the

greatest packing density with control over the nucleation and annihilation of individual DWs.

Thesis Supervisor: Katherine E. Aidala (Associate Professor of Physics;

Department of Physics, Mount Holyoke College, South Hadley, MA, 01075, USA)
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I. INTRODUCTION

On the look for perfection in data storage, experts have been searching for a non-volatile,

fast, and cheap data storage device. Non-volatility is needed for stored data to not disappear

when we turn the computer o↵. Speed becomes handy when we want to store, retrieve, or

move large amounts of data. In addition, we want everything to be as cheap as possible

without cutting down on quality.

We seek magnetic data storage as an alternative to the Static or the Dynamic Random

Access Memory (SRAM or DRAM) and to the commercially available solid state drives.

The SRAM and DRAM are fast since they can retrieve data from storage randomly, meaning

without reading through the entire stored data to find the intended piece of information.

They are considerably cheap and are already in the market as parts of most personal com-

puters. However, they are volatile; they need a constant supply of power to store data, so

when we turn the computer o↵, the data eventually disappear. On the other hand, solid

state drives available to public are fast and non-volatile, but they are expensive.

We deem magnetic storage promising to become optimal, meaning non-volatile, fast, and

relatively cheap, given today’s technology. Thus, we study its underlying physics in order to

support the engineers or applied scientists of the field with relevant knowledge so that they

can realize such an optimal magnetic data storage device.
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A. Properties of Ferromagnets

In this section we portray the basics of ferromagnets. The ferromagnetic properties relate to

a myriad of physical phenomena including the magnetic moment, energy dynamics, domain

wall (DW) formation, magnetic fields, and hysteresis; all of which we are to elucidate. Then

we present two introductory sections, on the nucleation of 360� DWs and on curvature,

in order to familiarize the reader with the concepts, which we will handle in detail in the

following chapters. Furthermore, we describe the basics of micromagnetic simulations we

used to obtain the data that we convey in this thesis. Subsequently, we impart a few

examples in literature that use DWs to store data.

1. Magnetic dipole moment

The magnetic dipole moment, or magnetic moment, is a means of measuring the torque that

a magnetically polarized body feels in order to align with the e↵ective magnetic field: The

greater the magnetic moment is, the greater the torque is on moments under an external

field. The magnetic moment can be represented as a dipole between two magnetic charges

if they existed.

The net magnetic moment of a material consists of the spin magnetic moment, µ
s

, and

the orbital magnetic moment, µ
o

. µ
s

and µ
o

relate to the electronic properties of the ma-

terial. (Specifically, these electronic properties are quantum mechanical, and for a better

understanding see Appendix A). We can write the net magnetic moment as

~µ = ~µ
s

+ ~µ
o

.
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µ
s

is associated with the spin, or the spin angular momentum, of the electrons inside the

material such that

~µ
s

= � e

m
e

S ,

where S is the spin, e is the elementary charge (1.60 ⇥ 1019 C), and m
e

is the mass of an

electron (9.11⇥ 10�31 kg). Replacing S with its component along a generic u axis, e.g., with

S
z

along the z-axis, we obtain

µ
s,u

= � e

m
e

S
u

= ± eh

4⇡m
e

,

where we let u denote the single axis, and h is Planck’s constant. The magnitude of µ
s,u

is

an approximation of the Bohr magneton, which, being a dipole measure itself, is the closest

magnetic counterpart of an electric charge in the creation of an electric field.

µ
o

is associated with the orbital angular momentum of the electrons inside the material such

that

~µ
o

= � e

2m
e

L ,

where L is the orbital angular momentum, and e and m
e

are the elementary charge and the

electronic mass with previously stated values.

Hence, the magnetic moment becomes

~µ =

✓
� e

m
e

S

◆
+

✓
� e

2m
e

L

◆
.
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We represent the sum of magnetic moments (sometimes called magnetization, see section

IA 3) in a ferromagnet as

M =

P
~µ

V
,

where V is the volume of the ferromagnet.

2. Energies and interactions

The interactions within a ferromagnetic material result in states of the system that min-

imize the total energy of the system, where we consider the system to be the entirety of

the ferromagnetic material. This self-alignment of moments to minimize the total energy is

intrinsic of a ferromagnet, both before and after perturbations (e.g., after an external field

is applied). We can call this the principle of energy minimization (PEM).

The Zeeman Energy (ZE), Exchange Energy (EE), and Magnetostatic Energy (ME) are the

principal energy contributions to the Total Energy (TE) of the ferromagnetic system. It costs

energy whenever a moment does not align with the external magnetic field, its neighbor, or

its boundaries. Taking these contributions into account, the Total Energy is thus

E
tot

= U
Zee

+ U
exc

+ U
mag

,

where U
Zee

is the Zeeman (or external field) energy, U
exc

is the exchange energy, and U
mag

is the magnetostatic (or stray field) energy.

We can rewrite the total energy with the energy terms as integrals over whole space as

E
tot

=

✓
� µ0

Z
H

ext

·M d⌧

◆
+

✓
� µ0

Z
A M ·M d⌧

◆
+

✓
� µ0

Z
1

2
H

mag

·M d⌧

◆
,
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where µ0 is the permeability of free space, H
ext

is the external magnetic field, M is the

sum of magnetic moments, A is the exchange constant with a value depending on material

parameters, and H
mag

is the magnetostatic field.

Let us inspect each term mathematically: When H
ext

and M lie in parallel, moments align

in the direction of the external magnetic field, so the ZE is minimized, since the dot product

is maximized and since there is a negative sign. Similarly, the EE is minimized when the

two moment integrals lie in parallel, hence when moments align in parallel with the neigh-

boring moments. Lastly, the magnetostatic energy is minimized when H
mag

and M lie in

parallel, hence when moments align with the boundaries of the structure. This is because:

When moments align with the boundaries of the structure, so do their magnetostatic field

contributions, resulting in the moments lying in parallel with the magnetostatic field. (For

derivations of ZE, EE, and ME, for other TE contributions, and for our justification of why

we ignore these contributions, see Appendix A).

While approaching a total energy minimum, as a consequence of their direction, magnetic

moments group in partitions in the magnetic material. These regions, where the local mag-

netization assumes a maximum value and moments generally point in the same direction, are

called domains.3 Domain walls (DWs) are regions, where moments diverge with respect to

their neighbors (see section IA 5 for details). Fig. 1 depicts a DW separating two domains,

where the moments of the first domain mostly point in the opposite direction to the moments

of the second domain.

DWs separate domains from one another and by doing so minimize ME. There is lower
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FIG. 1. Domains and DW on a ferromagnet. The DW is circled in orange; it separates the first domain pointing in �x̂ (blue)

from the second domain pointing in x̂ (red).

ME cost when moments align with the boundaries of the material, but in some cases (e.g.,

initialization of an ellipse, see the following case study), DWs form and they cost higher

exchange energy. In addition, a cost of ZE arises due to the moments not lining up with

the external field. Hence, one needs to consider the trade-o↵ between the exchange, the

magnetostatic, and the Zeeman energies. In all cases, moments align themselves in the

configuration that results in the minimum total energy.

3. Hysteresis

We can characterize a state by the alignment of its magnetic moments. Ferromagnets in-

nately have their magnetic moments line up with an external magnetic field such that when

it is removed the moments relax to a new state of magnetization, under PEM. The new

state is either uniform, if all moments point in the same direction, or composite, if DWs

have formed. The starting state of the moments (before the external field) has a role in

determining the final state that the moments obtain (after the external field); the external

field perturbs the starting state and converts it into the final one. As a defining behavior of

the ferromagnets, the moments align themselves with the neighboring moments and with the

constraints of the material they are in, having also been influenced by the external magnetic

field that was just removed. All these influences define the final state. This final state, also

known as the lowest energy state, is perpetual such that the moments do not return to one
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of the previous states. Since the final state is field-dependent, the material ”remembers”

the applied external magnetic field after it has been removed. This phenomenon is called

hysteresis and is the basis of memory devices that embody ferromagnets.

When the external magnetic field is removed, there still exists an internal magnetic field due

to the moments within a magnetic material. We refer to this internal magnetic field, which

emerges as a result of the external magnetic field, as the magnetization, M, of the material.

The magnetization relates to the magnetic moment such that M and ~µ point in the same

direction.

We can write the net magnetic field on the material, B
mat

, as

B
mat

= B
ext

+ µ0M = µ0(Hext

+M) ,

where µ0 is the permeability of free space (4⇡⇥ 10�7 Hm�1), H
ext

is the intensity of B
ext

at

given coordinate of the material, H
ext

and M are in Amperes per meter (Am�1), and B
mat

is in Teslas (T).

We can plot the magnetization of a system as a function of the applied magnetic field. Fig. 2

captures such a plot with M as the magnetization of a ferromagnet and H as the externally

applied magnetic field.

The plot in Fig. 2 constitutes a hysteresis loop, on which we can find the saturation magne-

tization (at dM/dH = 0), the remanent magnetization, and the coercive field at which the

magnetization switches direction (at M = 0).4 The saturation magnetization is the magne-

tization the ferromagnet acquires when it is fully saturated by the external field such that

17
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FIG. 2. Hysteresis on a ferromagnet4 (a) Positive saturation (b) Positive remanent magnetization (c) Negative coercive field

(d) Negative saturation (e) Negative remanent magnetization (f) Positive coercive field

all moments align with the field direction. Once the ferromagnet arrives at its saturation

magnetization, the field is turned o↵, and the structure obtains its remanent magnetization.

For more details, see Licht 2011.4

4. Initialization under uniform in-plane field

We need to control our starting state any time we run a simulation, so we always specify how

we initialize the material: Generally, we apply a uniform in-plane field on a ferromagnet with

randomized moments. We initialize our ferromagnets under a uniform in-plane magnetic

field set at 800 mT (our default value) or at 160 mT (su�cient to initialize most runs in

section 2). Once the external magnetic field saturates the ferromagnet, the field is turned

o↵, and the ferromagnet consequently reaches its remanent magnetization.

A) Dipole state for wires

We initialize our linear ferromagnets under an in-plane field pointing in �x̂ (see Fig. 3).

Once we remove the field, the moments relax under zero field, and in the end they mostly

align in �x̂, towards the direction of the prior external field (Fig. 3c). This state, on which
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the moments in majority point along the long axis, is the typical dipole state, where we can

define �x̂ as the North pole and x̂ as the South.

FIG. 3. Linear ferromagnet initialized in �x̂. Red bits correspond to moments pointing in x̂ and the blue in �x̂.

(a) Initial state: The moments point in random directions. (b) Resulting state after reaching saturation magnetization (under

160 mT). The external field is turned o↵ after this state. (c) Resulting state after reaching remanent magnetization, under zero

field

B) Onion state for rings

We initialize our elliptical ferromagnets along x̂ (at ✓ = 0� in polar coordinates), along ŷ (at

✓ = 90�), or along singular axes (at ✓ = 30�, 45�, or 60�).

Once we turn the field o↵, the moments relax under zero field. Thereafter, moments in ma-

jority align in parallel with the geometric boundaries except where two DWs form (Fig. 4c).

This is a consequence of PEM and topology (see next subsection). In the final state (Fig. 4c),

two domains have formed: The domain on the left-hand side (LHS) points CW and the do-

main on the right-hand side (RHS) points CCW.

Let us consider this elliptical ferromagnet as our system, and study the case when we place

the system under a strong in-plane magnetic field (800 mT in ŷ). The plot in Fig. 5 shows
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FIG. 4. Elliptical ferromagnet initialized in ŷ. Red bits correspond to moments pointing in x̂ and the blue in �x̂.

(a) Initial state, where the moments point in random directions (b) Resulting state after the structure is fully saturated (c)

Resulting state after the external field is turned o↵ and the structure has attained its remanent magnetization (see section

1.1.4E)

the change in the energy of the system.

At step 0, which is before the magnetic field is turned on, all moments point in a random

direction. Starting with step 1, the magnetic field is on, and the moments feel the torque,

as a result begin to rotate, and hence gradually align with the field. Energies drop in this

process, and by step 1000, the moments become fully aligned.

Next, the field is turned o↵ as marked in green in Fig. 5. This immediately reduces the

Zeeman energy to zero, pulling TE higher (although the graph connects the two points with

dashed lines); the system relaxes under zero field until the change in the magnetization of
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FIG. 5. Plot of energy vs. iteration. ME stands for Magnetostatic Energy, EE for Exchange Energy, ZE for Zeeman Energy,

and TE for Total Energy. On the elliptical ferromagnets, the red bits correspond to moments pointing in x̂ and the the blue in

�x̂.

the moments falls under a threshold value (dM
dt

< 0.1 deg/ns). Meanwhile, moments align

themselves with the edges of the ellipse and with their neighbors so that two domain walls

are formed. At this point, energies have approached a new minimum under PEM, at a value

close to 0 J as in Step 4,000. During the formation of the two DWs, there occurs a decrease

in ME and a smaller increase in EE (Fig. 6). As a result, from the point the field is turned

o↵ to when DWs have fully formed, TE approaches a minimum. This is the reason why

DWs have formed: They minimize the TE of the system in its new state.

Hereafter, the state retains its energies and direction of moments, with trivial changes, until

the run ends. The ending state with two DWs is called the onion state (Fig 7).
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FIG. 6. Plot of energy vs. iteration after Step 1,500 (see Fig. 5). ME stands for Magnetostatic Energy, EE for Exchange

Energy, ZE for Zeeman Energy, and TE for Total Energy. On the elliptical ferromagnets, the red bits correspond to moments

pointing in x̂ and the the blue in �x̂.

5. Domain Walls

A Domain Wall (DW) is an area on a magnetic structure where the magnetization and hence

the moments representing the magnetization change direction. Similar to walls separating

rooms, DWs separate domains. We consider two types of DWs: The 180� DW and the 360�

DW.

A) 180� DW and 360� DW basics

In Fig. 8a as we move from left to right, each emerging moment has an angle higher than
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FIG. 7. Onion state of an elliptical ferromagnet. Red bits correspond to moments pointing in x̂ and the blue in �x̂. Two

domain walls separate two domains: The domain on the left half of the figure has moments rotating CW; the domain on the

right half of the figure has moments rotating CCW.

FIG. 8. Types of DWs on a nanowire. Red bits correspond to moments pointing in x̂ and the the blue in �x̂. (a) A 180�

DW: Moments rotate through 180� while going from the state in green to the state in orange. (b) A 360� DW: Moments rotate

through 360� while going from the state in green to the state in orange.

that of the previous one with respect to x̂ = 0�. From the moment pointing in the direction

of the green arrow to the one pointing in that of the orange one, the moments rotate through

180�. We say we have a 180� DW, where the moments rotate 180� along the domain wall. As

the moment in the middle of the domain wall points down (in �ŷ) on the linear nanowire,

we call this a down 180� DW. We can also have an up 180� DW if the moment in the middle
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points up (in ŷ). In Fig. 8b from the moment pointing in the direction of the green arrow

to the one pointing in that of the orange one, the moments rotate through 360�. We say we

have a 360� DW, where the moments rotate 360� along the domain wall. This particular 360�

DW is a CW (or down-up by the orientation of constituent 180� DWs from left to right) 360�

DW since the moments rotate CW as they travel along the DW, from left to right. We can

also have a CCW (or up-down) 360� DW if moments rotate CCW as they traverse through

the 360� DW (Fig. 9).

FIG. 9. A CCW and a CW 360� DW. Each DW is pinned at a notch. The wire is 100 nm wide; the notches are 16⇥ 32 nm2.

B) Stray field

Regarding a domain wall, let us consider the field created by the moments. If we extend each

magnetic moment as part of a cumulative magnetic field, we obtain the stray field diagram

of a domain wall.

The net stray field is maximized where moments do not align with the geometric boundaries

of the structure; therefore, stray field is maximized whenever magnetostatic energy is maxi-

mized.

Due to their stray field that extend along the ferromagnet, e.g., as a continuation of field lines
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FIG. 10. Approximate stray field diagrams (a) of a 180� DW and (b) of a 360� DW on a ferromagnet. Red bits correspond

to moments pointing in x̂ and the the blue in �x̂. The stray field due to moments outside of the DWs is omitted from the

figure.

in Fig. 10a, 180� DWs interact with other moments, especially with those of neighboring

180� DWs. In comparison, 360� DWs have a closed stray field composition, hence tending

less to interact with the neighboring moments (Fig. 10b). 180� DWs interact on shorter

length scales than 360� DWs do. On these length scales, 180� DWs attract one another,

thus restricting the control over their movement along a wire.

On the other hand, we can pack 360� DWs densely along a wire; they do not interact with

the neighboring 360� DWs in ways leading to deformation (due to topology, see next section).

C) Topological edge defects

Let us consider the angle, �, between a set axis and a magnetic moment to be an order

parameter. By calling � an order parameter, we mean the medium, which is the ferromagnet,

approaches its maximum order state if all of its moments have the same order parameter
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(�), hence if all the moments point in the same direction (as in Fig. 11).

FIG. 11. A Linear ferromagnet with maximum order

At certain points in a ferromagnet we cannot define � (e.g. point P in Fig. 12). We call

these points, without a given � value (hence without a given direction), singularities. We

name these singularities topological edge defects (TEDs).

FIG. 12. Topological edge defect on a ferromagnet5 (a) A circular ferromagnet with magnetic moment integrals indicated as

white arrows. (b) A TED is present at point P . At this singularity, the direction of moments is undefined. (c) The pattern of

moment integrals around a TED; having a di↵erent color corresponds to pointing in a di↵erent direction.

In Fig. 12 we investigate a topological edge defect on a circular ferromagnet. All through

the ferromagnet, except at point P , moments have defined directions. In particular, we can

assign an order parameter, �, to each of the moments represented with white arrows. Each

of these arrows indicates an integral of moments on a unit area �x⇥�y of the ferromagnet,

thus making it easier for us to plot the magnetization on such a ferromagnet. On this

ferromagnet if we close in at point P , then we see the pattern of moments being present as
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the colored arrows in Fig. 12b except when we get close enough that at an area �x ⇥ �y at

point P , the magnetization will have an undefined � value (or in Cartesian coordinates, the

x and y direction of the moment vector will be zero). This means that a TED is present

at point P . This specific TED has a +1 charge assigned to it.6 The positive sign means

each subsequent magnetic moment has a greater � than the previous one. 1 means moments

evolve in a loop; if we start by the orange moment in Fig. 12c and go around the TED in

CCW direction, we eventually reach at the orange moment again.

FIG. 13. Topological edge defects with +1 charge (a) Moments circulate CCW around the TED at point P . (b) Three other

configurations for a TED with +1 charge. (c) � increases with each subsequent moment in a CCW traversal around the TED;

�� = 45� from red to orange, orange to black, etc..

In Fig. 13a and b the change in � is positive for each emerging dipole moment integral as

one moves CCW around the TED (as in Fig. 13c). This defines the sign of TED’s charge as

positive: +1.

FIG. 14. Topological edge defects with �1 charge (a) Configurations for TED with �1 charge (b) � decreases with each

emerging moment in a CCW traversal around the TED; �� = �45� from red to orange, orange to black, etc..
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In Fig. 14a the change in � is negative for each emerging dipole moment integral as one

moves CCW around the TED (as captured in Fig. 14b). This defines the sign of TED’s

charge as negative: �1.

i) Principles of counting TED charges on ferromagnets

FIG. 15. Topological edge defects on a linear ferromagnet. Orange arrows indicate the direction of traversal when counting

TED charges. Blue bits have moments point in �x̂ and the red in x̂.

If we assume a linear ferromagnet exists in the state in Fig. 15, then we can count the

charges of TEDs by starting at the upper right corner, where the orange line is, and traverse

CCW around the ferromagnet, following the orange arrows. We classify the magnitude of

TED charges (or topological edge charges) as a 1 if moments go through a full 360� rotation

around a TED and as a 1/2 if moments go through a 180� rotation. In this sense we assign

a topological edge charge to a TED due to the rotation of moments around it, in multiples

of 360�: A 180� rotation corresponds to a 180�/360�=1/2 charge and a 360� rotation corre-

sponds to a 360�/360�=1 charge.

We set � = 0� along the ŷ axis. Then, for instance, � is �90� before the first TED, it in-

crements as we move along the TED (hence each emerging moment has rotated CCW with
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respect to the previous moment), and it approaches �90� again at the end of the first TED.

When measured in Cartesian coordinates, the sum of charges of TEDs, being measured at

boundaries of the ferromagnet, always add upto zero. Also note that each 360� DW or 180�

DW alone has its TED charges sum to zero; +1 � 1 = 0 for the 360� DW and �1
2 +

1
2 = 0

for the 180� DW in Fig. 15.

With circular and elliptical ferromagnets, we set � = 0� along the radial vector at the point

of measurement in order to better study the topology of each DW.

FIG. 16. Radial vector on an elliptical ferromagnet

In Fig. 16 we show two radial vectors ŝ, one in green and the other in orange. The angle

between the green moment and the radial vector along the moment is 0�, so we define � = 0�

for the green moment. On the other hand, the angle between the orange moment and the

radial vector along the moment is 90�, so we define � = 90� for the orange moment.
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FIG. 17. Topological edge defects on an elliptical ferromagnet. Orange arrows indicate the direction of traversal when

counting TED charges. Blue bits have moments point in �x̂ and the red in x̂.

Fig. 17 demonstrates how we count TED charges on elliptical ring ferromagnets. We tra-

verse the outside boundary of the ferromagnet CCW and the inside boundary CW. (This

principle holds for ferromagnets of any shape). Setting � = 0 in the radial direction (along

a vector normal to the surface of the ferromagnet, pointing away from the elliptical center),

we observe that moments rotate �� = 180� along a 180� DW and �� = 360� along a 360�

DW.

D) Pinning, de-pinning, and re-pinning

Obeying PEM, a DW stabilizes at sites where its energy is reduced in comparison to the

surroundings. We call these sites pinning sites. Pinning sites we use are notches and curved

surfaces. In comparison to the rest of the wire, the shortening of the DWs at notches

reduces the energy of DWs and lets DWs become pinned at notches (see section 2). The
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FIG. 18. An elliptical ferromagnet with major axis A and minor axis B. Red dot spots the origin of the ellipse; the green

dot marks the point of curvature measurement. ✓ defines the angle with respect to x̂ along which the point of measurement

lies.

change in curvature also a↵ects pinning strength (see section 3). Since a DW stabilizes

at a pinning site, we need a higher magnetic field or spin transfer torque to move it than

to move an un-pinned DW. (For details in current induced motion of DWs, see Zhang et al.7).

B. Basics of Curvature on Ferromagnets

In this section we consider ellipses with eccentricity greater than or equal to 1 (A/B � 1 in

Fig. 18). When the eccentricity is 1, the ellipse is a circle with constant curvature. When

the eccentricity is greater than 1, curvature varies along the ellipse.

As in Fig. 18 let r be the length of a vector that points from the origin (red) of the ellipse

to the point of measurement (green). This vector ~r is depicted as the blue arrow in Fig. 18.

Then, we define the order parameter ✓ as the angle between ~r and x̂, which is captured in

Fig. 18 along the blue dashed line. This way, we can define ~r as a function of ✓ such that

r(✓) = AB
�
(B cos✓)2 + (A sin✓)2

�1/2
,
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where A is the length of the major axis and B is that of the minor.

Let r0 = dr/d✓ be the first derivative of r with respect to ✓ and r00 = d2r/d✓2 the second

derivative likewise. Then, we can define curvature, , as a function of ✓ such that

(✓) =
| r2 + 2 (r0)2 � r00r |
( r2 + (r0)2 )3/2

.

We define eccentricity to be the ratio A/B. On an ellipse with eccentricity greater than 1,

meaning the major axis is longer than the minor axis, the curvature is maximized along the

major axis and minimized along the minor axis.

We can use curvature along a ferromagnet to pin domain walls. By varying curvature along a

ferromagnet, e.g., by assigning an elliptical geometry to a ferromagnet, we can see the change

in energy as a function of curvature. This approach to curvature has not been preceded in

literature.

We have devised elliptical magnetic fields on OOMMF simulations. Simulating the appli-

cation of elliptical fields, we have explored the de-pinning and re-pinning mechanisms of

domain walls on elliptical ferromagnets in a novel way (see section 3).
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C. Simulations on Ferromagnets

1. Magnetic Force Microscopy

A ferromagnet’s topographic properties can be mapped by using an Atomic Force Micro-

scope (AFM), which embodies a cantilever that oscillates at its own resonant frequency as

it scans across a surface (for details, see Goldman 2010). Setting the tip of the AFM at a

preferred height, we can perform a Magnetic Force Microscope (MFM) scan to map out the

ferromagnet’s magnetic features.

The MFM technique involves scanning a ferromagnet by utilizing a magnetized tip attached

to a small cantilever that lets the tip move up and down in response to the stray field of a do-

main wall. The bending of the cantilever is recorded and analyzed to obtain a measurement

of domain wall characteristics on the ferromagnet. Thinking of the tip as a magnetic dipole,

during the scanning, it experiences a force determined by the gradient of the magnetic field

along the z direction. This force is generally the largest above a domain wall, where the

space derivative of the stray field is the largest.

We can use MFM simulations to investigate domain wall features on ferromagnets.

Fig. 19 provides the result of a sample simulation, depicting an elliptical ferromagnet in

the onion state (same state as in Fig. 17). The MFM image is generated on MatLab by

inputting the vectors of magnetization pertaining to the structure. The plot consists of the

derivative of the stray field in ẑ at a given height. For more detail on the MFM technique

and simulations, see Goldman 2010.
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FIG. 19. MFM simulation picture of elliptical ferromagnet, simulated as if captured at 30 nm height

2. OOMMF software

We use the Object Oriented Micro-Magnetic Framework (OOMMF) Software by NIST to run

micromagnetic simulations.1 OOMMF iteratively solves the Landau-Lifshitz-Gilbert equa-

tion, which is

dM

dt
= ��M⇥H+

↵

M
sat

M⇥ (M⇥H) ,

in order to minimize the energies of magnetic structures. Here, M
sat

is the saturation magne-

tization, M is the magnetization of the ferromagnet, H is the e↵ective field (H = H
ext

+M),

� is the gyromagnetic ratio, and ↵ is a damping constant. The gyromagnetic and damping

factors relate as

� =
�
G

1 + ↵2
G

, ↵ = �↵
G

,

where G denotes Gilbert, �
G

⇡ 2.213 ⇥ 105 m A�1 s�1, and the Gilbert damping constant

↵
G

is measured for each ferromagnet.8
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The LLG equation describes how magnetization of a ferromagnet evolves in time, including

its precession and damping.

FIG. 20. The damped precession of a magnetic moment M under an e↵ective field H. dM/dt = T+D, where T contributes

to torque and D to damping. The blue line shows the path that M follows as it aligns with H.

In Fig. 20 we represent the LLG equation as dM/dt = T + D, where T = � �M ⇥ H

represents the vector that creates the torque on the moment, and D = ↵

M

sat

M ⇥ (M ⇥H)

represents the vector that creates the damping. The two vectors in combination cause the

damped precession of the moment; it starts rotating around the e↵ective field vector H, and

its radius of rotation decreases in time until it aligns closely with H. The rough nature of

the blue path line that M follows, while it goes under damping and precession, takes small

perturbations into account, e.g., due to temperature. To avoid such disturbances in our

calculations, we set our simulations at 0 K. Furthermore, we set the material parameters to

the typical parameters of a Fe-Ni permalloy so that the exchange constant is A = 1.3⇥10�11,

and the saturation magnetization is M
sat

= 8⇥ 105 A/m.

The solution to the LLG equation is numeric for units of volume of ferromagnetic material,

and OOMMF lets us obtain three-dimensional matrices, e.g., of magnetization or of field

values. We can then assign an RGB value to each xyz vector value in the matrix to convert
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the output files to bitmaps in order to visualize them. In all OOMMF-data-to-bitmap con-

versions we use color coding due to either the direction of moments or to their divergence

along the geometry. (We will demonstrate this in detail in the relevant sections).

Initially, moments experience relatively large torques under the external field. They begin

to rotate. Ultimately, the change in their magnetization with respect to time, as they try to

align with the field, falls under a threshold value. We set each run to terminate when dM/dt

reaches 0.1 deg/ns. Then, the field is turned o↵, and the structure relaxes to its final state

under zero field, again, until dM/dt reaches its threshold value. We call this last process

relaxation.

3. Angle Finder

In order to calculate the exact angle of a DW on an elliptical ring ferromagnet, we wrote the

MatLab code Angle Finder, which finds the maximum magnetization in ẑ and determines its

polar coordinates (see Appendix B for details). This approach works since the magnetization

in ẑ, M
z

, approaches a maximum at the center of a domain wall (See Fig. 21 and Fig. 22).

As captured in Fig. 21, the maximum magnetization in ẑ corresponds to the same angular

coordinate as where the domain wall is on an elliptical ring ferromagnet (see Fig. 22).

Looking at Fig. 22, we can clearly see that the MFM, OOMMF, and Angle Finder plots

match, leaving it to our preference to work with either.

While working with the Angle Finder, one thing to pay attention to is finding M
z,max

at a
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FIG. 21. Plot of magnetization magnitude in ẑ, of elliptical ring ferromagnet with A/B = 1.5, after is has been initialized at

✓ = 60� and relaxed under zero field. Darker red corresponds to a higher magnetization value.

FIG. 22. Correspondence between the Angle Finder plot and plots of MFM and OOMMF simulations for elliptical ring

ferromagnet with A/B = 1.5, initialized at ✓ = 60� and then relaxed (a) MFM plot at 25 nm height (b) OOMMF plot of

divergence (c) Overlap of MFM plot with Angle Finder plot (d) Overlap of OOMMF plot with the Angle Finder plot

fixed width along the ellipse. The radial coordinate (e.g., whetherM
z

hits amax on the inner

or outer edge of the ring) sometimes varies in a run or from run to run. In order to avoid

changes in angle measurements due to this radial switching of M
z,max

, we generally specify

angle measurements of M
z,max

to be at the outer half of the width of the ellipse (Fig. 23),

and this produces M
z,max

values along the outermost ring of the elliptical ferromagnet (the
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outermost ring has unit thickness introduced by the simulation program).

FIG. 23. Angle Finder finds M
z,max

on the outer half of the width of the elliptical ferromagnet. Blue dots mark approximate

coordinates of M
z,max

. Measurements in the quadrants I and III yield the same angle. Darker red corresponds to a higher

magnetization value in ẑ.

D. Literature on DWs in Data Storage

In this section we first introduce and then elaborate on proposals for magnetic data storage.

Domain walls have been proposed for data storage applications since the 1980s, and one of

the earliest proposals is the Bloch line memory, which uses pulsed magnetic fields.9 Another

is the racetrack memory as proposed by IBM, using current pulses (also known as spin torque

transfer).10,11 There have also been proposals to use DWs in ring-shaped devices, and the

one most commonly known is the nanoring memory, which uses just the Oersted field from

a central wire, sometimes in addition to spin torque transfer, to control the switching of the

domain(s) on a ring-shaped ferromagnet.12,10

Gonzalez-Oyarce et al. more recently proposed to use 360� DWs in a strip, where either they

place the domain walls at notches and use current pulses to move them, or they nucleate
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360� DWs via a pad at one end of the wire and then move them along the wire by using

spin-polarized current.13

We detail the two most commonly cited proposals using DWs in data storage, below.

1. Racetrack memory

Racetrack memory proposes a write mechanism to nucleate DWs and a read mechanism to

read the configuration of domains, which are separated by 180� DWs, as information bits;

e.g., encode 1 if domains point in x̂ and encode 0 if they point in �x̂. The read head uses a

tunneling magneto-resistance (TMR) sensor.

FIG. 24. Bits along a track of ferromagnetic wire. A domain with moments pointing in x̂ (in red) codes for a 1 and a domain

with moments in �x̂ (in blue) for a 0. The white arrow indicates the direction of movement of the 180� DW under spin current,

which is required for the read mechanism. The read head usually contains a TMR sensor.

Along a long ferromagnetic nanowire, which is similar to and hence called a race-track, a

read head reads the orientation of domains as domain walls move along the structure under

spin-polarized current (Fig. 24).

Fig. 25 is Parkin et al.’s main figure, where they explain the mechanism.11 Tracks are com-

posed of ferromagnetic nanowires, and they encode data in the pattern of domains. Blue

domains have moments point in the opposite direction to the moments in the red domains.
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FIG. 25. Mechanism for racetrack memory11 (A) Two states of a U-shaped vertical track, with a few of the DWs having

moved past the read and write mechanisms along the horizontal plane (plane of the substrate), onto the opposite wing (B) Two

states of a horizontal track, with a few of the DWs having moved past the read and write mechanisms, which are placed on

the horizontal plane (plane of the substrate), in perpendicular to the racetrack (C) Reading mechanism with a magnetic tunnel

junction unit (D) Writing mechanism relies on the stray field of DWs embedded and mobile on a second nanowire, which lies

in perpendicular to the racetrack and on the same horizontal plane. (E) A mechanism for information storage using an array

of racetracks on a chip

The red and blue domains are separated by 180� DWs, which can coherently move along the

tracks by pulses of spin-polarized current. In part A as the DWs move to the opposite wing

of the U-shaped track, they are read or written via the mechanisms along the horizontal

part of the track. The substrate, which structures the read and write mechanisms, lies

on the horizontal axis. This vertical U-track, as Parkin et al. suggest, bears the highest

capacity for information storage. In B the racetrack lies on the substrate plane. In both

parts A and B the read and write mechanisms perpendicularly intersect the racetrack on

the horizontal plane. In C a magnetic junction unit connects to the racetrack and the read
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mechanism measures its tunnel magnetoresistance. In D a second nanowire lies along the

horizontal plane and normal to the racetrack and contains two 180� DWs, e.g., one on the

left of the racetrack and the other on its right. Via moving one of these 180� DWs towards

the racetrack, we can switch the magnetization in a domain on the racetrack to align with

the direction of the stray field of the 180� DW on the second nanowire, where the stray

field is a local magnetic field. In E, Parkin et al. propose that by constructing an array of

racetracks on a chip, we can achieve high-density data storage.

If we wanted to implement the mechanism in Fig. 25, we would have to consider the in-

teraction of two 180� DWs in the writing mechanism; the writing mechanism suggested in

Fig. 25D might not work on a racetrack array as densely packed as in Fig. 25E.

2. Nanoring memory

Nanoring memory proposes to use an array of nanorings as a memory device, where the

magnetic state of a reversible ferromagnetic ring codes for a 1 or a 0, hence encoding binary

information. The magnetic state depends on the orientation of moments along the ring, e.g.,

CW vs. CCW.

In Muratov et al.’s proposal, a magnetic state with moments oriented mostly CW on a

reversible ferromagnetic nanoring codes for a 1 (or a 0), whereas the state with mostly CCW

moments codes for a 0 (or a 1).12

In Fig. 26 each nanoring in the array is composed of multilayers, two of which are ferro-

magnetic. The bottom ferromagnetic layer keep the orientation of its moments fixed while
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FIG. 26. Proposed nanoring memory device.12 The magnetization of the reversible ferromagnet codes for a 1 or a 0. The

orientation of moments in the pinned ferromagnetic layer is fixed.

current J, which passes through the middle of the nanoring, switches. As a consequence, the

magnetization of the top layer changes, e.g., from mostly CW to mostly CCW. Since the

magnetization of the bottom layer is fixed while the top layer changes magnetization, the

overall magnetoresistance changes value, and so we can detect the switching of the domains

by reading the magnetoresistance of the structure. Muratov et al.’s proposal, however, does

not include such a read mechanism, and they would need additional contacts on the wire to

use magnetoresistance if they intended to read states.12 (We will discuss this in Zhu et al.’s

proposal details, right after Muratov et al.’s).10

Fig. 27 shows the divergence plot of a magnetic state with moments traversing the nanoring,

of 90 nm width and 450 nm outer radius, in mostly CW orientation. Under Muratov et al.’s

proposal, if we assume that this state codes for a 1, then in order to create the state that

codes for a 0, we need to apply a CW field co-centered with the ring. Such a field unwinds

the 360� DW into two 180� DWs, moves the 180� DWs separately to the opposite side of
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FIG. 27. Magnetic state in a nanoring with moments aligned mostly CW

the ring, where they recombine into a 360� DW. This results in a state where the moments

point in CCW orientation except where the 360� DW is, e.g., Step 180 in Fig. 28.

FIG. 28. Initialization and switching process on a proposed nanoring memory device.12 Each time-step depicts a di↵erent

orientation of moments on a nanoring during the process.

Fig. 28 presents time-steps during the initialization and switching of magnetic states of the
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proposed nanoring memory device. At step 0, all moments point in ŷ. As they relax to

the state in step 40, total energy is minimized. Step 50 is a snapshot in time while two

180� DWs move to the LHS of the nanoring under a CCW field that is co-centered with the

nanoring. Step 60 shows a 1 (or a 0) magnetic state configuration, where a 360� DW sits

on the LHS of the nanoring and the moments along the ring point mostly CW. This state

corresponds to the state in Fig 27. Then, through steps 120 to 180, the 360� DW unwinds

into two 180� DWs, which separately move to the RHS of the nanoring under a CW field

co-centered with the nanoring and recombine into a new 360� DW there.

In Zhu et al.’s proposal, a magnetic state with moments oriented entirely CW on a reversible

ferromagnetic nanoring codes for a 1 (or a 0), whereas the state with CCW moments codes

for a 0 (or a 1).10

FIG. 29. Proposed mechanism of a memory cell using an array of ferromagnetic nanorings10 The lightly colored rings are

soft magnetic layers; the darkly colored are hard magnetic layers.

The mechanism as proposed in Fig. 29 has an array of nanorings in addition to a bit line and

paired word lines. This specific combination of the hard and soft layers is proposed in order

to minimize the switching current and the energy needed to operate the write and the read
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mechanisms. The hard ferromagnetic layers require a relatively high magnetic field to reverse

their orientation, e.g., from CW to CCW, whereas the soft ferromagnetic layers require a

relatively low one to do so.10 Produced by passing current through the bit line nanowire and

concurrently through the paired word line nanowires (current points in the opposite direction

on each pair), a composite magnetic field changes the magnetization of both layers. Then,

for instance, by passing a low current to only switch the magnetization of the soft layers,

we can read the magnetoresistance of the structure to detect the magnetization state of the

hard layers.

FIG. 30. A proposed array of nanorings as memory elements on a chip.10

Fig. 30 shows the proposed mechanism with the array of nanowires, each magnetic memory

element coding binary information with a 1 or a 0. The 1 state vs. the 0 state depends on

the orientation of moments along the hard ferromagnets (Fig. 31).

Fig. 31 depicts the process of switching of magnetic states, e.g., from a binary code 1 in state

A with all moments aligning CW to a binary code 0 in state D with all moments aligning

CCW.

45



F. I. Kaya

FIG. 31. Initialization and switching process on a proposed nanoring memory device.10 Each state depicts a di↵erent

orientation of moments on a nanoring during the process.

II. PACKING WIRES WITH 360� DWS

By manipulating DWs in ferromagnets, we can study their behavior relating to magnetic data

storage. In this section we present our proposal for a new mechanism, where we use circular

magnetic fields to nucleate and pack 360� DWs, thus achieving high-density data storage.

This new technique, if further developed, can lead to new logic and sensing devices14,15 and

data storage of higher density than that of any current data-storage techniques.11

Topology is what determines whether two 180� DWs that unite annihilate or form a 360�

DW; e.g., if the charges on TEDs of the 180� DWs add up to zero, then they annihilate.6,16

We prefer 360� DWs over 180� DWs, because due to the closed flux structure of the 360�

DWs, we predict to pack them more densely than 180� DWs. The motion of 360� DWs under

spin-transfer torque may di↵er from that of 180� DWs, but this has not been experimentally

confirmed.15,17

Our proposal involves a versatile technique, where we can nucleate 360� DWs at arbitrary

locations along a planar nanowire ferromagnet, by using a circular field centered in close

proximity to the nanowire (Fig. 32). The technique in Fig. 32, which passes current through
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FIG. 32. Nucleation of a 360� DW by using a circular field

the tip of an AFM, evades any contact with the nanowire, where the data is being stored,

and thus avoids energy alteration due to contact such as via heat transfer.2 A more realistic

device would have fixed wires at points, where we wanted to pass current. In order to

investigate the feasibility of our design, we suppose we use the flexibility of the AFM tip

given that we can do this in the lab.

A. Background

1. Previous work

In this subsection, we discuss a few commonly cited examples of DWs in data storage and

present the cases of highest density packing of DWs that have been reported.

Racetrack memory, which we explained in the introduction, proposes to use transverse

180� DWs at a density that is about one 180� DW per 2.5 µm.18,19 Due to their closed flux,

360� DWs have been proposed for use in racetrack devices.13
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There exist a couple proposals that consider data storage via 360� DWs, by a rotating in-

plane field and an injection pad15,20,21,22 or by additional nanowires in contact with the

ferromagnet.23 The work of Gonzalez-Oyarce et al. that is captured in Fig. 33 inspired us to

consider nucleating 360� DWs by using an in-plane circular magnetic field.23

FIG. 33. Injection mechanism of a 360� DW13 (a) The permalloy ferromagnet is in green and typically of 4000 nm length

and w = 200 nm width. � is the separation of nanowires on the permalloy, and ↵ is the angle between the nanowire and

the permalloy. PG-I is the electrical pulse generator that is connected to both nanowires and is grounded at the end of the

nanowires as shown. As the current (orange) flows through the blue nanowires, it generates a magnetic field (red). (b) The

magnetic field re-adjusts the direction of moments on the ferromagnet and injects a 360� DW on the permalloy ferromagnet.

Green marks moments that point in �x̂ and yellow marks those in x̂.

In Fig. 33 the magnetic field generated by passing current through two additional nanowires

aligns the moments into the state in Fig. 33bIII. The moments then relax to the state in
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Fig. 33V I with a 360� DW.

We intended to replicate the moment pattern in Fig. 33bIII by using an in-plane circular

field rather than the blue nanowires in the figure.

FIG. 34. Nucleation mechanism of a 360� DW via an in-plane circular field centered in proximity of the ferromagnet13

We predicted that we could nucleate a 360� DW on a ferromagnet by solely using a circular

field and no additional nanowires. Hence, we devised a mechanism as shown in Fig. 34: By

applying an in-plane magnetic field on a saturated nanowire (Fig. 33bI), we supposed that

if we could rotate some of the moments along the ferromagnet into a state as in Fig. 33bIII,

the moments would then relax into a state as in Fig. 33bV I, and hence we would nucleate

a 360� DW on the ferromagnet. Our proposal did work in simulations, and we explain the

physics of our mechanism in the following sections.

2. Simulation details

Our simulations involve nanowires of varying length (in x̂), of 100 nm width (in ŷ), and of

4 nm thickness (not shown in plots). The cell size is 4 nm along each of the three axes.

In cases that involve notches, the notches are 16⇥ 16 ⇥ 4 nm3 unless stated otherwise. All

notches are evenly spaced along the nanowire.
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FIG. 35. Sample nanowire with notches

Fig. 35 shows a sample linear ferromagnet with given body and notch dimensions. We

initialize each run in �x̂ by using an in-plane field at 160 mT or higher. The circular field,

applied past initialization, diminishes as 1/r, where ~r points from the field center towards

the point of measurement.

FIG. 36. Sample OOMMF color plot of magnetization of a nanowire section. Red points to the right (x̂), blue to the left

(�x̂).

In this section, we use OOMMF magnetization plots of ferromagnets in their given state,

where the color scale indicates the orientation of the moments along the x-axis: Red points

to the right (x̂), blue to the left (�x̂) (Fig. 36), unless otherwise stated.

B. Nucleation of 360� DWs by using a circular field

In Fig. 37 we display our mechanism for nucleating a 360� DW. We apply a 21 mA current

48 nm above the nanowire, which we previously initialized. This simulated current acts as if

applied via an infinitely long wire, e.g., flowing out of the page and creating a CCW circular

field (Fig. 37a). We may construct a device to realize what is shown in our simulations

by placing nanowires normal to the plane of the ferromagnet but not contacting it. We

can also realize the circular field by passing current through the tip of an AFM. The field
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FIG. 37. Nucleation of a 360� DW by using a circular field24 (a) Initialization of the nanowire and top-down view of the

circular field (b) Snapshot showing the nucleation of a 360� DW and two 180� DWs. The numbers in black account for the

TED charges of the DWs. (c) Relaxed state of a single 360� DW. Green and blue arrows help identify the topological winding

of the DWs.

created corresponds to 87.5 mT at the top edge of the nanowire. It exerts a torque on the

moments except where the relative di↵erence in angle between the field and the moment is

zero, directly below the field center. This dynamic results in the nucleation of a 360� DW

below the field center and, due to topology,25 two 180� DWs emerging left and right from

the 360� DW (Fig. 37b).

Let us examine the underlying topology of Fig. 37b in more detail. The simultaneous nu-

cleation of two 180� DWs with the 360� DW is a consequence of topology, more precisely,

of TED charges adding up to zero on the nanowire boundaries. With the nucleation of

the 360� DW, two TEDs are created on the upper boundary of the nanowire, each holding

a �1/2 charge, and two TEDs are created on the lower boundary of the nanowire, each

holding a +1/2 charge. With the simultaneously created 180� DWs, each with charge +1/2

on the upper boundary of the nanowire and charge �1/2 on the lower, the sum of the TED
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charges on all boundaries of the nanowire add up to zero. This cancellation of TED charges

is a topological necessity.

Again looking at Fig. 37b, regarding the 180� DWs around the 360� DW and the 180� DWs

constituting it, we see that when a down 180� DW joins with another down 180� DW, their

TED charges cancel, and the DWs annihilate. Likewise, if an up 180� DW joins with another

up 180� DW, they annihilate.

Moving from Fig. 37b to c, the 180� DWs under the CCW field move towards the end of the

nanowire and annihilate; e.g., they ’slide’ o↵ of the nanowire. Then, as the field is turned

o↵, the wire relaxes to the state in Fig. 37c. On longer nanowires, before 180� DWs reach at

the ends of the wire, the 360� DW slides towards one of the 180� DWs and annihilates into

a single 180� DW as some of the TED charges cancel.

To overcome the sliding of the 360� DWs and hence to have better control over the 360� DWs,

we introduce notches onto the nanowire. DW length (in ŷ) is reduced at notches. This lowers

the energy cost of the DWs so that notches act as pinning sites.

C. Packing 360� DWs of opposite circulation on a nanowire

In this subsection we focus on packing 360� DWs of opposite circulation at adjacent notches

on a nanowire, e.g., a CW 360� DW next to a CCW 360� DW.

We have been able to pack opposite circulation 360� DWs as dense as one 360� DW in every

240 nm of the nanowire, which corresponds to 4 DWs per micron, by using 16⇥ 16⇥ 4 nm3
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notches.

1. Packing mechanism

FIG. 38. The sequence of steps for packing 360� DWs of opposite circulation at adjacent notches.24 Black points indicate the

center of the circular magnetic field, and the red dotted arrows indicate it is CCW. (a) Initialization (b) Resulting state after

applying 21 mA above notch I (c) Resulting state after applying 21 mA above notch III, creating a second 360� DW directly

below, and two 180� DWs, one of which joins the 180� DW at notch II to form a 360� DW (d) Resulting state after applying

21 mA above notch V

Fig. 38 shows the sequence of steps we need to pack 360� DWs of opposite circulation at

adjacent notches. The notch dimensions are 16 ⇥ 16 nm2. (The notch thickness is 4 nm in

ẑ; we keep it fixed for all trials involving notches). The inter-notch distance is 280 nm. We

inject the first 360� DW at notch I by applying the current directly above it (Fig. 38a).26

Two 180� DWs are nucleated concurrently with the 360� DW. The up 180� DW pins at

notch II as the down 180� DW annihilates by sliding o↵ of the wire. We then nucleate

the second 360� DW at notch III by a similar procedure. The simultaneously nucleated up

180� DW pins at notch IV as the simultaneously nucleated down 180� DW joins the up
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180� DW that is pinned at notch II, thus nucleating a third 360� DW. By the same proce-

dure, we inject a fourth 360� DW at notch V and a fifth by adjoining 180� DWs at notch IV.

In the end, we have successfully packed 360� DWs of opposite circulation at adjacent notches;

a CW 360� DW at notch I is followed by a CCW 360� DW at notch II, which is followed by

a CW 360� DW at notch III, and so on (Fig. 38d).

2. Failure mechanism

With 16⇥16 nm2 notches, our trials to pack 360� DWs of opposite circulation closer together

at adjacent notches result in failure at inter-notch distances  220 nm.

FIG. 39. Failure mechanism when packing opposite circulation 360� DWs at the inter-notch distance of 220 nm24 (a)

360� DWs are formed at notches I and IV. The 180� DWs interact but do not adjoin at a single notch. (b) Temporarily

applying a CCW field above notch II pushes the two 180� DWs into a tight 360� DW at notch III. (c) When the field is

removed, the constituent down DWs are su�ciently close to interact and annihilate, leaving the two up DWs at their respective

notches.

Fig. 39 shows the failure mechanism for opposite circulation packing of 360� DWs. As the

inter-notch distance is too close for us to nucleate the second and third 360� DWs at notches

III and II respectively, we move one notch over and nucleate the second 360� DW at notch
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FIG. 40. Closest packing for 360� DWs of opposite circulation. The notch widths 16 nm and 32 nm are paired with notch

depths 16 nm, 32 nm, and 64 nm. The wires continue along ±x̂.

IV. This, in turn, nucleates the third 360� DW between notches II and III (Fig. 39a). By

using a CCW field centered above notch III, we try to pin the third 360� DW at notch III.

However, as the 360� DW at notch III (Fig. 39b) relaxes, the 360� DWs at notches III and

IV attract one another and annihilate, resulting in the state in Fig. 39c.

The procedure of pinning the third 360� DW at notch III works for larger inter-notch dis-

tances; the 360� DW becomes pinned at notch III as in Fig. 39b, and the structure relaxes

to a state, where the three 360� DWs remain at notches I, III, and IV.

3. Changing the notch geometry

Using our nucleation procedure, we have achieved opposite circulation packing of 360� DWs

at adjacent notches as close as 240 nm apart with square notches of dimensions 16⇥ 16 nm2

(Fig. 40). We have furthermore simulated closest packing for other notch dimensions.

55



F. I. Kaya

In Fig. 40 we demonstrate the closest packing for the given notch dimensions with 360� DWs

of opposite circulation. Closest packing refers to the highest density packing of 360� DWs

at adjacent notches such that if we reduce the inter-notch distance by 20 nm, the packing

procedure fails, via the mechanism we demonstrated previously, in the same way for all notch

geometries in this section.

FIG. 41. Plot of inter-notch distance of highest density packing vs. notch depth

Fig. 41 shows a plot of the closest packing values we obtained as in Fig. 40. With notches of

16 nm width, the inter-notch distance that produces the closest possible packing is 240 nm

for 16 nm depth, and it drops down to 180 nm for 64 nm depth (Fig. 40, Fig. 41). Although,

we need to consider the trade o↵ between notch depth and the amount of spin current we

need to move the 360� DWs pinned at these notches. Due to this trade-o↵, using notches as

deep as 64 nm is disadvantageous. It is hard to follow a similar trend for notches of 32 nm

width, with only the given three points. Although the increase may not be as obvious for

larger notches as it is for smaller ones, we infer that packing density increases with notch

depth.
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Notch Area / nm

2
Inter-notch Distance / nm

width⇥ depth 160 180 200 220 240 260

16⇥ 16 X X
p p

16⇥ 32 X
p p

16⇥ 64 X
p

32⇥ 16 X
p

32⇥ 32 X X X
p

32⇥ 64 X X
p

TABLE I. Close-packing statistics of opposite circulation 360� DWs for variable inter-notch distances and notch areas for

rectangular notches. X indicates failure, and
p

indicates successful packing at adjacent notches.

Table I summarizes all the trials we ran in order to acquire the data needed to create Fig. 40

and Fig. 41. The cross mark indicates failure and the check mark indicates successful packing

of 360� DWs of opposite circulation at adjacent notches.

D. Obstacles in close-packing of 360� DWs

Once we start moving notches closer together, a few things arise that require attention:

• When a notch is too close to the edge of the wire, the field gradient at the edge inhibits

the formation of 360� DWs at the notch.

• The simultaneously nucleated 180� DWs pin at a further notch.

• The center of the field to nucleate the second 360� DW needs to be farther away from

the up 180� DW than only one notch.
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The field gradient might hinder the nucleation of a DW at the notches that sit horizontally

close to the edge of the nanowire. For instance, in Fig. 42a, the down 360� DW slides o↵ of

the nanowire during nucleation.

FIG. 42. Packing 360� DWs of opposite circulation on a nanowire of 32 ⇥ 16 nm notches and 240 nm inter-notch distance

(a) The first 360� DW is nucleated. (b) The second 360� DW is nucleated, and the third 360� DW is nucleated between two

notches. (c) By applying a CW field centered on top of one of the notches surrounding the unpinned 360� DW, we can pin it

at that notch.

The strength of the field, during the nucleation of a 360� DW, is larger at a neighboring

notch when the neighboring notch is closer. This causes the 180� DWs to pin at two or three

notches over, depending on the inter-notch distance, the notch geometry, and the strength

of the field we use to create them (Fig. 42b).

Furthermore, in very small inter-notch distances, the second 360� DW cannot be nucleated

at the notch nearest to the up 180� DW (Fig. 42c). If we want to pack a couple of 360� DWs

at neighboring notches, then the procedure requires moving 180� DW constituents of the

360� DWs separately; we cannot move the constituents via a circular field once they form a

360� DW and pin at a notch (see next subsection).
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E. Packing 360� DWs of identical circulation on a nanowire

In this subsection, we focus on packing 360� DWs of the same circulation at adjacent notches

on a nanowire, e.g., a CW 360� DW next to another CW 360� DW.

We have been able to pack two 360� DWs as dense as one 360� DW in every 100 nm of

the nanowire, which corresponds to 10 DWs per micron and which has not been reported in

simulations or experiments before. We have used 16⇥ 32⇥ 4 nm3 notches to do so.

1. Topological advantage of identical circulation packing of 360� DWs

Topological edge defect (TED) charges help us understand the topological consequences of

bringing two 180� DWs together.

FIG. 43. Schematic representations of TEDs27 (a) Two up DWs with opposite TEDs (b) Two down DWs with opposite

TEDs (c) 360� DWs with opposite circulation and opposite TEDs (d) 360� DWs with identical circulation and identical TEDs

If two 180� DWs have opposite charges on a given boundary, e.g., along the top edge of

the nanowire, as in Fig. 43a and b, then their union results in annihilation. Fig. 43c shows

two 360� DWs of opposite circulation next to one another. If we push the two 360� DWs of

opposite circulation together, the contributing 180� DWs, on the side of contact of the two
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360� DWs, annihilate. This limits the packing density of 360� DWs of opposite circulation.

We overcome the limit on packing density by using 360� DWs of identical circulation along

the entire nanowire, e.g., only CCW.

Fig. 43d shows two 360� DWs of identical circulation next to one another. If we push

two 360� DWs of the same circulation together, the contributing 180� DWs, on the side of

contact of the two 360� DWs, have the same charges on each boundary. Therefore, they do

not annihilate on contact, and we can pack them more closely than 360� DWs of opposite

circulation.

2. Packing mechanism

Fig. 44 shows the sequence of steps we need to pack two 360� DWs of identical circulation at

adjacent notches. The number of each time step during the procedure is marked on the top

right corner of the nanowires. The notch dimensions are 16⇥ 16 nm2. (The notch thickness

is 4 nm in ẑ but not shown here). The inter-notch distance is 120 nm.

Once the wire is saturated by an in-plane field in �x̂, we apply a CCW field above notch

III and create the first 360� DW (Fig. 44a). Next, we initialize the second 360� DW at

notch XIII; we cannot initialize it any closer to notch III due to the proximity of notches

and interaction between the stray field of the 180� DW that is pinned at VIII and the

second-to-be-created 360� DW. As the second 360� DW is being nucleated at notch XIII,

two 180� DWs emerge towards the surrounding notches. The up 180� DW annihilates by

sliding o↵ of the nanowire, while the down 180� DW moves towards the middle of the
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FIG. 44. The sequence of steps for packing 360� DWs of identical circulation at two adjacent notches spaced 120 nm apart27

(a) Resulting state after applying a CCW field on the previous state initialized in �x̂. The CCW field derives from a 21 mA

current above notch III. (b) Resulting state after applying 21 mA above notch XIII, nucleating a second 360� DW directly

below, and two 180� DWs, one of which joins the 180� DW at notch VIII to form a 360� DW. (c) Resulting state after applying

80 mA above notch VIII. The strong field annihilates the 360� DW directly below and unwinds the remaining 360� DWs into

180� DWs. (d) Resulting state after applying �15 mA above notch III. We continue to apply the �15 mA at subsequent

notches to move the up 180� DW to notch XII, and then a CCW is used to move the down 180� DW at notch II sequentially

to notch IX. These fifteen steps are not shown and the resulting state is depicted in (e). (f) Resulting state after applying

30 mA at notch XIII, forming the 360� DW directly below, and pinning the down 180� DW at notch XI. (g) Resulting state

after applying 30 mA along between notches XII and XIII, forming the second 360� DW pinned at notch XII.

nanowire, joins the down 180� DW that is already pinned at notch VIII, and forms the

third 360� DW pinned at notch VIII. Thereafter, we apply a CCW field above notch VIII

that is strong enough to annihilate the 360� DW pinned there. This CCW field is strong

enough to unpin the 360� DWs that are pinned at notches III and XIII. As a result, the

constituent 180� DWs pin at notches II and III and at notches XIII and XIV. We then

apply �15 mA above notch III and the generated CW field moves the up 180� DW one
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notch over and pins it at notch IV.

Thenceforth, with each step forward we apply �15 mA above the notch, where the up

180� DW marked in purple in Fig. 44d is pinned, and the resultant CW field moves it one

notch at a time towards notch XII. We then apply 15 mA above the notch, where the down

180� DW marked in green in Fig. 44d is pinned, and the resultant CCW field moves it one

notch at a time towards notch XI. Once we obtain the configuration in Fig. 44e, we apply

a CCW field centered above notch XIII that re-nucleates one of the 360� DWs and pins it

there. Consequently by applying a CCW field centered along half-way between notches XII

and XIII, we pin the remaining 360� DW at notch XII.

In the end, we have successfully packed 360� DWs of identical circulation at two adjacent

notches, namely notch XII and notch XIII.

With 16⇥ 16 nm2 notches let us consider what happens when we move the notches farther

apart or closer together than as shown in Fig. 44. If we increase the inter-notch distance,

then there exist less number of notches between the 180� DW and the first 360� DW, so we

can nucleate all three 360� DWs less many notches apart. Thus, it takes less number of steps

to achieve the adjacent packing of two 360� DWs of identical circulation. If we decrease

the inter-notch distance, then the opposite happens and we need more number of steps. In

addition, the magnetization does not evolve from Fig. 44f to g, and the packing fails.
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3. Failure mechanism

The failure mechanism is simple. Continuing with Fig. 44, no matter where along x̂ we place

the center of the field above the nanowire and no matter what current value we apply, we

cannot get the 180� DW at notch XI to join the 180� DW at notch XII and nucleate and pin

a 360� DW there. In the case that we repeat Step 19 for a closer notch configuration, once

we apply the CCW along between notches XII and XIII, the structure relaxes back to the

state in f; e.g., the new Step 20 is identical to Step 19. The failure happens the same way

for the other notch geometries we tested while packing 360� DWs of identical circulation.

4. Changing the notch geometry

Using our nucleation procedure, we have achieved identical circulation packing of 360� DWs

at adjacent notches as close as 120 nm apart with square notches of dimensions 16 ⇥

16 nm2 (Fig. 44). We have furthermore simulated closest packing for other notch dimensions

(Fig. 45).

Fig. 45a and b show closest packing for 16 ⇥ 16 nm2 notches, with 360� DWs of opposite

circulation and with those of identical circulation respectively, at adjacent notches. Moving

from Fig. 45a to b, the packing density doubles by fixing the circulation of the 360� DWs to

CW. Hence, we conclude that we can achieve much denser packing by using 360� DWs of

identical circulation at adjacent notches than by using those of opposite circulation likewise.

Fig. 45c and d show the close packing we have achieved for identical circulation packing of

360� DWs, but not the closest possible packing. There is work to be done to test whether
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FIG. 45. Packing of 360� DWs at two adjacent notches27 (a) Two 360� DWs of opposite circulation are packed on a wire with

16⇥ 16 nm2 notches placed 240 nm apart. (b) Two 360� DWs of identical circulation are packed on a wire with 16⇥ 16 nm2

notches placed 120 nm apart. (c) Two 360� DWs of identical circulation are packed on a wire with 16⇥ 32 nm2 notches placed

100 nm apart. (d) Two 360� DWs of identical circulation are packed on a wire with triangular notches of 32 nm width (x̂) and

32 nm depth (ŷ) placed 100 nm apart.27

successful packing of 360� DWs of identical circulation at adjacent notches can be achieved

with smaller inter-notch distances.

The results in this section supports the hypothesis we constructed earlier while packing

opposite circulation 360� DWs: Packing density increases with notch depth. Depth and area

of notches both play a role in the closest packing.

F. Data storage applications of 360� DWs

1. Constructing data bits via 360� DWs

We can use the circulation of 360� DWs to code for data bits, e.g., 1 when a CW 360� DW

is pinned at a given notch and 0 when a CCW 360� DW is pinned at the notch.
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We can also use the presence or absence of a 360� DW at a notch to code for a 1 or a 0, e.g.,

1 when a 360� DW (regardless of circulation) is pinned at the given notch and 0 when no

360� DWs are pinned at the notch.

In either case, we can pack as many bits on given nanowire as the number of 360� DWs

we place on it. This number corresponds to the number of notches in the closest packing

configurations we have formerly shown.

2. Writing mechanism

We have demonstrated the mechanisms for nucleating 360� DWs and for opposite circulation

and identical circulation packing of 360� DWs. As we mentioned earlier, these mechanisms

can be realized via the tip of an AFM or via placing nanowires perpendicular to the plane

of the ferromagnet but not necessarily in contact with it. In realizing the mechanisms, the

field values would need to be adjusted given that we set our simulations at 0 temperature,

ignored any anisotropy and elasticity contributions, and did not include roughness.

3. Reading mechanisms

Constructing a reading mechanism for 360� DWs on a nanowire is challenging.

i) Suggestions for reading mechanisms

For a mechanism that detects the presence and absence of 360� DWs at a notch: We can use

a magnetic junction unit, like that of racetrack memory11, to detect changes in its tunnel

magnetoresistance when a 360� DW, which is moving under spin current, crosses the read
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pad.

We can also use a mechanism to detect resistance change on the nanowire whenever there is

a 360� DW at a notch, since the resistance changes when there exists a 360� DW. We may

call such mechanism a resistance-meter or, more concisely, a resistometer.

ii) Disadvantages of each mechanism

Given the depth and the area of notches, moving 360� DWs under spin current in order to

read them may cost so much spin transfer torque and hence energy that the mechanism

may render the device ine�cient and disadvantageous in comparison to existent alternatives.

With regards to resistometers modern technology does not allow resistance readings at nano-

metric distances in an e�cient way. Although we can devise a method using an AFM or an

MFM, this is ine�cient in energy and hence disadvantageous.

G. Summary

Notches lower the energy along a nanowire and act as pinning sites. By using appropriate

geometry of notches, we can very closely pack 360� DWs on a nanowire via only an in-plane

circular field.

The packing procedure takes more number of steps, and hence more energy, for the identical

circulation packing than for the opposite circulation packing, even though the identical

circulation packing proposes a higher density information storage.

66



F. I. Kaya

III. CURVATURE AND ITS EFFECTS ON DW PINNING

We can use curvature in order to control the pinning sites of DWs on a ferromagnetic

nanoring. We have studied the e↵ect of curvature on the pinning of DWs by using elliptical

ring ferromagnets. We applied on each elliptical ring ferromagnet an elliptical field to move

the DWs in the ferromagnet, while we recorded the energy attributed to each DW position.

In order to do this we explored initializations along singular axes. We also explored vortex

runs and de-pinning and re-pinning of 180� DWs at sites with di↵erent curvature.

A. Background

1. Previous Work

Scientists, who have written the relevant literature, have assumed that curvature on a

nanowire implies pinning of DWs, although very limited work explicitly discusses pinning

and curvature.

The pinning e↵ects of curvature have previously been studied by Lewis et al., showing that

curved sites on a wire act as potential wells and that it takes a higher pinning field to

pin DWs at sites of lower (radius of) curvature.28 In addition, Castano et al. have studied

magnetization reversal in elliptical nano-metric ferromagnets and demonstrated switching

of onion states (Fig. 46).29 Although they use the higher curvature sites on an ellipse as

DW pinning sites, as in Fig. 46, they do not present any conclusions regarding curvature or

relevant DW pinning.
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FIG. 46. Switching of onion states on an elliptical ring ferromagnet.29 An in-plane field in x̂ switches magnetization of the

ferromagnet from the state in (A) to the state in (E). The 180� DWs in state (A) have their moments point mostly in �x̂. The

180� DWs in state (E) have their moments point mostly in x̂ as coerced by the in-plane field.

2. Simulation details

By using the term ellipse, we refer to structures with eccentricity A/B � 1, including circles.

The elliptical ring nanowires in this section are all of 90 nm width, e.g., 900 nm outer diameter

and 810 nm inner diameter for a circle (Fig. 47). r is a function of ✓, the angle between

the symmetrical center of the ellipse and the point of calculation on the elliptical ring. See

Section 1 for details on curvature.

In this section, we use OOMMF plots of ferromagnets in their given state, where the color

scale indicates the divergence of moments: Grey points along the structure, black towards

the outside (r̂), and white towards the center (�r̂) (Fig. 48).
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FIG. 47. Sample elliptical ring nanowire

FIG. 48. Sample OOMMF divergence plot of an elliptical ring nanowire

B. Simulated Elliptical Field

In the remaining sections we mention elliptical fields, which we coded in OOMMF, which

are useful to study elliptical ferromagnets, and which are not yet realizable. In thinking,

we prefer to draw an analogy between a circular field created by passing current through a

nanowire that is centered at the symmetrical center of the ellipse and an elliptical field that

is centered likewise.

Fig. 49 is the OOMMF plot of an elliptical (Zeeman) field in-plane with the ferromagnet.

The field decreases by 1/r(✓), where r(✓) is the elliptical radius, as described in section 1.

(See Appendix E for code details).
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FIG. 49. Plot of Zeeman (external) field. The color scale varies from red (maximum field magnitude) to blue (minimum field

magnitude).

C. Initializations and Relevant Energy Considerations

1. Initializations along singular axes

In this subsection we consider initializations along singular axes, that is at ✓ = 30�, 45� and

60� in polar coordinates.

A) Relaxation of DWs to sites of higher curvature

Let us consider a run initialized at ✓ = 60� (Fig. 50).

In Fig. 50 we capture a singular axis initialization at ✓ = 60�. Initially, all moments point

in random directions (Fig. 50a). Once the in-plane field is turned on, they line up with the

field at 60� (Fig. 50b). Once the field is turned o↵, the moments relax to a state with two

180� DWs at a lower angle than 60� (Fig. 50c).

The red vector in Fig. 50 points from the symmetrical center of the ellipse to the outer edge

of the ellipse; it points along a 180� DW. This red vector r, as shown in Fig. 51, lies at
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FIG. 50. FIG. Initialization at ✓ = 60� (a) Initially, each moment points in a random direction. (b) Moments line up with

the in-plane field at 60� as marked with the blue arrow. (c) Moments relax to the state with two 180� DWs after the field is

turned o↵. The 180� DWs sit at a lower angle (marked by the red arrow) than at 60� with the horizontal (marked by the blue

arrow).

✓ = 15� degrees with respect to x̂ (at 0�). We refer to the angle ✓ = 15�, at which the DW

lies, as the DW angle.

FIG. 51. DW angle at 15�. The red solid arrow points from the elliptical center towards M

z,max

. The red dashed arrow

points uni-directionally with the red solid arrow. The blue arrow points in x̂. The divergence plot is of a relaxed run after being

initialized at ✓ = 60� on an ellipse with A/B = 1.5.

Next we examine the initializations at ✓ = 60� for di↵erent A/B ratios (Fig. 52).

Observing the relaxed states after initialization at ✓ = 60� in Fig. 52, we can trace a pattern,
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FIG. 52. Ellipses with variable A/B initialized at ✓ = 60�. The divergence plots are of states after relaxation.

where the DW angle is lower for higher A/B.

The exponential pattern in Fig. 53 shows that as A/B ratio increases, DWs tend to pin at

lower angles in the onion state right after initialization. The states correspond to those in

Fig. 52.

For A/B = 1, the DWs remain at the initialization angle at ✓ = 60�. Since curvature is

constant along the entire conduit, the DWs have no preference to move to another site on

the conduit. For A/B = 1.2, as the structure relaxes, DWs migrate to a site with higher

curvature as a result of PEM. The same happens for higher A/B, except DWs move even

lower on the vertical, eventually reaching approximately ✓ = 0� for A/B = 3.

We observe the same pattern for initializations along the other singular axes, namely at

✓ = 30� and 45�, as well. We conclude that DWs prefer to pin at sites with higher curvature,
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FIG. 53. Plot of DW angle vs. A/B ratio for 60� initializations. The DW angles are measured for M
z,max

on the outer half

of the width of the elliptical conduits.

during initialization.

B) Energies after relaxation

FIG. 54. Plot of EE vs. A/B Ratio for 60� initializations.
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Fig. 54 presents that EE, calculated at the conclusion of initialization runs, decreases as

A/B increases. Hence, EE is lower when DWs pin at a lower curvature.

Looking at the results in this section and recalling the findings of Lewis et al.,28 we predict

that higher curvature means lower total energy. To test this, we further investigate energy

as a function of A/B and curvature as follows.

2. Initializations along natural axes

In this subsection, we consider initializations along major and minor axes, that is at ✓ = 0�

and 90� in polar coordinates. DWs initialized along natural axes stay along these axes.

A) Energies after relaxation

FIG. 55. Plot of EE vs. A/B Ratio for 0� initializations

In each of Fig. 55 and Fig. 56, we compare EE among 5 conduits with DWs pinned at the

same angle. This lets us see a clear trend of EE decrease as curvature at DW pinning sites

increases; the higher the curvature at where the DWs pin, the lower the EE. We contemplate
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FIG. 56. Plot of EE vs. A/B Ratio for 90� initializations

the reason is that moments go through less rotation at a DW when curvature is higher at a

pinning site.

FIG. 57. Rotation of moments along a 180� DW on two conduits with di↵erent curvature

In Fig. 57 we observe that moments rotate less along a 180� DW when the DW is pinned at

a higher curvature, e.g., along ✓ = 0� on an elliptical conduit with A/B = 3, than when it is

pinned at a lower curvature, e.g., that with A/B = 1.5.
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D. Vortices and Relevant Energy Considerations

In this section we consider EE and ME on ellipses with moments aligning entirely CCW. We

aim to understand the energies in the ellipses without the DWs present so that once we read

the energies with the DWs present, we can subtract the vortex energies in order to develop

a better conclusion.

FIG. 58. CCW vortex state of elliptical conduit with A/B = 1.5

In Fig. 58 all moments align CCW. These states are simulated under CCW elliptical fields

created by applying 18.1 mA at the center of each ellipse. We call this a CCW vortex. Next,

we investigate elliptical conduits with the five A/B ratios we have been studying, separately

for fixed (of constant length) major and minor axes.

Fig. 59 demonstrates all of the geometries we use in elliptical ring ferromagnet runs. Next

we explore exchange and magnetostatic energies of these conduits.

In Fig. 60 and Fig. 61 exchange and magnetostatic energies of elliptical conduits in vortex

states are plotted respectively; in both figures pluses represent ellipses with constant minor
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FIG. 59. Conduits with fixed minor axis diameter vs. those with fixed major axis diameter. The axis diameters are fixed at

900 nm. The eccentricities (A/B) are indicated in green. With increasing eccentricity: ME increases for fixed minor axis (blue)

and decreases for fixed major axis (red), whereas EE increases for both.

FIG. 60. Plot of EE vs. A/B of elliptical ferromagnets in vortex state. Pluses indicate elliptical ferromagnets of 900 nm

minor axis diameter. Squares indicate those of 900 nm major axis diameter.

axis diameter. Squares represent constant major axis diameter. These plots suggest that

without any DWs, the EE increases with increasing A/B. This makes sense since for in-

stance, at A/B = 3 there is a greater rate of change of curvature between the major and
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FIG. 61. Plot of ME vs. A/B of elliptical ferromagnets in vortex state. Pluses indicate elliptical ferromagnets of 900 nm

minor axis diameter. Squares indicate those of 900 nm major axis diameter.

minor axes of the elliptical conduit, costing higher EE for the moments to align with one

another. On the other hand, ME increases with increasing area of ferromagnet. At sites with

changing curvature, moments do not completely line up with the geometry. Then, stray field

exists as magnetization points outwards from the boundaries. Conduits with fixed minor

have more area along which such stray field exists. Therefore, there is a higher ME cost for

conduits with higher area at given A/B.

Via the studies in this section, we conclude that for fixed minor axis runs, ME and EE

increase with increasing eccentricity, and that for fixed major axis runs, ME decreases and

EE increases with increasing eccentricity. The cost of ME depends on the curved area of the

nanowires, while moments tend to align with the geometry, whereas the EE cost is due to

the rate of change of curvature, while moments tend to align with one another.
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E. Pinning Strength

In this section we investigate how the strength of the pining field changes with curvature. In

order to do this, we first initialize the DWs along a natural axis, which nucleates two 180�

DWs. Then, we apply an elliptical field to adjoin the two 180� DWs and record the energies

as DWs move.

We start by calculating the depinning field, which is the field required to de-pin 180� DWs

from their locations along natural axes, where they pin during initialization, to carry them

successfully over to the next natural axis, and to re-pin them there.

FIG. 62. Plot of depinning field strength vs. A/B on conduits with fixed major axis
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In Fig. 62 an increasing field strength is required as curvature at pinning sites increases; e.g.,

A/B = 3 has higher curvature along the major axis where the 180� DWs are pinned than

A/B = 1.

On these depinning runs, we explore how EE changes. We apply 18.1 mA on each ellipse

since we have calculated (as presented in Fig. 62) that it has su�cient strength to depin all

of the ellipses in question.

FIG. 63. Plot of EE vs. A/B for depinning runs on conduits with fixed major axis. In each run 18.1 mA is applied at the

center of the ellipse, creating an elliptical CCW field and successfully depinning and subsequently re-pinning each 180� DW.

In Fig. 63 EE is plotted at the beginning and at the end of a depinning run for each of the

five geometries. The major axis diameter is kept constant at 900 nm among the geometries
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of elliptical conduits. The plot shows that EE increases for each depinning run as, at each

geometry, 180� DWs move from the old pinning sites along the major axis to the new pinning

site along the minor axis, where (the radius of) curvature is lower in comparison to that

along the major axis. This agrees with our prediction that the higher the curvature, the

lower the EE; moments along DWs rotate through smaller angles with increasing curvature.

Up until now, we have considered energies in the initial and final steps of a depinning run.

At these two steps, the DWs we consider are relatively stable since they are pinned along

the major or minor axes. Next, we want to explore states with de-pinned DWs.

F. Curvature E↵ects on Energies of Depinned DWs

As we study depinned DWs, we aim to overcome the depinning energy barrier that exists

between a state with pinned DWs and a state with depinned DWs. This energy barrier that

exists between two stable states, between the state when DWs are pinned along natural axes

and the state when DWs are depinned, is due to the depinning of DWs under the elliptical

field, and it instigates what we call a metastable state of the system (Fig. 64 and Fig. 65).

To overcome the metastable state, and hence the energy barriers in Fig. 64 and Fig. 65,

we skip to the 100th time step in each run. It is the time step at which each 180� DW is

depinned and mobile, moving under the elliptical CCW field towards the next natural axis.

This lets us avoid the metastable DW states that occur during depinning.

In order to draw a meaningful conclusion about the depinning energies, we next examine a

combination of energy vs. curvature plots such as normalizing (dividing by the area of the
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FIG. 64. EE of metastable DW state during depinning

FIG. 65. ME of metastable DW state during depinning

ferromagnet) or subtracting the vortex state energies (to discount moments other than those

along the DWs). The plots in the following sections are mostly a result of our trying to

understand the energies with respect to curvature. Although we do not have the complete

story regarding EE and ME as functions of curvature, we present our current conclusions.

(See Appendix C for code details of plotting curvature and Appendix D for code details of
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plotting energies).

1. Exchange Energy

FIG. 66. Plot of EE (in J) vs. curvature ( in nm�1) for fixed major initializations along ✓ = 0� and fixed minor initializations

along ✓ = 90�. The divergence plot of each elliptical ferromagnet is given in proximity of its own EE vs.  value, framed in the

same color.

In Fig. 66 we present the plot of exchange energy (EE) vs. curvature for given initializations;

along ✓ = 0� for fixed major (X0) and ✓ = 90� for fixed minor (Y 90). By plotting X0 with

Y 90, we can study the gradual increase in curvature at DW sites. The plot pattern suggests

that EE decreases with increasing curvature, agreeing with our prediction.

In Fig. 67 we present the plot of EE vs. curvature for all initializations; those along ✓ = 90�
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FIG. 67. Plot of EE (in J) vs. curvature ( in nm�1) for fixed major and minor initializations along ✓ = 0� and fixed major

and minor initializations along ✓ = 90�

for fixed major (X90) and ✓ = 0� for fixed minor (Y 0) in addition to the ones captured in

Fig. 66. In order to better understand the function that maps curvature to EE, we next fit

an exponential to this plot.

In Fig. 68 we present the plot of EE vs. curvature for all initializations. The plot suggests

that EE decreases exponentially with increasing curvature on elliptical ring ferromagnets of

90 nm width, 900 nm fixed diameter, and of variable area and A/B.

In Fig. 69 we present the plot of EE vs. curvature for all initializations after we normalize

each EE by dividing it by the magnetized area (in nm2) of each ferromagnet. The inner plot
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FIG. 68. Exponential fitting on the plot of EE (in J) vs. curvature ( in nm�1) for all initializations

isolates the plots of X90 and Y 0, which seem to trace an exponential pattern of their own.

We suppose the curving of Y 90 (marked with plus signs on the lower right side of the larger

plot) may be due to curvature not being apparent at the site of DWs at 100th step as a

consequence of geometry (during this step, the DWs are at sites of low curvature); e.g., the

pixelation of the program we use may not have been su�cient for accurate curvature. (See

Appendix F for the code that plots the geometry).

In Fig. 70 we present the plot of EE vs. curvature for all initializations after we subtract the

EE of the vortex run of each geometry. We attribute the curving of Y 90 to the program we

use to create the simulation geometries. Subtracting the vortex EE lets us discount the EE
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FIG. 69. Normalized plot of EE (in J) vs. curvature ( in nm�1) for all initializations

risen by moments along the ellipses that align, e.g., as the moments in a vortex state. This

way, we focus only on the DW contribution in the EE. Subtracting the vortex EE reduces the

exponential nature of the EE vs.  plot and lets us conclude that EE along DWs decrease

-almost linearly- with increasing curvature.

2. Magnetostatic Energy

In Fig. 71 we present the plot of magnetostatic energy (ME) vs. curvature for given initial-

izations that are along ✓ = 0� for fixed major (X0) and ✓ = 90� for fixed minor (Y 90). By

plotting X0 with Y 90, we study the gradual increase in curvature at DW sites. The plot

pattern suggests that ME decreases with increasing curvature although not linearly. Again,
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FIG. 70. Plot of EE with subtracted vortex EE (in J) vs. curvature ( in nm�1) for all initializations

the curving of the data points (see the plus marks on the upper left corner) may be due to

a glitch in the program we use to create the simulation geometries. We intend to further

investigate ME patterns, although so far, after subtraction of vortices and normalization on

either of X0, X90, Y 0, and Y 90, the only noteworthy pattern we have found is the one in

Fig. 71.

G. Summary

EE decreases as curvature increases, and so DWs pin at sites of higher curvature. DWs move

as they form, and they lower their energy by moving towards the major axis, which has higher

curvature and hence lower EE. By varying curvature along a nanowire, we can create pin-
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FIG. 71. Plot of ME (in J) vs. curvature ( in nm�1)

ning sites of varying pinning strength, e.g., which we can then use as multistate memory bits.

We aim to continue studying ME as a function of curvature in order to complete our under-

standing of ME with respect to curvature.

IV. CONCLUSION

In this thesis, we examined the physics encompassing the Domain Walls (DWs) in linear

and curved nanowire ferromagnets. Via simulations: We demonstrated our new technique of

nucleating 360� DWs and explained the topological phenomena surrounding both 180� DWs

and 360� DWs during their nucleation. Nucleation of a 360� DW proceeds via a circular
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magnetic field and does not require contact: We can achieve high-density data storage on

a ferromagnet by applying a combination of circular magnetic fields in the vicinity of the

ferromagnet. Furthermore, we studied the consequences when we introduce notches and

curvature to the nanowires; Exchange Energy is lowered where there are notches or higher

curvature than the surroundings. Consequently, we inspected the trade-o↵ of energies along

sites with notches or high curvature and displayed how DWs pin at these areas, mostly due

to the lowering of Exchange Energy.
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I. DERIVATIONS OF ZEEMAN, EXCHANGE, AND MAGNETOSTATIC

ENERGIES

Let us note here that we refer to Free energy as the energy contained within the volume

of the ferromagnet, available to do work. Mostly, the work done consists of heat dissipated

to the environment. Mathematically, the integral over the ferromagnet’s volume (for any of

the energies described in this Appendix) is equivalent to the integral over all space, since

M is zero outside of the ferromagnet. Thus, we avoid attaching V to the integrals, meaning

integrals are over all space unless specified otherwise.

A. Zeeman Energy

The Zeeman energy (ZE) arises from the interaction of a moment with the external field.

Using Maxwell’s equation of magnetic fields, namely ~O ·B = 0, which implies

~O · (µ
0

(H
ext

+M)) = 0 ,

we derive

~O ·H
ext

= �~O ·M .

This equation is important as it gives the relationship between magnetization and the exter-

nal field; the divergence of the external field lies in the negative direction to the divergence

of the magnetization. As a representation, think of a point in space and its infinitesimally

close surroundings in a sphere. All of the magnetization vectors in these surroundings point

towards the point, so their integral flows into the sphere (is positive as a sum over the

spherical surface), whereas the external field vectors point outwards, so their integral flows
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out of the sphere (is negative as a sum over the spherical surface).

ZE is minimized when the magnetization of the material aligns with the external field. Over

all space, we can write ZE as

U
Zee

= �µ
0

Z
H

ext

·M d⌧ .

As a summary, whenever there is an external magnetic field, B
ext

, in the vicinity of the

material, it costs energy to not have the magnetic moment align with the field. The ZE is

sometimes called the orientation energy E
ori

, and we can describe it separately for the spin

and orbital components of the magnetic moment such that

U
Zee,s

= �~µ
s

·B
ext

; U
Zee,o

= �~µ
o

·B
ext

,

where the negative sign ensures that the more aligned the magnetic moment and the field

are (the greater the dot product is in magnitude), the less the energy cost is.

B. Exchange Energy and Interaction

The reason for ferromagnetism is the phenomenon named exchange coupling. Exchange

coupling is the interaction between the spin due to all electrons of a particular atom in a

material and the spin due to the electrons of the neighboring atoms in the material. The

exchange coupling of the magnetic moments of the atoms directly a↵ects the alignment of

the moments such that the moments align in the state that minimizes the energy. This

energy due to the interaction of adjacent moments is known as the exchange energy (EE).

There exists an inherent length scale that sustains exchange coupling; across this length,
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exchange coupling has evident e↵ect. This exchange length is equivalent to

l
exc

=

✓
2a

µ
0

◆
1/2 1

M
sat

,

where a is the exchange sti↵ness constant.1 The sti↵ness constant is characteristic of the

ferromagnetic material, and the saturation magnetization is the maximum magnetization

gained by the material (e.g., when all moments align in parallel with a uniform linear exter-

nal magnetic field during initialization).1

EE is minimized when two moments align in parallel. The contributions to EE can be

divided into two; the spin and the orbital. Most text books only give derivations for the

spin contribution, and below we discuss these.

The discrete Hamiltonian of the spin exchange energy is

Û
exc,s

= �
X

i>j

2J
ij

S
i

· S
j

d⌧ ,

where J
ij

is the positive exchange constant between the ith and jth spins, S
i

is the ith

spin, and S
j

is the jth spin. This Hamiltonian is named the Heisenberg Hamiltonian after

Heisenberg generalized the interaction between two spins as a sum of all such interactions.1,2

For two spins, we can write

Û
exc,s

= �2J S
i

· S
j

= 2JS2 m
i

·m
j

, 1

and integrating over the entire material, we obtain the overall EE such that

U
exc,s

=

Z
2JS2 (~O ·m)2 d⌧ ,
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where J is the exchange constant, and the magnetization direction is given bym = µ
0

M/M
sat

for saturation magnetization M
sat

and for permeability of free space µ
0

.3

For the quantum mechanical derivation of J
ij

and J from spatial and spin states of two elec-

trons besides a through study of quantum mechanics of magnetic materials, see Blundell.?

C. Magnetostatic Energy and Interaction

Magnetostatic interaction of a material is encompassed in its magnetostatic field, H
mag

. The

magnetostatic contribution to total energy arises from the interaction of a moment with the

stray field caused by other moments (Fig. 1). Hence, the magnetostatic field is also called

the stray field or the demagnetization field.

FIG. 1. Approximate stray field diagram of a domain wall on a ferromagnet model. The stray field due to moments outside

of the domain wall is omitted from the figure. Suppose the ferromagnet continues in �x̂ and in +x̂.

Using Maxwell’s equation of magnetic fields, namely ~O · B = 0 for any magnetic field, and

by replacing the external field contribution by stray field contributions, we obtain

~O · (µ
0

(H
mag

+M)) = 0 ,
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from which we derive

~O ·H
mag

= �~O ·M .

This equation is important as it gives the relationship between magnetization and the mag-

netostatic field; the divergence of the magnetostatic field arises to cancel the divergence of

the magnetization. Thinking of a point in space and its infinitesimally close surroundings

in a sphere, the net flow of magnetostatic field vectors is into the sphere and the net flow of

magnetization vectors is outwards.

For any magnetic field B, we know that the potential energy stored in B is

U
B

=

Z
B2

2µ
0

d⌧ .

For the derivation of U
B

, see section III of this Appendix.

Similarly, we write for a magnetostatic field that

U
mag

=

Z
µ
0

2
H2

mag

d⌧ ,

where the integral is over all of space. We can specify this integral on the volume of the

ferromagnet such that by combining it with H
mag

= �M+B/µ
0

we obtain

U
mag

=
µ
0

2
H

mag

·
✓
B

µ
0

�M

◆
d⌧ .

This becomes

U
mag

= �µ
0

Z
1

2
H

mag

·M d⌧ ,

where we assume along the ferromagnet that B is orthogonal to H
mag

.
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The magnetostatic energy (ME) of a system is minimized when the magnetization aligns

with the stray field component; the stray field component tends to align with the boundaries

of the ferromagnet unless there is a domain wall at which the stray field points outwards

from the boundaries (as in Fig. 1). Thus, each domain wall has a high ME cost, whereas

ME is minimized when moments align with the structure.

II. ADDITIONAL TOTAL ENERGY CONTRIBUTIONS

The complete total energy (TE) of the system is a sum of interactions within the material

such that

E
tot

= U
exc

+ U
Zee

+ U
mag

+ U
ani

+ U
str

+ U
mst

,

where U
exc

is the exchange energy, U
Zee

is the Zeeman (or external field) energy, U
mag

is

the magnetostatic (or stray field) energy, U
ani

is the anisotropy energy, U
str

is the external

stress energy, and U
mst

is the magnetostrictive energy.3

As we have previously elaborated on the exchange, the Zeeman, and the magnetostatic

energies, now we move forward to explain the anisotropy, the external stress, and the mag-

netostrictive energies.

A. Anisotropy Energy

The Anisotropy energy of a system depends on the alignment of moments with structural

axes such as those of a crystal. We ignore the contribution of the anisotropy energy to the

total energy since its contribution is small in comparison to that of the other three energy
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terms for the Nickel-Iron (Ni-Fe) structures we consider.1

U
ani

=

Z
F
ani

(m) d⌧ ,

where F
ani

is the force created by all anisotrpic contributions.3 It is a function of the mag-

netization direction, which is given by

m = µ
0

M

M
sat

.

B. Magneto-elastic Interactions

As we choose a Ni-Fe ferromagnet to study, we ignore all magneto-elastic contributions to

the total energy. These include U
str

and U
mst

.

The external stress energy is

U
str

= �
Z

�
ext

· ~" 0(m) d⌧ ,

where �
ext

is a symmetric tensor that accumulates stresses that are free of magnetic in-

teractions, and where ~" 0(m) is the free magneto-elastic deformation function. Hence, U
str

embodies the energy due to a non-magnetic stress field.

The magnetostrictive self energy is

U
mst

=

Z ✓
1

2
(p

e

� ~" 0(m)) · c · (p
e

� ~" 0(m))

◆
d⌧ ,

where p
e

is an asymmetric tensor that indicates the distortion from the initial non-magnetic

state, which tends to approach the free magneto-elastic deformation ~" 0,3 and c is the elastic

constant tensor. The double spatial terms in the integral account for non-local energy terms.

They are needed in order to include the elastic interaction energies along all axes, hence to

account for elastic-interaction torques on moments from all other moments.
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III. DERIVATION OF THE POTENTIAL ENERGY STORED IN A

MAGNETIC FIELD

Consider a simple RL circuit, where the power supply (e.g., battery), a resistor, and an

inductor are connected in series, in a closed loop.

The sum of potential di↵erences equals zero by Kircho↵’s 2nd rule such that

"� iR� L
di

dt
= 0 ,

where " is the emf of the power supply, i is the current that runs through the circuit, R is

the resistance (of the resistor), L is the inductance (of the inductor), and t is time.

Multiplying each side by i, we get

i"� i2R� iL
di

dt
= 0 .

In this latter equation,

i" = "
dq

dt

is the rate at which the power supply feeds emf into the circuit; " dq equals the work done by

the power supply. Moreover, i2R corresponds to the dissipation rate of thermal energy, due

to emf. The only term left is iLdi

dt

, corresponding thus to the rate at which energy is stored

in the system as potential energy. This potential energy, U
B

, is stored in the the magnetic

field of the inductor, so that

dU
B

dt
= iL

di

dt
,

which implies
Z

dU
B

=

Z
iL di ,
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and so

U
B

=
1

2
i2L .

The density of potential energy is therefore u
B

= U
B

/V , where V is the volume of the

material.

If we consider a long solenoid with a cross-sectional area A, length l, and so volume V = Al,

we can write the density as

u
B

=
U
B

Al
=

i2L

2

1

Al
.

We can simplify this by substituting for L/l. In order to do this, let us consider the inductance

of a solenoid inductor:

L =
N�

B

i
,

where N = nl is the total number of turns of wire in the solenoid for n is the number of turns

per length, and �
B

= BA is the magnetic flux through the central region of the solenoid for

B is the magnetic field magnitude. In a solenoid, B = µ
0

in. Thus, we obtain

L =
N�

B

i
=

nlBA

i
=

nlµ
0

inA

i
= lµ

0

n2A ,

which implies

L

l
= µ

0

n2A .

Now, substituting into u
B

, we get

u
B

=
i2

2A

L

l
=

i2

2A
µ
0

n2A =
1

2
i2µ

0

n2 =
B2

2µ
0

.

Hence, we can obtain the the potential energy stored in a magnetic field such that

U
B

=

Z
u
B

d⌧ =

Z
B2

2µ
0

d⌧ .
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This appendix explains how to run a sample Angle Finder code, which we use to plot angles

of domain walls (DWs) on elliptical nanowires.

A sample Angle Finder MatLab code with the name K angFinder.m can be accessed at:

\\ambr\faculty\kaidala\simulations\K\matlab K

I. IMPORTING .OMF FILES ONTO MATLAB WORKSPACE

.omf is the type of the input files.

For .omf files in bulk:

To import files in bulk, we use the MatLab import code created by Jesica E. Bickel.

The steps to follow are:

• Copy all .omf files into a single folder.

While doing this, make sure each folder has single geometry of ellipses (with constant

A/B) and that the .omf files are in sequential order.

• Note the number of the last step of the .omf files.

Assuming that in your folder you have .omf files that advance as ..., ⇤ 0338500.omf,

⇤ 0339000.omf, ⇤ 0339243.omf so that the ⇤ 0339243.omf is the last .omf file in your

folder, the last step no is 339243.

• Note the incrementation factor for the remaining .omf step numbers.

Note how many iterations go between two .omf files in your folder (except between

the last .omf and the one previous to last if the last step number does not follow the
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sequence); e.g., if the files listed in the folder are ⇤ 0333500.omf, ⇤ 0334000.omf,... and

so on, then the incrementation factor is 500.

• Copy JEB importfile.m into the same folder.

You can find this code in \\ambr\faculty\kaidala\simulations\K\matlab K

• Run JEB importfile.m on MatLab.

No modification is needed. The code will import all the .omf files in the folder onto

the Workspace of Matlab, assigning them new names, e.g., data00, data01, etc..

• Note down the number of data files in the Workspace.

Scroll the Workspace up or down to spot the data file with the highest number con-

catenated to the word ’data’ in the Workspace. This number will be our noDataMax.

Warning: The number usually does not correspond to the data number in the first or

last line of the list in Workspace.

For fewer .omf files:

In times such that you only need to look at one .omf file and plot its angle, it may save time

to import the .omf by hand (meaning, not by importfile.m).

The steps to follow are:

• Open the .omf using a simple text reader (I prefer Notepad++).

• Clip the header and the footer lines.

This means delete the lines other than those of three digit vector coordinate lines;

these non-vector lines are usually the first 38 and the last 3.

• Save the clipped file.
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• Open MatLab and import the clipped .omf to MatLab Workspace.

You can do this by drag & drop. Import as ’Matrix’. Check that the number of cells

reported in ’Range:’ is the same as the number of pixels in your .omf matrix (e.g., A1

to C450000 meaning 450,000 cells for ellipse with A/B = 2 and 300 pixels along the

major axis).

• Rename the .omf matrix on Workspace.

data00 if single file; data00, data01, etc. for multiple.

• Note down the number of data files in the Workspace.

Scroll the Workspace up or down to spot the data file with the highest number con-

catenated to the word ’data’ in the Workspace. This number will be our noDataMax.

If the highest numbered data has name ’data05’, for instance, then noDataMax is 5;

if ’data12’, then 12.

II. MODIFYING THE CODE

Before we run the Angle Finder, here is how we open and modify it.

The steps to follow are:

• Copy K angFinder.m into the folder you want to place the output in.

You can find this code at \\ambr\faculty\kaidala\simulations\K\matlab K

• Open K angFinder.m on MatLab.

• Enter noDataMax.

Edit lines 3 and 19. Edit line 18 to be noDataMax+1.
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• Enter the incrementation factor and the last step no.

Edit line 7 and line 21 respectively.

If you are dealing with .omf files with random step numbers, then edit lines 6-27 ac-

cordingly.

• Enter the A/B ratio.

Edit line 34 by entering the A/B ratio of the elliptical ferromagnets contained in the

.omf files.

• Define the intended half of the ellipse, where the DW is located.

There are two ways to do this: Either choose to work on vertical halves or on horizontal

halves. Then, edit lines 158-190 by commenting out the code for the undesirable

orientation.

• Enter the number of the intended elliptical half.

Edit line 37. In the vertical orientation, 1 corresponds to the left half and 2 to the

right half. In the horizontal orientation, 1 corresponds to the upper half and 2 to the

lower half.

• Enter the number of the intended half of the width.

Edit line 40. If this is set to 1, then the program will find the location of the magneti-

zation in the z direction (which corresponds to the center of the DW and lets calculate

the DW angle) on the outer half of the width of the elliptical ring.

• Enter the number of pixels along the x axis.

Edit line 45.

• If running in bulk, then comment out lines 93-96.
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This code plots the geometries with the DWs. When running in bulk, it may slow the

program down.

• Run K angFinder.m.

III. INTERPRETING THE OUTPUT

Four .txt files will appear in the folder you run the K angFinder.m:

• The coreAngleOutput.txt contains the step numbers, the DW angles, the x coordinates

of zMax, which is the magnitude of the maximum magnetization in the z direction,

the y coordinates of zMax, and the values of zMax pertaining to the .omf files in the

Workspace, in this order in its columns.

• The coreSingleAngleOutput.txt contains the DW angles in a single column.

• The coreSingleXOutput.txt contains the x coordinates of zMax in a single column.

• The coreSingleYOutput.txt contains the y coordinates of zMax in a single column.

6



F. I. Kaya , Appendix C

Appendix C: The Curvature Finder

Fikriye Idil Kaya1

Department of Physics, Mount Holyoke College, South Hadley, MA, 01075,

USA

(Dated: 28 Dec 2015)

1



F. I. Kaya , Appendix C

This appendix explains how to run a sample Curvature Finder code, which we use to obtain

curvature values on elliptical nanowires, along Domain Walls (DWs).

The Curvature Finder calculates curvature as a function of DW angle, which is the angle

along an elliptical nanowire at which a DW is located. It is implied that each elliptical

nanowire has a constant A/B ratio within the work that has been done for this thesis.

A sample Curvature Finder MatLab code with the name K curFinder.m can be accessed at:

\\ambr\faculty\kaidala\simulations\K\matlab K

I. IMPORTING ANGLE VALUES ONTO MATLAB WORKSPACE

The steps to follow are:

• Make a .txt file with numerical angle values in each line.

We can either custom make one or use angles previously calculated by the Angle Finder.

Let us choose the latter and use the curvatureOutput.txt file, which is outputted by

the Angle Finder at each run.

• Open MatLab.

• Import the .txt to MatLab Workspace.

You can do this by drag & drop. Import as ’Matrix’. Check that the number of cells

reported in ’Range:’ is the same as the number of pixels in your .omf (e.g., A1 to

A600).

• Rename it on Workspace.

daFile is the default name for the imported file matrix.

2



F. I. Kaya , Appendix C

II. MODIFYING THE CODE

Before we run the Curvature Finder, here is how we open and modify it.

The steps to follow are:

• Copy K curFinder.m into the folder you want the output to be in.

You can find this code at \\ambr\faculty\kaidala\simulations\K\matlab K

• Open K curFinder.m on MatLab.

• Enter A/B ratio.

Edit line 2 by entering the A/B ratio of the elliptical nanowire in question.

• Run K curFinder.m.

III. INTERPRETING THE OUTPUT

A .txt file named ’curvatureOutput.txt’ will appear in the folder, in which you run the

K curFinder.m. Each of its lines contains the curvature value at the angle that is given in

the corresponding line of the .txt file.
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This appendix explains how to run a sample Energy Finder code, which we use to plot

energies of the system in an elliptical nanowire.

A sample Energy Finder MatLab code with the name K eneFinder.m can be accessed at:

\\ambr\faculty\kaidala\simulations\K\matlab K

I. BRIEF INTRODUCTION TO THE .ODT FILE

An .odt file contains information regarding the energies of the system at each step. In

ascending order, each numeric line contains the energies of a single step, from step 0 to the

last step. Columns 1, 7, 11, and 16 respectively correspond to Total, Zeeman, Exchange, and

Demagnetization (a.k.a. Magnetostatic) Energies.

II. IMPORTING AN .ODT FILE ONTO MATLAB WORKSPACE

The steps to follow are:

• Open the .odt using a simple text reader (I prefer Notepad++).

• Clip the header and the footer lines.

This means delete the lines other than those of three digit vector coordinate lines;

these non-vector lines are usually the the first 5 and the last 2 lines.

• Save the clipped file.

E.g., save it as ’[original filename] clipped.odt’ to distinguish it from the original file.

• Open MatLab.

• Import the clipped .odt to MatLab Workspace.
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You can do this by drag & drop. Import as ’Matrix’. Check that the number of cells

reported in ’Range:’ is the same as the number of pixels in your .omf (e.g., A1 to

X15445 including the energy information of all 15,445 steps).

• Rename it on Workspace.

daFile is the default name for the imported file matrix.

III. MODIFYING THE CODE

Before we run the Energy Finder, here is how we open and modify it.

The steps to follow are:

• Copy K angFinder.m into the folder you want the output to be in.

You can find this code at \\ambr\faculty\kaidala\simulations\K\matlab K

• Open K angFinder.m on MatLab.

• Run the code.

This will generate the energy plot of all of the 100th time steps contained in the .odt

file.

• (Zoom in)

Fix the code using your MatLab skills in order to zoom in on the part of the graph

you want.
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This appendix contains instructions for using OOMMF on a remote server (Harvard Uni-

versity’s Odyssey cluster) and details of the input and output files.1

The instructions are user specific, in this case specific to me, and there may be ways easier

than what I suggest.

I. INSTRUCTIONS

To log into Odyssey on Mac:

• Run JAuth.jar on your computer.

This will open an authenticator GUI that generates a six digit code that changes every

minute and is in synchronization with only your personal password.

• Open a new terminal window on your Mac.

• Type in: ssh [your username]@odyssey.fas.harvard.edu

• Enter your password at the prompt ’Password:’.

• Enter the code on the authenticator GUI at the prompt ’Verification code:’.

By now, you should be in your personal folder at Harvard’s Odyssey cluster.

A few explanations and shortcuts:

To view your current directory, type ’ls’.

To change directory, type ’cd [directory listed in your current directory]’, or type ’cd

../’ to go back to the encompassing directory.

If the file has a beginning or ending that is unique among the other files in the same

folder, instead of typing ’[name of file]’ you can simply type ’*[the unique ending]’,
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type ’[the unique beginning]*’, or type ’[the unique beginning]’ and press tab on the

keyboard. Examples: Type ’*.mif’ instead of ’reg.mif’. Instead: Type ’reg’ and press

tab.

To make a copy, type ’cp [copied file name] [name of the copy]’ or ’cp [copied file’s

name] [address of target directory]/[copy’s name]’.

To move a file from one directory to another, type ’mv [file name] [address of target

directory]’.

To submit an OOMMF run at Odyssey:

• Log into Odyssey.

• Upload OOMMF.

You can upload the modules of the version of the OOMMF you want by manually

typing ’module load [name of the OOMMF module]’ on the current directory, or you

can go back to the home directory and edit the relevant code file to make Odyssey do

it for you; see below for details.

• Create a folder for your run and copy the input files into this folder.

See below for details on how to secure-copy files from your computer.

It is prudent to have original input files from a run that worked before and then edit

them on Odyssey via your terminal. This way, you will not generate sideline codes

depending on the program that opens the input files.

• Edit your input files.

Type ’emacs [name of file]’.

• Save the edited file.

On your keyboard, simultaneously press control, X, and S.
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• Exit the edited file.

Simultaneously press control, X, and C.

• (Optional:) Get rid of the versions of the edited files that Odyssey saved for you, each

with the name ’[original file name]⇠’; e.g.’ reg.mif⇠’.

• Submit the run.

Type ’sbatch [name of your .sbatch file]’.

To automatically load the OOMMF modules in your directory at Odyssey:

• Log in to Odyssey.

• Go to your home directory.

Type ’cd /’.

• Make a copy of the system file you are about to alter, for safety.

Type ’cp .bashrc .bashrc-old3’.

• Open and edit the ’.bashrc’ file.

At the end of the code line, add the module load commands: Type ’module load [the

OOMMF module you want]’. Typically, you need multiple modules. Type the module

load command for each additional module on a new line.

• Save and exit.

• Log out and log in to check that the process is complete.

The module load commands should appear on the terminal window at login.

To secure-copy files from your computer to Odyssey or vice versa on Mac:
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• Open a new terminal window.

E.g., if the terminal is already running, then simultaneously press command and N.

• Secure copy.

Type in ’scp [address of the file(s) to be copied] [address of target directory]’.

The address of your home directory at Odyssey is ’[your username]@odyssey.fas.harvard.edu: /’.

• Enter your password at the prompt ’Password:’.

• Enter the code on the authenticator GUI at the prompt ’Verification code:’.

Consequently, the details of the data transfer shall appear on your terminal window.

II. INPUTS

A. Mask

We call mask to the geometry of the ferromagnet you submit to OOMMF (Fig. 1). It is typi-

cally a bitmap image constructed in black and white, where the black codes for ferromagnetic

portion and the white for non-magnetic.

FIG. 1. Sample mask. The black portion is magnetized and white not magnetized. The black rectangular frame is added to

show the mask boundaries and is not magnetized.

For details on how to make a mask, see Appendix F .
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B. .mif

The .mif file is where we detail the properties of the magnetic field we want to simulate and

the ferromagnet that will be exposed to this field.

This .mif format is in Tcl/Tk and is specified for the intended OOMMF package.

For details, see the OOMMF User’s Guide for the version you use.

You can find sample .mif files at

\\ambr\faculty\kaidala\simulations\K\odyssey K

C. .bsub

The .bsub file tells Odyssey how to run a simulation.

For details, see the Running Jobs section at the resources page of FAS at Harvard.2

D. .omf

In order to run a simulation on an existing .omf file, we can include the .omf in the input

and address it in the .mif code as input. This is useful, e.g., if the run times out before ending.

See next section for code details.
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III. OUTPUTS

The .err and .out appear as default outputs of Odyssey.

To obtain .odt, .omf, or .ohf outputs, you need to enter the relevant output request code

into the .mif file.

A. .err

This file details the errors that have occurred during the run if there are any.

B. .out

This file details the simulation and whether or not it is complete. Depending on your .mif

code, this file may contain some output data you have requested.

C. .odt

This file gives a wide range of information for each time-step of the simulation, including

energies, in a matrix format.

We only consider the columns that contain information on the Exchange, Zeeman, Magne-

tostatic, and Total energies.

For details on how to locate and compute the energies, see Appendix D.
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D. .omf

This file gives the magnetization vectors in 3D, in a matrix format.

For details on how to plot the magnetization

by using OOMMF Tools, see Licht 2011;3

by using the MMM simulation on MatLab, see Goldman 2010;4 or

by using MatLab, see Angle Finder in Appendix B.

E. .ohf

This file gives field vectors in 3D, in a matrix format.

You can plot an .ohf file by using the same procedure you use to plot an .omf file, depending

on the field you require, e.g., demagnetization or Zeeman.

REFERENCES

1M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 (Interagency Report

NISTIR 6376 (National Institute of Standards and Technology), MD, USA, 1999).

2Anon., Running Jobs (<https://rc.fas.harvard.edu/resources/running-jobs/>, accessed on

19 Dec. 2015).

3A. S. Licht, A Computational Micromagnetic Study of Controlling Vortex Chirality in Fer-

romagnetic Nanorings (Mount Holyoke College, 2011).

4A. Goldman, Evolution of Magnetic States in Ferromagnetic Nanorings (Mount Holyoke

College, 2011).
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This appendix explains how to run a sample Mask Maker code, which we use to create ge-

ometries, e.g. elliptical ring, for the ferromagnets that we feed into the simulation program,

namely OOMMF.

A sample file with the name MaskEllipse.m can be accessed at:

\\ambr\faculty\kaidala\simulations\K\matlab K

In the following sections we elaborate on what a mask is, how to design a mask, how to make

a mask file, and how to convert the mask file into bitmap.

I. SAMPLE MASK

A mask is a black and white image of the geometry we submit to OOMMF, on which black

codes for magnetized and white for non-magnetized.

FIG. 1. Sample mask. The black portion is magnetized and white not magnetized. The black rectangular frame is added to

show the mask boundaries and is not magnetized.

II. DESIGNING A MASK

• Open a sample Mask Maker file on MatLab.

E.g., open MaskEllipse.m at \\ambr\faculty\kaidala\simulations\K\matlab K

• ’Save as’ the program into your output folder, in which your mask will be located.
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Make sure that the Mask Maker you are running is in the folder, in which you want

your output folder to be, e.g., not in my server folder.

• Edit the mask.

At this step, I suggest that you run the program once. By doing so, you can see the

contemporary plot and then use your MatLab skill set to adjust the geometry to obtain

the shape you desire.

III. MAKING A MASK FILE

• Run the program.

Just push play. This should generate a figure with the intended geometry that is rotated

by 90� (the orientation will be fixed automatically, during the upcoming conversion

procedure). Once run, the program will prompt you to enter a ’filename to save?’.

• Save the figure.

Enter what you want the figure’s name to be, e.g., ’ell3’. Do not type ’.bmp’ or any

other file type specification after the ’filename to save’. At the completion of this step,

the figure will be saved into the same folder as the Mask Maker.

IV. CONVERTING TO BITMAP

These instructions are specific to Windows.

• Make sure Perl is installed in your computer.

• Copy ’data2bmp’ and ’sample.bmp’ from \\ambr\faculty\kaidala\simulations\K\maskMat

into your output folder.
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• Open Command Prompt and change directory to your output folder.

Type ’cd Desktop\[address from Desktop to output folder]’.

• Run Perl.

Type ’perl data2bmp’ on Command Prompt.

• Enter the filename.

At the prompt ’Enter the data file name:’, type the filename of the MatLab figure;

e.g., type ’ell3’. Hit enter.

• Enter ’[filename].bmp’.

At the prompt ’Enter the output ¡bitmap¿ file name:’, type the mask’s full bitmap

name; e.g., type ’ell3.bmp’. Once you hit enter, the bitmap image of your mask, in the

right orientation, shall appear in your output folder.
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