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ABSTRACT

Epileptic patients with severe cases of epilepsy usually undergo

more than one surgery to locate and remove the epileptic tis-

sue from the brain. It is hard to localize epileptic tissue as it

is defined by abnormal excitability and synchronization of neu-

rons, and does not have any distinguishing visual characteristics.

During the first surgery a piece of cranium is removed and an

array of EEG electrodes is placed on the surface of the brain,

after which the patient is monitored for several days. During the

second surgery, the brain is stimulated electrically and the result

is monitored. Patients are traditionally monitored by EEG elec-

trodes. However in the study done by Hochman and Haglund

optical imaging technique is used to study the impact of the

stimulus.

In this project, we use data from a study conducted by

Haglund and Hochman. The brain is divided into different re-

gions of interest and illuminated with light of the desired wave-

length, which is then photographed at intervals of approximately

.2 to .3 seconds. The data is the series of average intensities for

each region recorded at different times. Interpreting this time

series data is challenging because of the noise contributed by

heartbeat and respiration. We use a Bayesian dynamic linear

model (DLM) to remove the noise artifacts. We first develop

a univariate DLM to analyze each region independently. We

observe that some regions responded to stimulus in a similar

manner. To account for the correlation between these regions
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we further develop a multivariate DLM. These models help us

to study the response of stimulus in noisy data, and will hope-

fully enable us to identify distinguishing properties of epileptic

tissues in the brain.
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1 Introduction

1.1 Optical Imaging Technique: An introduction

Epileptic patients with severe cases of epilepsy usually undergo two

surgeries to locate the tissues responsible for origination and spread of

seizure, and to remove these tissues from the brain. During the first

surgery a piece of cranium is removed, and an array of electrodes is

placed on the surface of the brain under the dura mater1 to activate

the neurons around the electrode. This process of activation of neurons

by electrodes is called the electrical stimulation of the brain.[5] The

patient is then monitored for several days. Second surgery involves the

removal of the grid array and the definitive resection of the epileptogenic

tissues from the brain.[2][3] The process of locating the tissues where

epileptic seizures originate is called localization and the process of

removal of these tissues from the brain is called resection. Tissues

where the seizures originate are called epileptogenic tissues.

The surgical outcomes of resection in patients suffering from neo-

cortical epilepsy2 are not as successful as the surgical outcomes from

resections in epileptic patients with mesial temporal epilepsy.3[3] It

1Dura mater is the outermost, toughest, and most fibrous of the three mem-
branes covering the brain and the spinal cord.[2]

2Neocortex is the outer layer of cerebral hemisphere in mammalian brain. It
is involved in higher functions such as sensory perception, generation of motor
commands, spatial reasoning, conscious thought and language. The epilepsy that
occurs in neocortex part of the brain is called neocortical epilepsy.

3Mesial Temporal Epilepsy: Mesial temporal lobe epilepsy is the most com-
mon form of human epilepsy, and usually occurs in hippocampal region of the
brain.[6]
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is hard to localize neocortical epileptogenic tissues accurately, as they

are characterized by abnormal excitability and synchronization of neu-

rons, and do not necessarily have any distinguishing visual characteristics.[9]

Traditionally, neuronal activity induced by electrical stimulation in

the patients after first surgery is monitored by Electroencephalogra-

phy (EEG) electrodes. However, in a study conducted by Hochman

and Haglund, an intra-operative imaging of optical signals tech-

nique, discussed below, is used to monitor the stimulation in the pa-

tients during the surgery. (For more information regarding the technical

aspects of the study refer to [3])

The amount of light absorbed and scattered by brain tissue changes

in response to neuronal activity.[3][8][4] Optical responses evoked by

neuronal activity are often called intrinsic optical signaling (IOS).

[8] These optical responses arise from changes in the optical properties

of the tissue itself. Imaging of intrinsic optical signals (ImIOS) is a

technique that involves illuminating neuronal tissue with light at vari-

ous wavelengths and recording its IOS with an imaging detector. These

activity evoked optical changes are generated by changes in blood oxy-

genation and blood volume in the brain, which can independently

affect the amount of light absorbed by cortical tissues.[3][4]

As there is change in the density of the red blood cells with the

change in the volume of blood, alterations in blood volume affect the

optical properties or light absorbing properties of the blood. Similarly,
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blood oxygenation, the level of oxygen saturation in the blood, affect-

ing optical change is a consequence of difference in absorption spectra

of oxyhemoglobin and deoxyhemoglobin.[1][8]When the blood is satu-

rated with oxygen it is called oxyhemoglobin and when it is desatu-

rated, it is called deoxyhemoglobin. Hochmann and Haglund pointed

to evidences of the illumination of the cortex at specific wavelengths

enabling ImIOS to selectively record changes in either blood volume or

blood oxygenation.[3]

Light with 535nm wavelength detects changes in blood volume whereas

that with 660nm detects the changes in blood oxygenation.[8] Optical

change measured at 535nm is negative going. This is because as blood

cells in neurons absorb more light due to increased activity, brain tissue

becomes darker. Hence the intensity of IOS is lower with increased ac-

tivity in the neurons. Conversely, optical change at 660 nm wavelength

light is positive going. Optical changes recorded at this wavelength

represent the change in ratio of oxyhemoglobin to hemoglobin.[3] Since

oxyhemoglobin absorbs significantly less light than hemoglobin, at this

wavelength, the tissue, and particularly the larger veins overlying ac-

tive neocortex, becomes brighter during increased neuronal activity.[3]

So intensity of optical imaging is higher with increased activity.

As visible and near-infrared lights are not harmful to cells and tis-

sues, they are used for the purpose of illumination.[8] The data of

the response of brain to external stimulus collected by optical imag-
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ing technique could be a potential tool for localizing functional and

epileptic cortical regions in operating rooms (intra-operative settings),

and providing guidance for the resection of tissues during neurosurgical

problems.[8][10]

Possible advantages of ImIOS compared to other brain mapping

modalities, as discussed by Haglund and Hochman in their paper [3]

are that ImIOS is an inexpensive technique, can provide significantly

greater spatial and temporal resolution, and is capable of on-line intra-

operative imaging. Consequently, ImIOS has the potential to become

a powerful and widely applicable tool for both the clinical and surgical

treatment of epilepsy.[3] However, this technique has been of limited use

because the data obtained is noisy and hard to interpret. In this thesis,

we develop a Bayesian model that will help us extract the response of

brain to external stimulus from the noisy data and will hopefully be

useful in distinguishing regions that behave abnormally.

1.2 Overview of the Thesis

In this thesis, I use data from a study conducted by Haglund and

Hochman. Collection and structure of the data is explained in Chapter

2. In chapter 3 & 4, I talk about the specifics of univariate dynamic

linear model used to model different regions independently and the

methods used to estimate unknown parameters. Chapter 5 investigates

the results obtained from univariate dynamic linear model. I continue

my analysis with multivariate dynamic linear model in Chapter 5 where
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there is correlation among regions that respond to stimulus in a similar

way. Chapter 6 is followed by the results from the multivariate analy-

sis in Chapter 7. I wrap up my thesis with a section on discussion in

Chapter 8.

Lavine et al. has developed a Bayesian, univariate dynamic linear

model for the analysis of human ImIOS data and verified its robust-

ness in data sets derived from multiple replicates and cortical regions

from multiple subjects in [8] and [9]. In this thesis I begin my analysis

following Lavine et al.’s modeling approach and extend their model by

introducing a multivariate dynamic linear model for regions that show

similar dynamics. Dynamic linear models have also been used to model

the brain imaging data of other animals by few other researchers. For

example Myers, Brockwell and Eddy [10] used univariate dynamic lin-

ear model to study the optical imaging data from cats’ brain.

All the analysis are done using statistical software R.[13] Package

dlm in R provides excellent setting for running computationally com-

plicated algorithms and estimating different components of dynamic

linear model.[11] We use this package extensively for all of our compu-

tation. We use package ggplot2 and other graphics in R to illustrate

our findings graphically.[14]
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2 Data

For the purpose of the study, the brain was divided into different re-

gions of interest (as shown in the figure 1 below), and illuminated with

light of desired wavelength. It was then photographed at intervals of

approximately .2 to .3 seconds for about 200 seconds, with a total sam-

ple size of t = 1015. We will refer to each t as a time point when the

data was collected and 5 time points ≈ 1 second.

Figure 1: The image above is a human brain during surgery, placed under
the glass plate for stability. Several regions of the brain are numbered in
red. These are the regions from which data is collected. Most of the image
is gray matter overlain with a network of dark blood vessels.

The raw data is the series of intensities for each pixel recorded at

different time. We use the average of the intensities of all the pixels

in a region for a given time period. Since there are variations in the

illumination profile across the field of view, we are interested in relative
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change of intensities across each region of interest. The average of the

intensities within each region is divided by the regional average at time

zero. So the data is the time series of average response of each region of

interest of the brain to the stimulus and is denoted by yt, where t ≥ 0

is the time of recording of each intensity. This method is consistent

with the method used by Lavine et al. in [8][9].

Thus the data we work with is:

yt =
regional average intensity at time t

regional average intensity at time 0

Interpreting this time series data of optical imaging is challenging

because of the noises in the data contributed primarily by heartbeat

and respiration.[3][10]
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Figure 2: Graphical Representation of the time series of intensity of light
recorded by optical imaging for regions 1-11 in patient 4. Different color
represents different replicate of the study in each region. Along Y-axis is
the intensty (yt) recorded at each t and along X-axis is the time point t.
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Figure 3: Region 1 in Higher Resolution

Figure 2 represents plots of the time series data for 11 regions of the

brain of Patient 4 illuminated with 535nm light. For each region four

different replicates of the study were conducted. Hence different colors

in the plot represent data from different replicates of the study. From

the figure we can observe the general patterns of response in the data.

When stimulus is applied at time ≈ 100 in patient 4, the time series

falls rapidly in regions 1-5. In Figure 3, we observe larger fluctuations

at every 40 time points or so. These fluctuations are accounted by res-

piration. Also, in the same figure on a smaller time scale we observe

fluctuations of one cycle per 5 time points or so. These smaller fluc-

tuations are due to heartbeat. To study the response of the neurons

to external stimulus, we need a method that allows us to extract the

signal by accounting for the noise of heart beat and respiration.
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3 Investigation I: Univariate Analysis of

IOS data

Bayesian Dynamic Linear Model, a Gaussian linear sub-class of Space

State model, is used to identify (separate out) the signal of the response

of neurons to external stimulus by accounting for the cyclic component

of heart beat and respiration. The model used is of the form:

yt = st + ht + rt + vt (1)

where: st is a smooth curve for the response, ht is for heart beat, rt is

for respiration and vt is an error term.

In this chapter, I will briefly introduce State Space model, followed

by an explanation of the properties of dynamic linear model, as a special

case of State Space model. I will continue the chapter by talking about

specific types of dynamic linear models used in our analysis and the

results thus obtained.

3.1 State Space Models

State space models are used for modelling systems that evolve with

time.[8] They are characterized by unobservable Markov chain θt, also

referred to as state process or a latent process for, t ∈ {0, 1, 2, ..T} and

observed process yt which is an imprecise measurement of θt.[12] The

dependence structure of yt and θt is a part of the definition of space

19



state models. Conditional on θt, the y′ts are independent and yt depends

on θt only. Therefore, state space model is completely specified by the

initial distribution π(θo) and the conditional densities π(θt|θt−1) and

π(yt|θt).[12]

Definition 3.1. Markov Chain

(θt)t>1 is called a Markov chain if for any t > 1,

π(θt|θ1:t−1) = π(θt|θt−1).

[12]

From definition 3.1 we see that conditional on θt−1, θt and θt−2 are

independent, which means the information carried about θt by θ1 up to

θt−1 is same as that carried by θt−1.

3.2 Dynamic Linear Model

The dynamic linear model (dlm) is a special sub-class of State Space

model. Like a state space model, it is characterized by the observable

process (Yt : t = 1, 2, ...) which is thought of as determined by a latent

process (θt : t = 1, 2, ...), up to Gaussian random errors. The obser-

vation Yt depends only on θt at time t, and θt depends only on the

previous position θt−1, through a linear relationship, up to Gaussian

random errors.[12]

The dynamic linear model is specified by:
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• A Normal prior distribution for the p-dimensional state vector at

time t = 0, θ0 ∼ Np(m0, C0),

• Observation equation of the form

Yt = Fθt + vt,with vt ∼ Nm(0, Vt) and,

• State equation or evolution equation of the form:

θt = Gθt−1 + wt,with wt ∼ Np(0,Wt).

• G and F are constant known matrices of order p × p and m × p

respectively. vt and wt are two sequences of independent Gausian

random errors with mean zero and variance matrices V and W .

We assume that the time series at each region evolves independently.

So we model each region separately by univariate dlm. To model a

complicated system, like ours, we combine many simple dlms. We use

a polynomial model of order 2 to fit the smooth component (response

of the neurons to external stimulus), and a cyclic Trigonometric model

to fit the cyclic components of heartbeat and respiration.
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3.3 Local linear trend model for the Smooth Com-

ponent

A polynomial dlm of order 2 is used to describe the smooth development

of series over time. At each time t, the state of the system is represented

by its level and slope, i.e.

θs,t = (levelt, slopet.)

Only levelt and not slopet contributes to what we observe at time t.

Also, error in θs,t comes from wslope,t (error in slope component). It

means that the slope can change over time.

This model is specified by the system with an observation equation

of the form

st = (1, 0)tθs,t = levelt

and state (evolution) equation of the form

θs,t = Gsθs,t−1 + ws,t.

State equation is written as:

θs,t+1 =

levelt+1

slopet+1

 =

levelt + slopet

slopet

+

 0

wslope,t+1


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=

1 1

0 1


levelt
slopet

+

 0

wslope,t+1


with,

Gs =

1 1

0 1

 ; ws,t =

 0

wslope,t

 and, ws ∼ N(0,Ws) where Ws =

0 0

0 Wslope

 .
3.4 Trigonometric Model for Heartbeat and Res-

piration

Components of heartbeat and respiration are modeled by trigonometric

dynamic linear model which is described below.

Consider a sinusoidal function with period p. It can be thought as a

point moving around a circle in anti-clockwise direction.[8] Its location

at time t is given by (b cosαt, b sinαt) where b is the amplitude and αt

is its angle, and the change in angle in one time-step is δ = 2π
p

. Then

the position of the point at time t+ 1 can be written as:

b cos(αt+1)

b sin(αt+1)

 =

b cos(αt + δ)

b sin(αt + δ)

 =

b(cosαt cos δ − sinαt sin δ)

b(cosαt sin δ + sinαt cos δ)



=

cos δ − sin δ

sin δ cos δ


b cosαt

b sinαt

 .
Our dlm for heartbeat consists of this equation for sinusoidal func-
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tion plus the additional noise. Heartbeat at time t can be represented by

a two dimensional state vector, θh,t = (θh,1,t, θh,2,t)
t = (bt cosαt, bt sinαt)

t.

The state equation is of the form

θh,t+1 = Ghθh,t + wh,t+1.

Gh is a rotation matrix and

Gh =

cos δh − sin δh

sin δh cosδh


where, δh is a heartbeat frequency given by δh = 1

2π×seconds per heartbeat
,

wh,t = (wh,1,t, wh,2,t)
t is an error term with wh,t ∼ iid N(0,WhI2), and

I2 is an identity matrix of dimension 2 × 2. Gh ensures that the ex-

pected shape of heartbeat cycle is sinusoid of frequency δh, and wh,t

allows for each cycle to deviate in shape, amplitude and duration. Also

note that at time t we observe only h1,t and not h2,t.

In figure 3, we observed that the respiration had slighly longer sine

waves and more fluctuations than heart beat. So, for modeling respira-

tion component, we use a slightly more complicated and flexible family

of shapes in trigonometric dlm. We use a trigonometric model with two

harmonics.[8]

Observation equation for respiration is rt = (θr,1,t, θr,3,t)
t, with state

24



equation of the form,

θr,t+1 =



θr,1,t+1

θr,2,t+1

θr,3,t+1

θr,4,t+1)


=



b1,t+1 cosα1,t+1

b1,t+1 sinα1,t+1

b2,t+1 cosα2,t+1

b2,t+1 sinα2,t+1



=



cos δr − sin δr 0 0

sin δr cos δr 0 0

0 0 cos 2δr − sin 2δr

0 0 sin 2δr cos 2δr





b1,t cosα1,t

b1,t sinα1,t

b2,t cosα2,t

b2,t sinα2,t


+



wr,1,t+1

wr,2,t+1

wr,3,t+1

wr,4,t+1


.

At time t, we observe rt = b1,t cosα1,t + b2,t cosα2,t and the w′s are

mean zero Gaussian error with variance matrix Wr.

Thus our model for each region is an eight parameter model with

two parameters for smooth component, two parameters for heartbeat,

and four for respiration. The state vector is an eight dimensional θt

such that

θt = (levelt, slopet, θh,1,t, θh,2,t, θr,1,t, θr,2,t, θr,3,t, θr,4,t)
t

and the state and observation equations for θt are given by:
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θt+1 =



1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cos δh − sin δh 0 0 0 0

0 0 sin δh cos δh 0 0 0 0

0 0 0 0 cos δr − sin δr 0 0

0 0 0 0 sin δr cos δr 0 0

0 0 0 0 0 0 cos 2δr − sin 2δr

0 0 0 0 0 0 sin 2δr cos 2δr



θt+



0

wslope,t+1

wh,1,t+1

wh,2,t+1

wr,1,t+1

wr,2,t+1

wr,3,t+1

wr,4,t+1



yt =

[
1 0 1 0 1 0 1 0

]
θt + vt = st + ht + rt + vt.
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4 Estimation and Forcasting

4.1 Estimation of Unknown Variances

Variances (W and V ) used in the dynamic linear models are not usually

known. Different Bayesian methods like Markov Chain Monte Carlo,

modern sequential Monte Carlo, and non-Bayesian methods like max-

imum likelihood estimation can be used to estimate these unknown

parameters.

We use maximum likelihood estimation (MLE) method to estimate

unknown variance parameters in our DLMs. Let Λ denote the vector

of unknown variance parameters. These parameters are constant over

time for our model.[12] Also, let y1, ..., yn be the vector of observed ran-

dom time-series. Joint density of the observed values given particular

value of Λ is given by

lik(Λ, y1, ..., yn) = π(y1, ..., yn; Λ) =
n∏
t=1

π(yt|yt−1; Λ)

where, π(yt|yt−1; Λ) is the conditional density of yt given the data up

to time t − 1 and Λ as particular value of the unknown parameter.

π(yt|yt−1; Λ) are Gaussian densities with mean and variance that de-

pend on Λ.[12][10] Thus the likelihood function is numerically max-

imized to obtain the maximum likelihood estimates of the parame-

ters,i.e.

Λ̂ = arg max
Λ

LogLik(Λ, y1, ..., yn).
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While computational time required for MLE is dramatically less

than that for the Bayesian approaches, the numerical algorithm for

computing the MLE might be sensitive to starting values and might

not always converge.[12] To make sure that the MLE converges to one

value (global maxima) we tried different starting values for the pa-

rameters. We also used simulated annealing algorithm for MLE which

took comparatively longer to execute, to make sure that estimates of

variances are global maxima. Simulated annealing introduces stochas-

ticity to the optimization algorithm, thus making sure that parameters

converge to global maxima and do not get stuck in the local mode.[7]

For the computation of MLE and simulated annealing we use dlmMLE

function built in package dlm in R.[11]

Estimation of frequency for heart beat and respiration is done by

visual inspection. The number of peaks in large interval of time from

the plots are counted and then we compute the number of cycles per

each time point for both respiration and heart beat. In figure 3 notice

that between time points 0 and 50 there are approximately 2 respiration

maxima. So, the frequency of respiration cycle is estimated as 2 per

50 times points or 1
5

cycles per second. Similarly, for heart beat the

frequency is estimated as 5 cycles per 20 time points or simply, 5
4

cycles

per second.1

1Remember that 5 time points are approximately equal to 1 second, since around
5 images were recorded every second.

28



4.2 Filtering and Prediction

Our interest in this analysis lies in estimating states of different compo-

nents of the dlm given the observed data. To estimate the state vector

we compute the conditional densities π(θs|y1:t) where s ≤ t, also called

smoothing. For smoothing all the information provided by y1, ..., yt is

used to estimate the state equation at each time 1, ..., t. Smoothed

estimates help us to study behavior of the system underlying the ob-

servations. Smoothing is implemented in package dlm by recursive al-

gorithm called Kalman filter.[12] Kalman filter provides the formula for

updating our current inference on state vector as new data is available.
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5 Results: Investigation I

We use the univariate model described in Chapter 3 for accurate estima-

tion of the components of smooth response, heartbeat and respiration

in each of the regions independently. We first use MLE to estimate the

unknown variance parameters in the model. Different starting values

are used for MLE until the variance parameters converge to constant

values and we use the variance parameter with greater likelihood to

estimate different components of the model. We do this for all four

replicates of the study in each region.

Mean levelt estimated at each time t along with estimated mean re-

sponse to heartbeat, h1,t, and estimated mean response to respiration,

r1,t + r3,t, from each replicate of the study is summarized graphically

in figures in the Appendix section. In the figures, the green line is the

observed value at each time point. The blue solid line represents the

level estimated by dlm along with the red line for estimated heartbeat

response and the purple for estimated respiration response. The mag-

nitudes of optical responses in the estimated level curves, and their

shapes after the initial response seem to somewhat accurately match

the observed data at most of the time points for each region.

However, the figure also displays inadequacies in our modeling ap-

proach. The smooth level for most of the regions in all the replicates

is smoother than what it appears on observed data at intervals where

the intensity is minimum and the slope of the intensity changes from

negative to positive. (This trend is very clearly seen in figures 7 and 8.)
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This suggests that the estimated levels do not account for the sudden

steep changes in the intensity. The estimated level appears to start

changing smoothly prior to the true response in the raw data and does

not go as deep as the observed intensities. Also, note that the smooth

levels in most of the regions for each replicate of the data, except at

regions 1, 2 and 3 in replicate 1, do not start at zero and slope of the

estimated level at starting point is steeper than in the raw data for

these regions. This result is contradictory to what we observed in the

raw data. In the raw data we had normalized the observed intensity to

make sure that the starting intensity2 was constant in each region and

that the change in intensities for these regions was comparable. The

plots show that this model were not capable of capturing the sharp,

sudden change in the response.

Moreover, in most of these regions the estimated respiration signal

shows a big fluctuation for some starting time period and then goes to

being stable. It seems like the respiration signal is following the path

of the smooth response signal in these regions or there exist some mys-

terious (weird) component that is not being accounted by the model.

While this is an interesting and important topic to pursue, we leave

it for future investigation and proceed to check our investigation of

smooth signal with different modeling approach.

We also estimate the variance parameters using simulated annealing

to make sure that the estimates converge to global maxima and com-

2This is the intensity at the beginning of the stimulation of brain as explained
in the data section.
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pare the parameters estimated by these two methods. The parameters

estimated by both of these methods were almost similar. We proceed

by using MLE estimates estimated by MLE algorithm as it less time

computationally than simulated annealing algorithm.

One way to make sure that the estimated levels follow the sudden

steep changes in the data would be to consider long tailed T distribu-

tion of error that allows for more variation.[9] This is also computation-

ally challenging and we need to use MCMC for estimating variance by

this method.[8][9] The other approach could be to allow for correlation

among regions that show similar dynamics and use multivariate dlm to

model them. We use the latter procedure to check whether allowing

for correlation among the regions give us more information about the

smooth response to the stimulus.
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6 Investigation II : Multivariate Analysis

of IOS Data

6.1 Correlation of errors for slope of local linear

trend model

From the plots of smooth component in the figures in Appendix I, we

observe that regions 1 to 5 respond to the stimulus in a similar manner.

Since there is a similar dynamic in smooth component (θs) we suspect

that the slope errors in θs are correlated for these regions. We test for

correlation by calculating Pearson’s correlation (refer table 1), and by

plotting the errors of each region against each other (refer to the plots

in Figure 4).

From table 1 we see that the correlation coefficients for regions 1

to 5 with each other is fairly high. Pearson’s correlation coeffiecients

between regions 1&2, 1&3, 2&3 and 3&4 range from 0.86 to 0.9. Sim-

ilarly, the coefficient between regions 1&4, 2&4 and 4&5 are between

0.73 and 0.79. The correlation coefficients between regions 1&5, 2&5

and 3&5 are the lowest, ranging from 0.49 to 0.6. The plots in figure 4

display the correlation between the regions graphically.

We need to build a model that allows us to incorporate the cor-

relation of slopes in our analysis. We believe that this approach will

improve our understanding of reponse of tissues evoked by electric stim-
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Region1 Region2 Region3 Region4 Region5
Region1 1 0.9 0.89 0.79 0.51
Region2 0.9 1 0.86 0.79 0.49
Region3 0.89 0.86 1 0.88 0.6
Region4 0.79 0.79 0.88 1 0.73
Region5 0.508 0.49 0.6 0.73 1

Table 1: Pearson Correlation Coefficient of Slope Error for each Region

ulation in different parts of the brain more accurately and hence detect

any abnormality in these tissues that might exist.

Next, we proceed to multivariate analysis of these timeseries for re-

gions 1 to 5 by building a multivariate dlm.
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Figure 4: Scatterplot of Correlation of Errors
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6.2 Multivariate DLM: Seemingly Unrelated Time

Series Equations

We build a single model to analyze different regions that show similar

dynamics by using seemingly unrelated time series equations (SUTSE).

SUTSE are a class of models which specify the dependence structure

among the state vectors.[12] This model is based on an assumption

that all time series follow the same type of dynamics, and that the

components of the state vectors have similar interpretations across the

different DLMs.[12] We combine the individual DLMs that we created

in the earlier section in order to build a multivariate model. We assume

that the evolution of the slope of the state vector of smooth component

is driven by correlated inputs. This means at any given time points the

components of the system error corresponding to different slopes are

correlated.

For the smooth component we can describe the joint evolution of

the state vectors by grouping together all the levels and then all the

slopes in an overall state vector

θs,t = (level1,t, ..., leveln,t, slope1,t, ..., slopen,t)
t

where n is the number of regions included in the multivariate model.
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6.3 Example of Multivariate Model for Time Se-

ries with Correlated Slope Errors

For the purpose of simplicity consider a multivariate model with 2 re-

gions. Then the evolution equation at time t + 1 for smooth signal

becomes



level1,t+1

level2,t+1

slope1,t+1

slope2,t+1


=



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1





level1,t

level2,t

slope1,t

slope2,t


+ ws,t+1

where ws,t+1 ∼ N(0,Ws) with

Ws =



0 0 0 0

0 0 0 0

0 0 W1,s W1,2,s

0 0 W2,1,s W2,s


W1,s is the variance of slope error of region 1, W2,s is the variance of

slope error of region 2 and W1,2,s = W2,1,s is the coviarance of slope

error of these two regions.

We retain our assumption that the components for heart beat and

respiration in different regions arise independently. The state vector
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for heartbeat is

θh,t = (θ1,h,t, θ2,h,t)
t = (b1,tcosα1,t, b2,tcosα2,t, b1,tsinα1,t, b2,tsinα2,t)

t

with evolution equation

θh,t+1 = Ghθh,t + wh,t+1 =



b1tcos(α1t + δ1h)

b2tcos(α2t + δ2h)

b1tsin(α1t + δ1h)

b2tsin(α2t + δ2h)


+ wh,t+1

=



cosδ1h 0 −sinδ1h 0

0 cosδ2h 0 −sinδ2h

sinδ1h 0 cosδ1h 0

0 sinδ2h 0 cosδ2h





b1tcosα1t

b2tcosα2t

b1tsinα1t

b2tsinα2t


+ wh,t+1

where wh,t is normal with mean 0 and variance Wh and

Wh =



W1,h,1 0 0 0

0 W2,h,1 0 0

0 0 W1,h,2 0

0 0 0 W2,h,2


.

Similarly, for modeling respiration with bivariate dlm we combine

two univariate dlms with the state vector

θr,t = (θ1,r,t, θ2,r,t)
t
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where, θ1,r,t is the state vector from region 1 and θ2,r,t is the state vector

from region 2.

We use similar technique to build a dlm for modeling more than 2

regions together. The results obtained from a multivariate analysis are

discussed in following section.
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7 Results: Investigation II

We begin our multivariate analysis by considering different pairs of re-

gions in each replicate. The results from the analysis are presented in

Appendix II. We then build a model allowing for correlations among

three regions at once. Result by allowing correlation among regions 2, 3

and 4 in data from replicate 1 is displayed in the figure 11 in Appendix

II.

From the plots, we see that the multivariate model has improved our

ability to model response signal as compared to the univariate model.

The multivariate model is able to successfully capture the sudden deep

changes in intensity that we could not capture in univariate model. Sim-

ilarly, multivariate model is also accurate in initial state of the stimulus

by being nearly stable at starting points before responding to the stim-

ulus. This is an exciting finding. Because the multivariate model is

using the information provided by all the regions included in the model

to estimate the unknown variance parameters, we believe that these

estimates are more accurate than those in univariate analysis.

This model is computationally more complicated than univariate

model and estimation takes longer time. Ideally we would like to include

all five regions in our analysis. However, we had difficulty with figuring

out the MLE algorithm which kept on failing. It will be helpful to

use more rigorous algorithms on a powerful machine for estimation like
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this. The other issue with our results from multivariate analysis is that

the weird component was still present in these new estimates. So it

might be a good idea to include a component for mysterious element

in our dlm for the analysis.
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8 Discussion

This study addresses the issues that arise in estimating the smooth

component from a noisy dataset, where the source of the noise is known

and the noises have biological significance. Using dlm we were able to

separate out the response of the brain to external stimulus from the

response to heartbeat and respiration. While univariate dlm was able

to estimate the smooth signal, allowing for correlation in the regions

that show similar dynamics enabled us to estimate the smooth signal

even more accurately. In that regard, dlm is a flexible model, which

allows us to incorporate different aspects of the system.

However, there is a tradeoff between time taken to run the algo-

rithm for maximizing variance estimates and accuracy of the estimates

in implementing these two methods. For univariate dlm, we need to

estimate only four unknown variances. So the computation time taken

by dlmMLE to optimize the likelihood function is comparatively less.

But for multivariate dlm, unknown variances and co-variances for all

the regions for which we have allowed dependence needs to be esti-

mated. And the time taken to execute the MLE is a lot longer than

that for univariate model. Also, for some regions MLE of variances were

sensitive to starting values and we kept on providing different values

until the estimates converge. This might not be an effective method

when time is a concern. Computation in simulated annealing took even

longer than it did in MLE. (For univariate dlm, MLE algorithm took

around 15 minutes to run while simulated annealing took around an
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hour.) The time taken for executing the algorithm for multivariate

analysis was even longer (more than 9 hours). While MCMC can be

an alternative method for estimating variance, it might not be feasible

in an intra-operative setting, that we eventually aim to use in, as it is

computationally complicated and timely.

From our analysis we saw that allowing for correlation among re-

gions that behave in a similar way improved our ability to accurately

estimate smooth signal a lot. The results from multivariate analysis

followed the raw data more accurately. We did multivariate analysis by

allowing for correlation between two regions each at a time and among

three regions at a time. We were also interested in modeling all five

regions together. However, due to time constraints and requirement

of large computational memory and space, we left it for future inves-

tigation. The other challenge lies in using this data in detecting any

abnormal nature of the tissues so that we can localize epileptic tissues

in the brain. We used the average of the intensities of all the pixels in

a region for a given time period instead of using a data for each pixel

in our study. By focusing in developing a model with average intensity

value for each region we believe that we can replicate the model to study

the time series from an individual pixel. This will help us in studying

the behavior of the tissues in even smaller part of the brain for each

region. Once we are successful in estimating the signals of response to

stimulus for each pixel or pixels that show similar dynamics, we believe

that we will be able to detect the abnormalities more accurately.
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9 APPENDIX

9.1 APPENDIX I: Plots from Univariate Analysis
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Figure 5: Observed Data and Estimated Smooth Level, Heartbeat and
Respiration for each Region from Replicate 1 of the Study
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Figure 6: Observed Data and Estimated Smooth Level, Heartbeat and
Respiration for each Region from Replicate 2 of the Study
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Figure 7: Observed Data and Estimated Smooth Level, Heartbeat and
Respiration for each Region from Replicate 3 of the Study
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Figure 8: Observed Data and Estimated Smooth Level, Heartbeat and
Respiration for each Region from Replicate 4 of the Study
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9.2 APPENDIX II: Plots from Multivariate Anal-

ysis
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Figure 9: Observed Data and Estimated Smooth Level, Heartbeat and
Respiration from Multivariate Analysis of Regions 1&2 and 2&3 Re-
spectively from the dataset in Replcate 1
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Figure 10: Observed Data and Estimated Smooth Level, Heartbeat
and Respiration from Multivariate Analysis of Regions 1&2 and 2&3
Respectively from the dataset in Replcate 2

53



Figure 11: Observed Data and Estimated Smooth Level, Heartbeat
and Respiration from Multivariate Analysis of Regions 2,3&4 from the
dataset in Replcate 1
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