
Computational Analysis of Statics
and Dynamics of Macromolecules

Milka Doktorova

This thesis was prepared under the guidance of
Professor Audrey St. John

Presented to the faculty of Mount Holyoke College
in partial fulfillment of the requirements for the degree of

Bachelor of Arts with Honors

Department of Computer Science

South Hadley, Massachusetts
May 2010

Acknowledgements

I would like to thank my thesis advisor, Professor Audrey St. John, for
giving me a direction in life and for always encouraging me to do better.

I learned and accomplished a lot, thanks to your guidance.

I want to thank Professor Harriet Pollatsek for introducing me to the world
of Lie groups and for helping me clarify certain concepts and definitions in

the thesis.

I want to thank all my professors at the math and computer science
departments at Mount Holyoke College for their continuous support.

I also want to extend a note of gratitude to Professor Ileana Streinu and the
LinKaGe research group at University of Massachusetts Amherst for their

help in generating some of the data for my project.

Last, but by no means least, I want to thank my family and friends for their
unconditional care and love.

Abstract

Macromolecules, such as proteins, play a salient part in biological processes.

Conducting analysis on the statics and dynamics of such structures is a key

to understanding naturally occurring phenomena and designing drugs for the

prevention and cure of diseases. This thesis presents research that applies tools

from math and computer science to study two problems in computational

biology: 1) the flexibility of proteins, and 2) the motion of macromolecular

structures in general.

The first part of the thesis focuses on a phenomenon called the allosteric

effect, which has been observed in nature, but is not well-understood. Pro-

teins generally perform their functions by binding other molecules at desig-

nated locations called active sites. In some proteins, it has been found that

small molecules can bind at a different allosteric location, thus causing a con-

formational (structural) change that affects the functionality of the protein.

Gaining insight into how these conformational changes occur could lead to

great advances in drug design. We take a computational approach by apply-

ing concepts from theoretical computer science, geometry and linear algebra

to study the structural properties of macromolecules. We model proteins as

discrete structures whose movements are restricted by specific geometric con-

straints. Then we apply techniques from rigidity theory to perform analysis

on these constrained structures and display the results via an interactive web

application.

Conformational changes are essential to macromolecular function, but ac-

tual motions cannot be observed experimentally. Standard simulation ap-

proaches, such as molecular dynamics, are too computationally expensive to

perform on the timescale in which “interesting” motions occur, due to the

complexity of the macromolecules. As a result, novel techniques are being

developed to improve simulation efficiency. However, the implementation of

such techniques is not standardized, so there is no effective method for com-

paring the performance of various approaches. The second part of this thesis

applies standard software engineering principles to the design of an infras-

tructure that provides for a robust development and comparison of motion

simulation techniques.

Contents

1 Introduction 1

1.1 Problem statements . 3

1.2 Related work . 4

1.2.1 Tools for static structural analysis 4

1.2.2 Tools for dynamic analysis 5

1.3 Contributions and results . 6

1.4 Structure of thesis . 7

2 Preliminaries 8

2.1 Definitions . 8

2.2 Introduction to matrix Lie groups 9

2.2.1 Brief overview . 10

2.2.2 The special Euclidean group 12

2.3 Introduction to rigidity: bar-and-joint

structures . 14

2.3.1 Algebraic rigidity . 16

2.3.2 Infinitesimal rigidity 17

2.3.3 Combinatorial rigidity 20

i

ii

3 Rigidity in 3D: Body-Bar-Hinge Structures 21

3.1 Algebraic rigidity . 22

3.2 Infinitesimal rigidity . 24

3.2.1 Theory of screws and infinitesimal rigid body

motions . 24

3.2.2 Grassmann-Cayley algebra and Plücker

coordinates . 27

3.2.3 Infinitesimal motions and bar constraints 30

3.2.4 3D body-and-hinge systems 31

3.3 Combinatorial rigidity . 33

3.4 Contributions . 36

4 Static Analysis for Understanding Allosteric Effect 39

4.1 Preliminaries . 39

4.2 Overview of steps . 41

4.3 Implementation details . 43

4.4 Identifying relevant bodies . 48

4.5 Identifying relevant null space vectors 49

4.6 Identifying relevant infinitesimal motions 54

4.7 Results . 56

4.7.1 CHK1 . 56

4.7.2 PDK1 . 59

5 Infrastructure Design for Motion Simulation Software 70

5.1 Data representation . 73

5.1.1 Geometric representation 74

5.1.2 Part and Assembly . 76

iii

5.1.3 Discussion . 81

5.2 Motion simulation . 83

5.2.1 SimulationStep and Motion Manager 83

5.2.2 StructureAnalyzer . 85

5.2.3 PartMover . 85

5.2.4 Resolver . 86

5.2.5 MovieMaker . 86

5.2.6 Discussion . 87

6 Conclusions and Future Work 88

Bibliography 90

List of Figures

1.1 Structure of an amino acid. Adapted from [12]. 2

1.2 Serendipitous allosteric site identified in F16BPase (black atoms).

Reprinted from [14]. 4

2.1 A visual representation of a Lie group G and its tangent space g 11

2.2 Examples of rigid and flexible frameworks 15

2.3 Different types of rigidity . 15

2.4 Different embeddings of a framework 16

2.5 Example: a bar-and-joint framework and its corresponding rigid-

ity matrix . 19

3.1 Body-bar-hinge structure. Reprinted from [21]. 21

3.2 Screws. Reprinted from [21]. 26

3.3 Minimally rigid body-bar-hinge structure. Reprinted from [21]. . . 35

4.1 Steps of the analysis . 41

4.2 Snapshot from the MotionSpace interface 46

4.3 Colors corresponding to the velocity of the atoms 46

4.4 Initialization stage . 47

4.5 Interactive stage . 47

4.6 Information for the active site of CHK1 49

iv

v

4.7 Data from applying heuristic 1 to protein PDK1 55

4.8 (protein 3JVR; null space vector applied: 302) In this color-

ing, both the active and allosteric sites are flexible while the rest of

the protein seems mostly rigid. Thus, we cannot make any conclu-

sions about the relationship between the two sites. 64

4.9 (protein 3JVR; null space vector applied: 396) Here we can

see again that the active and allosteric sites are flexible. However,

most of the atoms in the rest of the protein are also flexible and thus,

we cannot justify the existence of a relationship precisely between

the two sites. 65

4.10 (protein 3JVR; null space vector applied: 6) In this coloring

most of the protein is either rigid or slightly flexible. However, the

magnitudes of the velocities of the atoms at the active and allosteric

sites are larger, and, if we look carefully, we can identify a potential

“path” that leads from one of the sites to the other, as illustrated

in the bottom picture . 66

4.11 (protein 3HRF; null space vector applied: 3) In this coloring

most of the protein is rigid while some of the atoms at the active

an allosteric sites have velocities different than 0. Thus, we cannot

make any conclusions about the relationship between the two sites. 67

4.12 (protein 3HRF; null space vector applied: 337) Here we can

see again that the active and allosteric sites are flexible. However,

most of the atoms in the rest of the protein are also flexible and thus,

we cannot justify the existence of a relationship precisely between

the two sites. 68

vi

4.13 (protein 3HRF; null space vector applied: 375) In this color-

ing most of the protein is either rigid or slightly flexible. However,

the magnitudes of the velocities of the atoms at the active and al-

losteric sites are clearly larger, and we can identify a potential “path”

that leads from one of the sites to the other. Note that the structure

is 3-dimensional and the part of the path that seems to go through

“blue” atoms actually goes behind them. 69

5.1 Primary and secondary structure of a protein. Adapted from

http://commons.wikimedia.org/ 72

5.2 Data representation for the infrastructure 73

5.3 GeometricRepresentation class and its children 74

5.4 GeometricElement class and its children 74

5.5 Point class and its children . 75

5.6 Body class and its children . 77

5.7 Structure of the Part class . 78

5.8 Constraint class and its children 80

5.9 Motion Simulation part of the infrastructure 83

5.10 SimulationStep, Motion Manager and their children 84

5.11 Resolver . 86

Chapter 1

Introduction

Proteins are the most adaptable macromolecules in living systems. Purpose-

fully called the “building blocks of life,” they play an important role in es-

sentially all biological processes. They catalyze reactions such as metabolism,

DNA replication and digestion; they transport signals from one cell to an-

other while controlling and coordinating activities throughout the organism;

they provide mechanical support and immune protection, and are required for

the building and repair of body tissues, muscle contractions, water balancing,

nutrient transport and many other vital processes in the human body [25].

Protein versatility is the key factor that makes these macromolecules such

an appealing object of research for many scientists. Understanding how pro-

teins function provides a powerful tool for obtaining control over biological

processes and thus, curing diseases.

Studying the structure of proteins is important for understanding how they

function. In fact, there is a whole branch of bioinformatics, called structural

bioinformatics, that examines precisely the structure-function relationship in

macromolecules.

1

2

Figure 1.1: Structure of an amino acid.

Adapted from [12].

All proteins, whether very sim-

ple or extremely complex, are con-

structed from the same set of 20

amino acids. The structure of a pro-

totypical amino acid is shown in Fig-

ure 1.1. The R-group distinguishes

one amino acid from another and rep-

resents any of the 20 possible side

chains, each with distinctive chemi-

cal characteristics. Amino acids form

peptide bonds between each other.

Multiple amino acids linked by such bonds are referred to as a peptide. Once

incorporated into a peptide, the amino acid becomes an amino acid residue.

Various combinations and sequences of amino acid residues produce proteins

with different sizes and properties. Examples of such diverse protein prod-

ucts are enzymes, hormones, antibodies, transporters, muscle fibers, feathers,

spider webs, milk proteins, mushroom poisons, antibiotics, etc. The most var-

ied and specialized among them are the enzymes which serve as catalyzers of

virtually all cellular reactions [25].

Proteins function by interacting with, or binding, other molecules (e.g., lig-

ands). The locations where these interactions occur are called active sites. The

binding process was initially thought to be a simple lock-and-key mechanism

in which the lock is the active site and the key is the binding ligand. However,

scientists now understand that this process is dynamic, involving changes in

the conformations (i.e., the spatial arrangements of atoms in a molecule) of

both the protein and the ligand.

3

1.1 Problem statements

Certain proteins also have allosteric sites that are different than, and usually

far from, the active sites, but serve as binding docks for particular molecules.

A phenomenon, called the allosteric effect, is observed when binding occurring

at an allosteric site causes a conformational change at the active site, which

may render the protein active or inhibit it from performing its function.

The allosteric effect is not well understood and therefore has become an

active area of research. In particular, understanding how motion at the al-

losteric site causes motion at the active site is an open question. We will refer

to this problem as understanding the allosteric effect.

Studying the mechanisms behind this phenomenon would give biologists

valuable information that may help them to identify undiscovered allosteric

sites in proteins. While a limited number of experimental approaches exist,

identifying allosteric sites is still an open area of research. Providing tools

towards this identification would foster advances in drug design.

Proteins are not static structures. Their flexibility is the key to their func-

tion. Conformational changes, essential to the proteins function, cannot be

observed experimentally. Computational tools to help simulate these changes

would give invaluable insight into how the “building blocks of life” work. Stan-

dard methods exist for biochemically accurate motion simulation software,

but are too computationally expensive to simulate on the timescale in which

“interesting” motions occur. This is due to the complexity of the protein

molecules which are often composed of tens or hundreds of thousands of atoms.

4

1.2 Related work

In this section we present a brief overview of related work on tools for structural

and dynamic analysis of proteins. The results described further in this thesis

are based on rigidity theory which is discussed in Chapter 2 and Chapter 3.

For a comprehensive history and review of rigidity theory, see [11].

1.2.1 Tools for static structural analysis

Different tools can be used to analyze the structure of proteins. One such tool

is FIRST (Floppy Inclusions and Rigid Substructure Topography). FIRST is

a software for analyzing the rigidity properties of biomolecular structures. Its

first implementation was developed by Thorpe and Jacobs at Michigan State

Figure 1.2: Serendipitous allosteric site

identified in F16BPase (black atoms).

Reprinted from [14].

University and initially used a gen-

eralized “pebble game” approach for

bar-and-joint structures (to be de-

fined in Chapter 2.3) to identify the

rigid and flexible parts of a molecule.

A later version of FIRST based on

a body-and-hinge model (to be de-

scribed in Chapter 3.2.4) was de-

veloped at Arizona State University

[2, 17, 18].

For fundamental literature on the

naturally observed allosteric effect

phenomenon, see [24]. Novel work by Hardy at al. [15] used computational

techniques to assist in finding so-called serendipitous allosteric sites in pro-

5

teins. A serendipitous allosteric site is a site that “may not interact with

any natural ligand and has only adventitiously been exploited by the small

molecule that binds there.” The work of Hardy et al. revealed the existence of

serendipitous allosteric sites in enzymes [14]. Their approach required the use

of a software called HotPatch that identifies unusual patches, or cavities, on

the surface of the protein and colors the macromolecule according to how “un-

usual” these patches are [3]. Based on the coloring, potential allosteric sites

were first identified manually. Then chemical expertise was used to generate a

list of potential ligands for each of these sites and finally, wet lab experiments

were conducted to identify the ligands that successfully bound to a site (see

Figure 1.2).

1.2.2 Tools for dynamic analysis

Motion simulation techniques have a long history [12]. The classical method

of molecular dynamics (MD) is rooted in standard energy calculations, based

on the chemical properties of particular atoms [31]. Some commonly used

programs for MD simulation are AMBER, CHARMM, ENCAD, and GRO-

MOS. While considered the most biologically accurate technique, current MD

approaches can simulate motion up to the nanosecond timescale. Since func-

tional motions may occur at the microsecond timescale, MD is simply too

computationally expensive to produce precise simulations [12].

Other techniques for analyzing the flexibility of proteins include normal

mode analysis (NMA) [1, 28] and elastic network models (ENM) [8] such as

the Gaussian network model (GNM) [13]. They study mostly the fluctua-

tion dynamics of the proteins near their native state conformations. NMA

constructs a harmonic approximation of the potential well around an energy

6

minimized conformation and involves Hessian computation. GNM is based on

polymer network mechanics and models each protein by an elastic network.

The Yale morph server [10], another simulation tool, performs a linear

interpolation between initial and final protein conformations, generating a

“movie” of the motion; however, such movies are biologically inaccurate as

they do not respect chemical constraints during the interpolated motion. Other

computational techniques include FRODA [35] and ROCK [23], which generate

new conformations for complex networks while maintaining all constraints.

1.3 Contributions and results

The first part of the thesis addresses the problem of understanding the al-

losteric effect. We approach it by modeling proteins as discrete structures

whose movements are restricted by geometric constraints. We analyze the

rigidity properties of the model and apply various computational tools to ex-

plore its infinitesimal motion space. Along the way, we present an approach

for properly representing infinitesimal hinge constraints. Our results

and analysis give an intuition about the mechanisms of the allosteric effect

and provide a strong foundation for future research in this area.

The second part of the thesis focuses on the development of motion simu-

lation software. We apply standard software engineering principles to design

an infrastructure that provides for a robust development and comparison of

motion simulation techniques. The future implementation of this infrastruc-

ture would not only provide an effective method for comparing the performance

of various approaches, but could also foster the development of new motion

simulation techniques and improve the efficiency of already existing ones.

7

1.4 Structure of thesis

The subsequent chapters describe the theory behind the analysis and provide

a discussion of the results. Chapters 2, 3 and 4 focus on the problem of un-

derstanding the allosteric effect. Chapter 2 gives the preliminaries of the

work, introducing basic notation and terminology (Section 2.1), the theory of

matrix Lie groups (Section 2.2), and the concepts of algebraic, infinitesimal,

and combinatorial rigidity for 2-dimensional bar-and-joint structures (Section

2.3). Chapter 3 builds upon the basics from Chapter 2 and discusses the devel-

opment of the rigidity theory for body-and-hinge frameworks, then presents a

new contribution for handling special cases of hinge axes. Chapter 4 applies

the theory from Chapter 3 to perform static analysis on proteins: it begins

with preliminaries and methodology (Sections 4.1 and 4.2), then presents the

implementation details and data collection process (4.3 through 4.6), and ends

with a discussion of the results for two protein structures (4.7).

Chapter 5 addresses the problem of the development of motion simu-

lation software by introducing the design of an infrastructure for application

and comparison of motion simulation techniques. Section 5.1 presents the data

representation part of the infrastructure: it describes the organization of the

main classes in the library, and discusses the benefits and limitations of the

design decisions. Similarly, Section 5.2 focuses on the motion simulation part

of the infrastructure by first introducing, then discussing, its design.

Finally, Chapter 6 presents conclusions of the thesis results and future

directions for research.

Chapter 2

Preliminaries

Proteins can be abstractly represented as a set of objects (atoms) with certain

constraints (chemical bonds) between them. Such representation is analogous

to a graph structure whose rigidity properties can further be analyzed. We

begin by defining the basic combinatorial objects that will be used throughout

the paper, then give an overview of the theory of Lie groups and use it to

introduce the concept of rigidity in the context of bar-and-joint structures.

2.1 Definitions

A graph G = (V, E) is a combinatorial object consisting of a vertex set V with

|V| = n, and an edge set E with |E| = m, where E is a collection of unordered

pairs of vertices. Depending on the set of edges, a graph can be a simple graph

(a graph that does not have any loops or parallel edges) or a multigraph (a

graph that is permitted to have parallel edges).

A graph G = (V, E) along with a distance function on the edges L : E→ R,

defines the framework (G, L). A framework describes a bar-and-joint structure,

8

9

composed of universal joints connected by fixed-length bar constraints. We use

bar-and-joint structures in Section 2.3 to introduce the concept of rigidity.

The theoretical analysis of a framework is related to the inspection of

whether the framework can be realized in Euclidean space. This problem

is called the realization problem. We use Rd to denote d-dimensional Eu-

clidean space. In mathematical terms, Rd = {(a1, · · · , ad) : aj ∈ R}. The

realization of a framework (G, L) in Rd is an assignment P = (p1, p2, ..., pn) of

n = |V| distinct points in Rd. The points assign coordinates to the vertices of

V and are constrained by the edge lengths defined by L. Realizing a framework

may also be viewed as assigning a single point in (dn)-dimensional space. The

subspace of Rdn comprising all possible realizations of a framework forms the

configuration, or motion, space of the framework.

2.2 Introduction to matrix Lie groups

Before we explore the rigidity properties of a framework, we first introduce

the theory of Lie groups. Formally speaking, Lie groups have the structure of

differentiable manifolds with associated Lie algebras, defined as tangent spaces.

These are very complicated structures and studying them carefully is outside

the scope of this thesis. We will note, however, that when a matrix group

is a closed subset of Euclidean space, we can do calculus on the group the

same way we do calculus on Euclidean space. For the purpose of this research,

we restrict our attention only to matrix Lie groups which “live” entirely in

Euclidean space and are thus “well-behaved”: they satisfy all conditions of

being Lie groups, we can do calculus on them, and their tangent spaces at the

identity are Lie algebras. It is important to note that not all matrix groups

10

are Lie groups, but those that usually appear in various scientific applications,

are.

This section gives a very brief overview of matrix Lie groups and their

tangent spaces, then describes the special Euclidean group and its dimension

as both play a fundamental role in the rigidity analysis. We refer the interested

reader to the classroom-adapted book written by Pollatsek [27] on Lie groups.

2.2.1 Brief overview

As we mentioned, the Lie groups that we will explore are matrix groups on

which we can do calculus. To illustrate what exactly we mean by this, suppose

that we have a positive integer n, and G is a group of n×n matrices with real

entries:

G =

 a11 · · · a1n

...
. . .

...
an1 · · · ann

 : aij ∈ R

 .

Now let α be a function that maps real numbers to matrices in G, i.e.,

α : R→ G

α(t) =

 a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)

 ∈ G.
We can intuitively think of each entry aij(t) in α(t) as a function that

changes over time (aij : R→ R). Thus, if we differentiate α with respect to t

we get

11

d

dt
(α) =

 a11
′(t) · · · a1n

′(t)
...

. . .
...

an1
′(t) · · · ann

′(t)

 where aij
′(t) =

d

dt
(aij).

If all entries of α(t) are smooth, or equivalently, infinitely differentiable,

functions (i.e., their first, second, third, ..., nth, ... derivatives with respect to

t all exist), then we say that α is a smooth curve in G. Moreover, if α(0) = In,

α(0) =

a11(0) · · · a1n(0)

...
...

...
...

an1(0) · · · ann(0)

 =

1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 ,

then, we say that α passes through the identity of G. We know that G contains

the identity, because it is a group, and thus we can visualize α(t) as a curve

in the space, that passes through In as shown in Figure 2.1. It is easy to see

that there can actually be many other smooth curves that pass through the

identity (one example being the dotted curve on Figure 2.1), and all of them

are in the neighborhood of In.

Figure 2.1: A visual representation of a Lie group G and its tangent space g

12

As is the case with curves in n-dimensional space, we can examine the

vector tangent to α(t) at the identity, namely α′(0). If we do the same for all

other smooth curves passing through the identity in G, we will get a vector

space called the tangent space at the identity of G, denoted by g, as shown

in Figure 2.1. Thus, we can formally define g as:

g = { α′(0) | α : R→ G, α(0) = In, α smooth}.

It turns out that the dimension of the tangent space at the identity of a group

defines the dimension of the group itself.

2.2.2 The special Euclidean group

The rigidity analysis that we describe later relies on the special Euclidean

group which belongs to the larger class of matrix Lie groups. Before we define

it, however, we first introduce the orthogonal and special orthogonal groups.

The orthogonal group is the group of all n× n orthogonal matrices whose

transpose is equal to their inverse:

O(n) = {M ∈M(n) : MTM = In}

where M(n) denotes the set of all n× n matrices. The elements of the group

have the property of preserving distances between points. In 2-dimensional

space, for instance, they represent all rotations and reflections in the x-y plane.

The special orthogonal group, SO(n), is a subgroup of the orthogonal group

in which all matrices have determinant 1:

SO(n) = {M ∈ O(n) : det(M) = 1}.

13

The elements of SO(2) represent all rotations in the x-y plane.

The tangent space at the identity of SO(n), denoted by so(n), is a space

of skew-symmetric, or equivalently, antisymmetric matrices of the form

A =

0 a12 · · · a1n

−a12 0
...

...
. . . a(n−1)n

−a1n · · · −a(n−1)n 0

 .

Thus, we can define so(n) as

so(n) = {A ∈M(n) : AT + A = 0n}

where 0n is the n × n matrix of all zeros. Note that, due to the structure of

its skew-symmetric elements, the dimension of so(n) is

dim(so(n)) =
n2 − n

2
=
n(n− 1)

2
.

The special Euclidean group, denoted by SE(n), is the group of all

(n+ 1)× (n+ 1) matrices of the form

 R v

0 1

where R is an n× n rotation matrix, v ∈ Rn is a translation vector, and 0 is

a 1× n vector of zeros. A curve in SE(n) that passes through the identity of

the group can be written as

α(t) =

{[
γ(t) v(t)
0 1

]
: γ(t) ∈ SO(n),v(t) ∈ Rn

}

14

where γ(0) = In and v(0) is the zero vector in Rn. Thus, the tangent space at

the identity of SE(n), denoted by se(n), has the form:

se(n) =

{[
γ′(0) v′(0)

0 0

]
: γ′(0) ∈ so(n),v′(0) ∈ Rn

}
.

Since γ′(0) is an arbitrary element in so(n) and v′(0) is an arbitrary element

in Rn, the dimension of se(n) becomes

dim(se(n)) = dim(so(n)) + dim(Rn) =
n(n− 1)

2
+ n =

n(n+ 1)

2
.

2.3 Introduction to rigidity: bar-and-joint

structures

Rigidity theory studies the possible deformations (or motion space) that a

framework may have while preserving its constraints. Analysis may catego-

rize a framework to be rigid, flexible or flexible with a rigid component, as

shown in Figure 2.2. We begin by studying bar-and-joint structures, com-

posed of universal joints (illustrated by the green points in the figure) with

distance constraints between them (the purple bars connecting the points).

While we cannot deform a triangular structure as in 2.2(a) without changing

the distances between the joints, we can “flex” a rectangular framework while

maintaining all of its constraints, as in 2.2(b). In this case, we say that the

structure has 1 degree of freedom (intuitively, a degree of freedom can be asso-

ciated with a flex in the framework’s motion space). Therefore the structure

in 2.2(a) is said to be rigid, and the structure in 2.2(b) flexible.

It is possible, however, to have a flexible structure as in Figure 2.2(c) with

15

(a) rigid (b) flexible (c) rigid component

Figure 2.2: Examples of rigid and flexible frameworks

a rigid component (illustrated by the thicker bars). In this case, when the

flexible part undergoes deformations, the rigid part “moves” along with it,

but stays locally rigid.

Rigid frameworks can further be classified as either minimally rigid or

overconstrained. A minimally rigid framework is one such that, if we remove

any of its bars, the framework becomes flexible (Figure 2.3(a)). On the other

hand, an overconstrained framework contains at least one bar whose removal

preserves the rigidity of the structure (Figure 2.3(b)). In fact, any bar could

be removed from 2.3(b) without the structure becoming flexible.

(a) minimally rigid (b) overconstrained

Figure 2.3: Different types of rigidity

The development of the rigidity theory for a model can be broken into

three general steps: algebraic, infinitesimal, and combinatorial. The rest of

this chapter presents brief descriptions of each as they pertain to the bar-and-

joint model.

16

2.3.1 Algebraic rigidity

Algebraic rigidity is closely related to the realization problem which asks

if a framework can be embedded in d-dimensional space. In other words, we

are interested in whether such an embedding exists in Rd or not. In R2, for

instance, each point pi has two coordinates (xi, yi). If e is an edge such that

e = ij ∈ E, and Lij is the length of edge e, then the realization problem is

equivalent to finding a solution to the system consisting of |E| equations of

the following form:

(xi − xj)
2 + (yi − yj)

2 = Lij
2.

Every framework has trivial motions, i.e., rotations and translations. A

trivial motion preserves the distances between any two points, whether they

are adjacent or not. Intuitively, a framework is considered rigid if it cannot be

deformed (modulo the trivial motions); otherwise, it is flexible.

(a) rigid (b) flexible

Figure 2.4: Different embeddings of a framework

Note, however, that this intuitive notion of rigidity is associated with a

particular embedding in space satisfying the distance function on the edges

L. Consider, for instance, the two embeddings of the structure in Figure 2.4.

The one in 2.4(a) consists only of triangles and is thus, rigid. However, if we

“flip” the right half of the structure on top of the left half (so that the bottom

17

rightmost and leftmost joints overlap as in 2.4(b)), the structure becomes

flexible.

From now on we abuse terminology by assuming that a framework is al-

ways given with a particular embedding in space. We will then study rigidity

properties for that embedding.

2.3.2 Infinitesimal rigidity

Solving systems of algebraic equations quickly becomes computationally in-

feasible. Therefore, we consider the infinitesimal rigidity of the framework.

Infinitesimal rigidity defines a framework to be rigid or flexible depending on

the type of its infinitesimal motion and can be viewed as an approximation for

algebraic rigidity, as infinitesimal rigidity implies algebraic rigidity, while the

opposite is not always true [7].

Let P= (p1, p2, ..., pn) be the embedding of a framework (G,L) consisting

of n vertices in d space and constrained by the edge lengths L. Then, for every

edge e = ij ∈ E, we have:

〈(pi − pj), (pi − pj)〉 = Lij
2

where 〈(pi − pj), (pi − pj)〉 denotes the dot product of the vector pi − pj with

itself. The motion of the framework can be represented as a continuous curve

through the configuration space. Hence, at any particular moment t, P can

be written as P(t) = (p1(t), p2(t), ..., pn(t)). Thus, a more general form of the

equation above is:

〈pi(t)− pj(t), pi(t)− pj(t)〉 = Lij
2.

18

Since the product rule generalizes to dot products, assuming that the mo-

tion is differentiable, we obtain

〈
pi(t)− pj(t),

d

dt
(pi(t)− pj(t))

〉
=
〈
pi(t)− pj(t), p

′
i(t)− p′j(t)

〉
= 0.

Note that the first derivative of a function modeling a structure’s mo-

tion assigns instantaneous, or infinitesimal, velocities to the points. The first

derivative p′(t) of the configuration path of an embedding p, i.e., p(t), at any

given moment t, represents the infinitesimal velocity vector of the framework

at t. An infinitesimal velocity vector is a vector v = (v1, v2, ..., vn) with each

vi∈[1,n] ∈ Rd, whose components satisfy the equation:

〈pi(t)− pj(t), vi(t)− vj(t)〉 = 0 for all i, j ∈ E. (1)

If the only infinitesimal motions correspond to the trivial ones (transla-

tions and rotations), the framework is infinitesimally rigid ; otherwise, it is

infinitesimally flexible.

Rigidity matrix

The system of linear equations defined by (1) can be represented by a matrix M

with |E| rows and d|V| columns (one column for each vertex coordinate) where

Mv = 0 must hold for all velocity vectors v. For every edge ij ∈ E, there is a

row in M in which the d column entries associated with vi(t) are equal to the d

coordinates of the difference pi(t)− pj(t), and the d column entries associated

with vj(t) are equal to the d coordinates of the difference pj(t) − pi(t). This

matrix is called the rigidity matrix for bar-and-joint structures. A sample

structure embedded in space and its rigidity matrix are shown below.

19

p1 p2 p3

x1 y1 x2 y2 x3 y3

Bar 1 0 0 1 -1 -1 1
Bar 2 -1 -1 0 0 1 1
Bar 3 -2 0 2 0 0 0

Rigidity matrix

Figure 2.5: Example: a bar-and-joint framework and its corresponding rigidity

matrix

The space of infinitesimal motions of a framework forms the kernel of the

framework’s rigidity matrix. Note that the trivial motions of the framework

must then be in the kernel. The trivial motions correspond to the rigid trans-

formations of the system, which in turn, correspond to the elements of the Lie

algebra se(d). Recall from Section 2.2.2 that se(d) has dimension d(d+ 1)/2.

If the dimension of the kernel is exactly d(d+ 1)/2, then the only possible

transformations of the system are the trivial ones and thus, the framework is

infinitesimally rigid; if the dimension of the kernel is greater than d(d+ 1)/2,

then there is a non-trivial infinitesimal motion, or flex, and the framework is

infinitesimally flexible.

In the example from Figure 2.3.2 the kernel of the rigidity matrix (denoted

by ker(A), where A is a matrix) is:

ker

 0 0 1 -1 -1 1
-1 -1 0 0 1 1
-2 0 2 0 0 0

 =

1
-1
1
1
0
0

 ,

1
0
1
0
1
0

 ,

-1
2
-1
0
0
1

.

20

The dimension of the kernel is 3 = 2(2 + 1)/2 and corresponds to the trivial

motions of the framework in R2 (i.e., translations along the x and y axes, and

rotation). Thus, the structure is infinitesimally rigid.

2.3.3 Combinatorial rigidity

In certain models, the pattern of the rigidity matrix may lead to a combina-

torial characterization for infinitesimal rigidity. For 2D bar-and-joint rigidity,

Laman proved the following theorem.

Theorem 2.3.1. (Laman’s theorem) A graph is generically1 minimally

rigid as a 2D bar-and-joint framework if and only if it has 2n − 3 edges and

any subset of n′ vertices spans at most 2n′ − 3 edges.

This theorem leads to combinatorial algorithms for decomposing a given

graph into rigid components as well as computing the degrees of freedom for the

graph. In particular, Jacobs and Hendrickson developed the 2D pebble game.

Although the hereditary count condition appears to require exponential time,

the pebble game is an efficient and simple algorithm that runs in O(n2) time

[16].

While 2D bar-and-joint is thus well-understood, a combinatorial charac-

terization for 3D bar-and-joint rigidity is arguably the biggest open question

in rigidity theory.

1A framework is generic if the associated rigidity matrix achieves its highest rank over
all embeddings.

Chapter 3

Rigidity in 3D: Body-Bar-Hinge

Structures

Proteins can be modeled as 3D bar-and-joint structures, but there are no

known efficient algorithms for analyzing the rigidity of that model. In this

chapter, we consider a different model of rigidity for body-bar-hinge structures

that can be used instead to model proteins in 3-dimensional space. A body-

bar-hinge structure consists of rigid bodies and constraints between them, as

shown in Figure 3.1. The constraints can be in the form of bars and hinges.

Figure 3.1: Body-bar-hinge structure. Reprinted from [21].

21

22

A bar imposes a distance constraint between two bodies and is attached to

them by universal joints positioned at specified locations, while a hinge allows

only a single rotational degree of freedom (for more details, see Section 3.2.4).

If the motion space of a body-bar-hinge structure consists solely of the trivial

motions (i.e., rotations and translations), the structure is said to be rigid;

otherwise, it is flexible.

The development of the rigidity theory in 3D can again be broken into three

steps. The foundation was presented in [32, 38] (see also [21] for a complete

development including the algebraic theory). In Sections 3.1-3.3 we give an

overview of the rigidity theory for first, body-and-bar, then, body-bar-hinge

structures in 3-space. The last section, 3.4, presents a new contribution for

handling special cases of hinge axes.

3.1 Algebraic rigidity

Let G=(V,E) be a multigraph with n vertices and m edges, where each vertex

represents a body and each edge represents a bar. Then, let p and q be two

m-tuples of points in R3 defining the positions of each bar’s two attachment

universal joints. Thus, a bar e between two bodies would attach to each body

at the points pe ∈ p and qe ∈ q. If L : E → R is the distance function for

each bar, the framework (G,p,q,L) describes a body-and-bar structure.

We begin studying the algebraic rigidity properties by considering the re-

alization problem. The realization problem asks whether the framework

(G,p,q,L) has an embedding satisfying L. However, since the vertices repre-

sent bodies, the term embedding becomes more subtle. In order to define it

precisely, we first need to clarify the notion of a body.

23

A body is an abstract structure defined by a frame and is represented by

a transformation matrix. Such transformation matrices in 3D are elements of

the special Euclidean group SE(3) (described in Section 2.2). Each element of

SE(3) is a 4× 4 matrix having the form:

 R c

0 1

where R is a 3× 3 rotation matrix; c is a translation vector in R3; and 0 is a

1× 3 vector of zeros. Applying this matrix to a point is equivalent to rotating

the point by the matrix R, and translating it by the vector c.

Now let T ∈ (SE(3))n be an assignment of frames to all n bodies in V,

with Tu being the transformation matrix for the frame assigned to body u.

Consider a bar e = uv ∈ E with attachment points pe ∈ R3 and qe ∈ R3 in

bodies u and v, respectively. Then, solving the realization problem becomes

equivalent to solving the quadratic system of equations, in which every bar is

described by the following equation:

∥∥∥∥Tu

(
pe

1

)
−Tv

(
qe

1

)∥∥∥∥2

= (L(e))2 (3.1)

The notation

(
pe

1

)
is used to represent the homogenous coordinates of the

point pe which simply add an additional dimension to the point without chang-

ing its position and geometric properties (homogenous coordinates are neces-

sary since all T matrices are 4× 4 and all points are in R3).

Recall our assumption that a framework is always given with an embedding

satisfying L. Then, the framework (G,p,q,L) is considered rigid if it cannot

be deformed (modulo the trivial motions); otherwise, it is flexible.

24

3.2 Infinitesimal rigidity

The infinitesimal theory for body-and-bar frameworks is a study of the defor-

mations of these frameworks over time. If T ∈ (SE(3))n is the set of transfor-

mation matrices defining the bodies in a framework, then T(t) represents the

set of deformations of the structure over time. In mathematical terms, T(t)

can be viewed as the map T : I → (SE(3))n, where I is a time interval con-

taining zero. Without loss of generality, assume that Ti(0) = I4 (the identity

of SE(3)) for all i = 1, ..., n. If we differentiate Equation 3.1, we obtain:

〈
Tu(t)

(
pe

1

)
−Tv(t)

(
qe

1

)
,T′u(t)

(
pe

1

)
−T′v(t)

(
qe

1

)〉
= 0.

The first order derivative T′(t) represents the infinitesimal motions for the

bodies at time t. Since, for each body u, T ′u(0) ∈ se(3) (the space tangent

to the identity of SE(3)), an infinitesimal motion for a body is an element

of se(3). Thus, T′(t) ∈ (se(3))n. In order to further study the infinitesimal

motions for a body-and-bar framework, we introduce rigid body motions in

3D.

3.2.1 Theory of screws and infinitesimal rigid body

motions

The theory of screws was first introduced by Sir Robert Ball to describe rigid

body motion [9]. Intuitively, a screw is defined by an axis, called the screw

axis, and represents a displacement about that axis as illustrated in Figure

3.2(a). As a consequence of Chasles’ Theorem, the elements of the Lie algebra

25

se(3) can be identified exactly with Ball’s instantaneous screws (Figure 3.2(b)).

Here we present only a brief overview of the connection between them. A more

thorough development can be found in [20, 21, 29].

Elements of se(3)

As we described in Section 2.2.2, se(3) can be defined mathematically as:

se(3) =

{[
Ω v
0 0

]
: Ω ∈ R3×3,v ∈ R3,ΩT + Ω = 03

}

where Ω is an element of so(3). Since Ω is a skew-symmetric matrix, we can

write it as:

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

such that, for any vector x ∈ R3, Ωx = ωωω × x where ωωω = (ωx, ωy, ωz) ∈ R3

and ωωω × x denotes the cross product of ωωω and x.

Instantaneous screws

Let p be a point in R3 and p′ its velocity resulting from an instantaneous

screw. Then, if a is a point on the axis of rotation of the screw, p′ can be

written as

p′ = Ω(p− a) + τ (3.2)

where τ is the translational velocity component of the screw and

[
Ω τ
0 0

]
is an element of se(3). Thus, ωωω represents the angular velocity vector of the

26

screw defining the direction of the rotation axis and the rotational speed.

(a) Screw motion includes rota-
tion and translation along the
screw axis

(b) Instantaneous screws have
both rotational and transla-
tional components

Figure 3.2: Screws. Reprinted from [21].

Now let v = a×ωωω + τ . Then, the velocity becomes:

p′ = Ω(p− a) + τ

= Ωp−Ωa + τ

= ωωω × p−ωωω × a + τ

= ωωω × p + a×ωωω + τ

p′ = ωωω × p + v (3.3)

This result allows us to associate the instantaneous screw with the 6-vector

(−ωωω,v)1 = (−ωx,−ωy,−ωz, vx, vy, vz).

1The negative sign in front of ωωω is necessary for the interpretation of the result from the
join (in the Grassmann-Cayley algebra) of the 6-vector with a point as the instantaneous
velocity of the point

27

Hence, every element s ∈ R6 can be identified with an instantaneous screw

by interpreting its coordinates to be (−ωωω,v).

3.2.2 Grassmann-Cayley algebra and Plücker

coordinates

Grassmann-Cayley algebra is defined by a bracket ring, where a bracket is

a k × k determinant of the homogenous coordinate vectors of k points in

a (k − 1)-dimensional projective space. This algebra is required to develop

infinitesimal rigidity theory and here we present only a brief overview of some

basic concepts. For a detailed explanation, see [36, 37].

Grassmann-Cayley algebra has two operators - join and meet. They can be

intuitively thought of as “union” and “intersection” respectively. For example,

the join of a point and a line not containing the point is the plane spanned by

them, and the meet of two intersecting non-identical lines is a point.

Extensors

An extensor of step k, also called a k-extensor, is defined by k linearly inde-

pendent points a1, ..., ak, and denoted by a1 ∨ · · · ∨ ak, where the symbol ∨

represents the Grassmann-Cayley join operator. We can compute the Plücker

coordinates of the subspace spanned by the k points of an extensor by cal-

culating all k × k minors (i.e., determinants) of the transpose of the matrix

whose columns are the homogenous coordinates of the k points (see exam-

ple below). Note that the subspace spanned by the k points of an extensor

(each point being in Rd) is a k-dimensional linear subspace of Rd+1 that can be

identified with a (k-1)-dimensional projective subspace of Pd, where Pd denotes

28

d-dimensinoal projective space (for instance, a 1-dimensional subspace of R3

corresponds to a point in P2, and a 2-dimensional subspace of R3 corresponds

to a line in P2). Thus, each k-extensor is identified with a linear subspace of

dimension k − 1.

Plücker coordinates of lines in 3D

Let a,b ∈ R3 be two points in 3D with coordinates (ax, ay, az) and (bx, by, bz)

respectively. To compute their join a ∨ b (whose geometric representation is

a line), we form the 2× 4 matrix M:

M =

(
ax ay az 1
bx by bz 1

)

The Plücker coordinates of the line determined by a and b are the six 2×2

minors of M. Since there are various ways of writing down the 6 minors, we will

use the following convention (M14,M24,M34,M23,−M13,M12). In the example

above, this is equivalent to:

(
ax 1
bx 1

,
ay 1
by 1

,
az 1
bz 1

,
ay az

by bz
,
ax az

bx bz
,
ax ay

bx by

)
.

This order conveniently encodes the direction of the line in the first 3

Plücker coordinates, and the angular momentum of the line about the origin

in the last 3 coordinates (for a definition of angular momentum, see [40]).

Hence, the Plücker coordinates of a line in 3D is a 6-dimensional vector.

However, not every 6-dimensional vector can be identified with the Plücker

coordinates of a line. Let s = (a, b, c, d, e, f) and s∗ = (d, e, f, a, b, c). Then,

s ∈ R6 is said to satisfy the Grassmann-Plücker relation if the dot product of

29

s and s∗ is zero; that is, 〈s, s∗〉 = 0. Note that if u = (a, b, c) and v = (d, e, f),

then 〈s, s∗〉 = s · s∗ = u · v + v · u = 0 if and only if u · v = 0. Vectors in

R6 that are identified with the Plücker coordinates of a 3D line are precisely

those satisfying this relation.

There is an infinite number of 6-vector representations of a specific line

in 3D (since scalar multiples of the vector preserve the line). For the further

analysis, however, it is important to note that different pairs of points along

the line may also produce identical Plücker coordinates. This is due to the

fact that the distance between the points is directly related to the magnitude

of the direction vector, found in the first 3 coordinates of the line.

Tensors

A k-tensor is defined by the sum of k-extensors. If a k-tensor is itself a k-

extensor, it is referred to as a decomposable tensor; otherwise it is an indecom-

posable tensor. In fact, 2-tensors are identified with R6.

Connecting screws and tensors

Every 6-vector is a 2-tensor and also an instantaneous screw. We can classify

the decomposable tensors as either pure rotations or pure translations, and

the indecomposable tensors as screws with both rotational and translational

components.

It turns out that the vectors that satisfy the Grassmann-Plücker relation

are exactly the decomposable tensors. Screws that include both a rotation and

translation are, as tensors, the sum of a pure rotation 2-extensor and a pure

translation 2-extensor.

30

3.2.3 Infinitesimal motions and bar constraints

We are now ready to examine the infinitesimal motions of a body-and-bar

framework. Let (G,p,q,L) be a framework with the embedding T ∈ (SE(3))n

and a distance function L calculated by p and q. We define the infinitesimal

motion of this framework to be an assignment s ∈ (R6)n where each si is a

6-vector associated with an instantaneous screw. A trivial infinitesimal motion

assigns the same screw to all si.

Let pij and qij be the attachment points of the bar pijqij in bodies i

and j respectively. Now let u and v be the instantaneous velocities assigned

to these attachment points by the screw motions associated with si and sj.

Then the constraint imposed by bar pijqij is maintained infinitesimally if

the relative velocity of pij and qij is orthogonal to the direction of the line

determined by pijqij, or, in mathematical terms, 〈u− v,pij − qij〉 = 0. After

a short derivation, one can conclude that the bar constraint is maintained

infinitesimally if and only if 〈s∗i ,pij ∨ qij〉 − 〈s∗j ,pij ∨ qij〉 = 0, where pij ∨ qij

are the Plücker coordinates of the line defined by the bar.

Rigidity matrix

Now we can build the rigidity matrix for body-and-bar frameworks. If m is

the number of bars and n the number of bodies in one such framework, then

the rigidity matrix for the framework is an m×6n matrix in which each bar is

defined by one row, and each body is associated with 6 columns. For instance,

bar ij corresponds to the following row in the rigidity matrix:

s∗i s∗j
· · · · · · · · ·
···0··· pij ∨ qij ···0··· −(pij ∨ qij) ···0···

31

The null space of the matrix (i.e., its kernel) is the space of infinitesimal

motions. The trivial infinitesimal motions correspond to a subspace of the

kernel determined by the 6 vectors

(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, · · · , 1, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, · · · , 0, 1, 0, 0, 0, 0)

(0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, · · · , 0, 0, 1, 0, 0, 0)

(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, · · · , 0, 0, 0, 1, 0, 0)

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, · · · , 0, 0, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, · · · , 0, 0, 0, 0, 0, 1)

Therefore, the kernel has dimension at least 6 = 3(3 + 1)/2, and, if the

rigidity matrix achieves its maximum rank of 6n − 6, then the structure is

infinitesimally rigid.

3.2.4 3D body-and-hinge systems

We now turn to body-hinge structures and discuss their rigidity properties. In

the context of this work, we will move directly to the infinitesimal theory.

Infinitesimal rigidity

Since the elements in se(3) are the instantaneous screws in 3D, infinitesimally,

a hinge constraint is preserved if the relative screw motion is a pure rotation

about the hinge axis, i.e., the hinge axis must be the same as the screw axis.

Since a screw can be represented by a 6-vector interpreted as (−ωωω,v), where ωωω

corresponds to the angular velocity vector of the screw, we can conclude that

the screw written as (−wx,−wy,−wz, vx, vy, vz), must be equal to the Plücker

coordinates of a hinge axis, (a, b, c, d, e, f), up to a scalar α:

32

(−wx,−wy,−wz, vx, vy, vz) = α(a, b, c, d, e, f).

There are many different ways to express this dependency. Consider the

following method:

−wx = αa −wy = αb
⇓ ⇓

−bwx = αab −awy = αab
⇓

−bwx = −awy

−bwx + awy = 0

Similarly,

−wy = αb −wz = αc
⇓ ⇓

−cwy = αbc −bwz = αbc
⇓

−cwy = −bwz

−cwy + bwz = 0

By expressing the correlation between the rest of the coordinates in the

same way, we obtain the following five linear equations:

−bwx + awy = 0
−cwy + bwz = 0
−dwz − cvx = 0
evx − dvy = 0
fvy − evz = 0

Using these equations we can represent each hinge in the rigidity matrix with

the corresponding 5 rows:

s∗i s∗j
· · · vx vy vz −wx −wy −wz · · · vx vy vz −wx −wy −wz · · ·
···0··· 0 0 0 b −a 0 ···0··· 0 0 0 −b a 0 ···0···
···0··· 0 0 0 0 c −b ···0··· 0 0 0 0 −c b ···0···
···0··· c 0 0 0 0 −d ···0··· −c 0 0 0 0 d ···0···
···0··· e −d 0 0 0 0 ···0··· −e d 0 0 0 0 ···0···
···0··· 0 f −e 0 0 0 ···0··· 0 −f e 0 0 0 ···0···

33

Since a hinge allows only a single rotational degree of freedom and a frame-

work in 3D has a total of 6 trivial infinitesimal motions, we expect to obtain

5 linearly independent rows in the rigidity matrix. However, to ensure this we

must carefully choose the method for expressing the constraint between the

screw and the Plücker coordinates of the hinge axis (see Section 3.4). Deter-

mining whether the structure is infinitesimally rigid is, again, equivalent to

determining if the dimension of the kernel of the rigidity matrix is 6.

3.3 Combinatorial rigidity

Combinatorial rigidity for body-and-bar structure has been characterized by

Tay [32].

Theorem 3.3.1. (Tay’s Theorem) A 3-dimensional body-and-bar structure

is generically rigid if and only if the associated multigraph with vertices instead

of bodies and edges instead of bars is composed of 6 edge-disjoint spanning trees.

Note that Tay’s theorem was stated originally in dimension d, but we focus

on its interpretation in 3D since it is relevant for our work.

The edge-disjoint spanning trees referred to in the theorem are a special

combinatorial object for which we give an intuitive description. A spanning tree

of a graph G=(V,E) is a subgraph whose edges touch every vertex of G, without

forming any cycles. Thus, a graph may have zero, one, or many spanning trees.

Now imagine that we draw the graph and color as many spanning trees as we

can by using a different color for every spanning tree and not recoloring any

edge. By doing so, we will actually identify a set of edge-disjoint spanning

trees of that graph (i.e., spanning trees that do not share common edges).

The maximum number of colors that we need is exactly the number of the

34

graph’s edge-disjoint spanning trees. As illustrated by Theorem 3.3.1, this

number plays an important role in determining the rigidity properties of a

body-and-bar framework.

Nash-Williams and Tutte’s theorem

Tay’s theorem characterizes body-and-bar rigidity with edge-disjoint spanning

trees. Nash-Williams and Tutte (independently) proved a connection between

the number of edge-disjoint spanning trees and a “counting” property of the

graph. This relation is expressed in the following theorem.

Theorem 3.3.2. (Nash-Williams, Tutte Theorem) Let G=(V, E) be a

multigraph with |V| = n and |E| = m. Then G has exactly k edge-disjoint

spanning trees if and only if the following two conditions are true:

1. m = k(n− 1) = kn− k and

2. for all subsets of n′ vertices spanned by m′ edges, m′ ≤ k(n′ − 1).

As a consequence of Theorems 3.3.1 and 3.3.2, we can characterize the

rigidity properties of a body-and-bar structure described by this combinatorial

“counting” property. In fact, this property belongs to a more generalized

condition called (k, l)-sparsity.

Definition 3.3.3. A multigraph G with n vertices and m edges is called (k, l)-

sparse if for all subsets of n′ vertices spanned by m′ edges, m′ ≤ kn′− l. If, in

addition, m = kn− l, G is called (k, l)-tight.

Lee and Streinu [22] extended the 2D pebble game algorithm of Jacobs and

Hendrickson to address (k, l)-sparsity. Thus, we can apply those pebble game

algorithms to analyze body-and-bar rigidity. In fact, we can use them to study

35

the rigidity properties of body-bar-hinge systems as well, due to Whiteley and

Tay who introduce the representation of a hinge as 5 bars [39, 33].

To demonstrate the application of these theorems, consider the body-bar-

hinge structure illustrated at the beginning of the chapter and reprinted in

Figure 3.3(a) for convenience. It consists of 4 bodies connected by 3 hinges

and 3 bars. We can build the multigraph associated with this structure by

representing each body with a vertex and each bar with an edge as shown in

Figure 3.3(b). Note that a hinge (corresponding to 5 bars) is modeled as 5

edges.

The graph has 6 edge-disjoint spanning trees, each of which is illustrated

with a different color in 3.3(b). Since every hinge is modeled with bars, we can

use Theorem 3.3.1 to prove that the structure is generically rigid. Furthermore,

following the notation from Theorem 3.3.2, n = 4, m = 18 and k = 6, and

the reader can easily verify that both conditions stated in the theorem are

satisfied. Note that the graph is also (6, 6)-tight by Definition 3.3.3.

(a) A body-bar-hinge structure composed

of 4 bodies, 3 hinges and 3 bars.

(b) Associated multigraph con-

taining a vertex for each body and

1 edge for each bar.

Figure 3.3: Minimally rigid body-bar-hinge structure. Reprinted from [21].

36

3.4 Contributions

According to the theory explained in Section 3.2, every non-degenerate hinge

(i.e., a hinge that allows only 1 rotational degree of freedom) is associated with

five rows in the rigidity matrix. However, in certain cases, we found that the

approach from Section 3.2.4 caused dependencies among the rows representing

a single hinge. We present an approach that addresses this problem and always

produces 5 linearly independent rows. To the best of our knowledge, this is

the first careful analysis to be performed for body-and-hinge rigidity.

As in Section 3.2.4, infinitesimally, a hinge constraint is preserved if the

relative screw motion is a pure rotation about the hinge axis. Furthermore, a

screw can be represented by a 6-vector interpreted as (−ωωω,v) where ωωω corre-

sponds to the angular velocity vector of the screw. Thus, the screw must be

equal to the Plücker coordinates of a hinge axis up to a scalar:

(−wx,−wy,−wz, vx, vy, vz) = α(a, b, c, d, e, f). (3.4)

In Section 3.2.4 we describe one way for expressing the hinge constraint

with five linear equations. In particular, we compare the correlations between

every two adjacent vector elements imposed by Equation 3.4. However, this

method does not always produce 5 linearly independent rows. The following

example illustrates this.

Consider a hinge between points (1, 1, 0) and (0, 1, 0). Its Plücker coordi-

nates are (1, 0, 0, 0, 0, 1) and using the method from Section 3.2.4, we get three

rows of zeros in the rigidity matrix:

37

s∗i s∗j
· · · vx vy vz −wx −wy −wz · · · vx vy vz −wx −wy −wz · · ·
···0··· 0 0 0 0 −1 0 ···0··· 0 0 0 0 1 0 ···0···
···0··· 0 0 0 0 0 0 ···0··· 0 0 0 0 0 0 ···0···
···0··· 0 0 0 0 0 0 ···0··· 0 0 0 0 0 0 ···0···
···0··· 0 0 0 0 0 0 ···0··· 0 0 0 0 0 0 ···0···
···0··· 0 1 0 0 0 0 ···0··· 0 −1 0 0 0 0 ···0···

In order to avoid such behavior, we present another method in which we

formulate the five equations in the following way:

−wx = αa −wy = αb
⇓ ⇓

−bwx = αab −awy = αab
⇓

−bwx = −awy

−bwx + awy = 0

Similarly,

−wx = αa −wz = αc
⇓ ⇓

−cwx = αac −awz = αac
⇓

−cwx = −awz

−cwx + awz = 0

and

−wx = αa vx = αd
⇓ ⇓

−dwx = αad avx = αad
⇓

−dwx = avx

−dwx − avx = 0

By expressing the correlations between the rest of the coordinates in the

same way, we obtain the following five linear equations:

38

−bwx + awy = 0
−cwx + awz = 0
−dwx − avx = 0
−ewx − avy = 0
−fwx − avz = 0

The resulting rigidity matrix has the form:

s∗i s∗j
· · · vx vy vz −wx −wy −wz · · · vx vy vz −wx −wy −wz · · ·
···0··· 0 0 0 b −a 0 ···0··· 0 0 0 −b a 0 ···0···
···0··· 0 0 0 c 0 −a ···0··· 0 0 0 −c 0 a ···0···
···0··· a 0 0 −d 0 0 ···0··· −a 0 0 d 0 0 ···0···
···0··· 0 a 0 −e 0 0 ···0··· 0 −a 0 e 0 0 ···0···
···0··· 0 0 a −f 0 0 ···0··· 0 0 −a f 0 0 ···0···

In this method we take the correlation between −wx and a (we will call

it the “main” correlation) and compare it to the correlations of all five other

vector elements. Thus, using the example above, we would get five linearly

independent rows.

s∗i s∗j
· · · vx vy vz −wx −wy −wz · · · vx vy vz −wx −wy −wz · · ·
···0··· 0 0 0 0 −1 0 ···0··· 0 0 0 0 1 0 ···0···
···0··· 0 0 0 0 0 −1 ···0··· 0 0 0 0 0 1 ···0···
···0··· 1 0 0 0 0 0 ···0··· −1 0 0 0 0 0 ···0···
···0··· 0 1 0 0 0 0 ···0··· 0 −1 0 0 0 0 ···0···
···0··· 0 0 1 −1 0 0 ···0··· 0 0 −1 1 0 0 ···0···

This result comes from the fact that a = 1, and since a appears on every

row and in different columns in each row, there are no zero rows, and thus no

dependencies. In fact, we get five independent rows for any a 6= 0.

We generalize this approach to address any hinge axis. As long as the

Plücker coordinates contain a nonzero vector element, we can take this vector

element and use its correlation with the corresponding screw element, as a

“main” correlation, comparing it with all other five correlations. In this way,

we avoid undesired dependencies in the rigidity matrix.

Chapter 4

Static Analysis for

Understanding Allosteric Effect

In this chapter we focus on the problem of understanding the allosteric

effect: how is it possible for a motion occurring at an allosteric site (due to

ligand binding) to cause motion at the active site, thus altering the function

of the protein? In order to investigate this question, we use the theory from

Chapter 3 and present a piece of software to conduct the analysis. We describe

the steps to find and “prepare” a protein for our analysis, the software that we

use, and details of the implementation of the project. Then we discuss different

approaches for analyzing the data and present some preliminary results. As a

further reference on biological concepts and definitions, see [25].

4.1 Preliminaries

The static analysis of the protein is conducted using information about its

rigidity. This information is obtained by the FIRST: Floppy Inclusions and

39

40

Rigid Substructure Topography, software [2] which models the molecule as a

body-bar-hinge structure. Here we explain how FIRST works, since the further

analysis is based on the results from the application.

FIRST allows users to specify a protein from the Protein Data Bank or up-

load their own. The Protein Data Bank (PDB) [5] is an online database con-

taining information about experimentally-determined structures of molecules.

Having a protein, the software performs the following steps:

1. It adds hydrogen atoms to the PDB file (a file describing the protein

structure). Not all proteins in the Protein Data Bank have hydrogens

(H atoms) included in the PDB files. However, these H atoms may

form hydrogen bonds that impose constraints on the molecule. FIRST

computes the position of the hydrogens in order to model the rigidity of

the protein.

2. Having the hydrogens in the PDB file, FIRST then computes and adds

hydrogen bonds. An optional parameter lets the user specify an energy

cut-off distance which regulates the number of hydrogen bonds included

in the model. The default cut-off distance is -1 kcal/mol.

3. In order to model the protein as a body-bar-hinge structure, FIRST

uses knowledge of chemical interactions between the atoms. A covalent

bond, for instance, is a very strong bond represented by a hinge in the

model, while a hydrogen bond may be weaker and is modeled by FIRST

with a variable number of bars (usually less than 5). FIRST also models

hydrophobic interactions with “hydrophobic tethers,” associated with 2

bars.

41

4. Having the body-bar-hinge model of the protein, the software uses a peb-

ble game algorithm to find all rigid components (bodies) in the molecule.

The results from the analysis are output through a set of text files.

4.2 Overview of steps

We begin by giving an overview of the steps of the analysis. Figure 4.1 illus-

trates their sequence.

Figure 4.1: Steps of the analysis

1. Literature Search - First, we need to find candidate proteins for our

analysis. Since we are analyzing the effect of the allosteric site on the

active site, we need to know the exact locations of these sites. There-

fore, we look for proteins for which this information is known. The

process for identifying such a protein involves searching the literature

for publications that list the location of its allosteric site, such as, for

instance, publications discussing the discovery of novel allosteric sites

(we must also search for a second structure in order to “extract” infor-

mation about the location of the active site as explained in Section 4.4).

Once identified a candidate protein structure, we find its PDB file in the

Protein Data Bank.

42

2. SWISS-MODEL - Very often, however, protein structures in the Pro-

tein Data Bank have missing residues. Since these missing residues are

important for the rigidity analysis of the structures, we use another piece

of software to properly prepare a PDB file for analysis.

2.1 Adding missing residues - The software we use is called SWISS-

MODEL [6, 19, 26]; this application builds homology models of proteins

at different levels of complexity. It has a web-based interface, the SWISS-

MODEL Workplace, where users submit a protein sequence (taken from

the Protein Data Bank); in response, the software produces a new PDB

file with the missing residues added.

2.2 Adding chain ID - In an original PDB file, next to each atom there is

a letter (usually A, B, C, etc.), called the chain ID, denoting which chain

the atom belongs to. The chain IDs, however, are missing in the PDB

file produced by SWISS-MODEL. Since FIRST needs them to perform

the rigidity analysis, we add them to the new PDB file via a Perl script.

3. FIRST - Having prepared the PDB file, we run it through FIRST, which

produces a number of output files describing the rigidity of the molecular

structure. In particular, it identifies the rigid components (or bodies) in

the structure. We use the output files to generate a single XML file that

contains information about each atom (ID and position in 3D), body

(ID and a list of the atoms in it), hinge (the 2 atoms and bodies that it

connects), and bar (the 2 atoms that identify it). The generation of this

file is done via another Perl script.

4. Infinitesimal Rigidity - The next step is to perform the infinitesimal

rigidity analysis and our contribution starts here. We use the XML file

43

described above to build the rigidity matrix for the protein (see Chapter

3.2.4). Once we have the rigidity matrix, we compute its null space.

These computations are performed via MATLAB as explained in Section

4.3.

5. Analysis - The last step is to use the computed null space to study the

range of possible motions of the protein, which includes:

5.1 Identifying relevant bodies - The relevant bodies are usually the bod-

ies that contain atoms found in the active or the allosteric sites as their

motion could potentially tell us something about the allosteric effect.

Section 4.4 describes how we find such bodies.

5.2 Identifying relevant null space vectors - A relevant null space vector

is a vector that produces an “interesting” motion when every body is

acted upon by the screw described in the body’s corresponding 6 entries

in the vector. By “interesting” motion, we intuitively mean one that

reveals a relationship or a dependency between the active and allosteric

sites. We have developed three heuristics for finding relevant null space

vectors, described in detail in Section 4.6.

4.3 Implementation details

In order to conduct the infinitesimal rigidity analysis and test different heuris-

tics, we developed a MATLAB program for computing the rigidity matrix

and its null space, as well as a web application for visualizing the subsequent

results. We call this project MotionSpace as it is a tool for examining the

motion space of the protein. In this section, we describe briefly the structure

44

and function of both the MotionSpace program and the MotionSpace web in-

terface. We conclude with a discussion of implementation details and open

issues.

MotionSpace program

The purpose of the MotionSpace program is to compute the rigidity matrix of a

protein structure, then find its null space. In order to do this the program first

reads the contents of the XML file generated from the output of FIRST (for

more information about the file, see step 4 in Section 4.2). For each hinge,

the program computes the Plücker coordinates of the two atoms to which

the hinge is connected (as described in Section 3.2.2), then uses infinitesimal

rigidity theory (see Section 3.2) to compute the 5 rows of the rigidity matrix

corresponding to this hinge. The program then reads the data for the bars and

computes the rows in the rigidity matrix associated with them (as described

in Section 3.2.3). This completes the formation of the rigidity matrix. We

proceed by computing its null space and saving it in a file accessible by the

MotionSpace interface.

Since the trivial motions are included in the null space, we let the user

choose one body to “pin down.” By doing so, we add 6 more rows at the

bottom of the rigidity matrix which, if extracted at the columns of that body,

form the identity matrix. This removes the trivial degrees of freedom from the

null space.

Note that, due to the limited computational power of MATLAB, we cannot

compute the null space of structures with very large number of bodies. In order

to regulate this number, we specify an optimal energy cut-off distance when

we run FIRST. This optimal distance results in a number of bodies that is

45

sufficiently small to make computation feasible, and sufficiently large to allow

for the exploration of a bigger range of possible motions.

MotionSpace web interface

The MotionSpace interface is a web application combining scripts written in

different languages. Its main purpose is to allow users to explore the effect

of various linear combinations of null space vectors on the range of motions

of the bodies (or, equivalently, on the instantaneous velocities of the atoms).

Figure 4.2 shows a snapshot of the application. The panel on the left consists

of drop-down menus and buttons letting the user select different combinations

of null space vectors. The protein on the right is always the original protein,

while the protein on the left displays a coloring according to the calculated

new velocities of the atoms. The two proteins are visualized via Jmol applets

and can be easily manipulated on the screen (i.e., rotated, zoomed in, etc.).

Jmol is an open-source molecular viewer that can be customized with Jmol

scripts [4].

One of the main components of the web application is a Java program

that calculates the new velocities of the atoms. It reads the null space vectors

from the file produced by the MotionSpace program and, using the coefficients

selected by the user, computes the summation vector of their linear combina-

tion. By reading the XML file with the results from FIRST, the program loads

the data for the coordinates of the atoms and the bodies they are in. Every

6-entries in the summation vector are associated with a particular body and

represent the screw that acts upon it. Based on this screw, we calculate the

infinitesimal velocity of each of the atoms in the body as explained in Section

3.2.1.

46

Figure 4.2: Snapshot from the MotionSpace interface

Once we have the velocities of all atoms, we compute and normalize their

magnitudes, and represent them with RGB colors ranging from blue to red on

a scale where blue denotes a magnitude of 0 and red a magnitude of 1; Figure

4.3 illustrates the scale. For visualization, we create a Jmol script that applies

the new coloring to the protein.

Figure 4.3: Colors corresponding to the velocity of the atoms

There are two main stages of running the web application. First is the

initialization stage illustrated in Figure 4.4. Before starting the application,

it is important that the null space files have been created by the MotionSpace

program. When we open the MotionSpace interface in the browser, Java Script

(JS) is used to populate a directory drop-down menu for selecting a protein.

Once we choose a protein, we use PHP to read some of the files for that

47

protein and save the information in JS arrays that populate the second drop-

down menu on the screen. HTML loads and displays the 2 proteins on the

right using the Jmol applet.

Figure 4.4: Initialization stage

The second stage is the interactive stage illustrated in Figure 4.5. Selecting

null space vectors and changing their coefficients results in a loop between JS

and the screen, in which JS is constantly updating its arrays and the infor-

mation displayed on the screen. When we click the “Submit” button, AJAX

is used to pass the selected coefficients to PHP, which in turn starts the Java

program. The program reads the XML and null space files as described above,

and calculates the magnitudes of the atom velocities. Then, with the help of

PHP, the Jmol applet reads the Jmol script file produced by Java and reloads

the protein on the left with the new coloring. For more information, see the

ReadMe.txt file included in the application package.

Figure 4.5: Interactive stage

48

4.4 Identifying relevant bodies

In order to perform the analysis and test the results of the theory, we need to

know the exact locations of the active and allosteric sites (by exact location,

we mean the residue IDs that form these sites). However, publications found

during the literature search step in Section 4.2 do not always provide us with

all of the desired information for that protein. Such publications usually list

only a small number of the residues forming the allosteric site while we need all

of them together with the residues forming the active site. In order to find this

information, we use one of the structure features on the Protein Data Bank

website, called Analysis of Ligand-Protein Contacts (LPC). This feature gives

detailed information about each ligand bound to the protein and all residues

forming the site where it binds. Our protein candidate usually has a ligand

bound to an allosteric site, so, using LPC, we can find the exact location of

the site.

We must also find the residues forming the active site. This involves search-

ing through the Protein Data Bank for the same protein with a ligand bound

to the active site rather than the allosteric site. When we find such an entry

in the online database, we again use LPC to manually extract the numbers

of the residues at the location (in this case, the active site) where the ligand

binds.

Here we must note that the residue IDs that we obtain from the LPC

feature correspond to the residue IDs in the original PDB files. After we run

SWISS-MODEL to add missing residues, the residue numbers may change

and, since we use the protein from SWISS-MODEL in the further analysis, we

must record the correct data for the active and allosteric sites. We do this by

49

aligning the original protein and the protein produced by SWISS-MODEL in

a software called Pymol.

Once we know where exactly a particular site (active or allosteric) is in the

protein, we run a perl script that: 1) reads the PDB file for the protein and

finds the atom numbers corresponding to the residues forming the site, and 2)

goes through the XML file generated from the output of FIRST (describing

the rigid components in the protein), and finds all bodies in which these atoms

occur. The output from the script consists of the residues forming the given

active or allosteric site, the IDs of the atoms in these residues, and a set of

[i, j] pairs in which i represents the id of the body that contains j number of

atoms from the ones just listed. Figure 4.6 shows an extract from the output

file produced by the script.

Figure 4.6: Information for the active site of CHK1

4.5 Identifying relevant null space vectors

The goal of our analysis is to examine the range of possible motions of the

protein which could give us insight on the mechanisms of the allosteric effect.

Every vector in the kernel of the rigidity matrix introduces an additional degree

50

of freedom to the system, thus contributing to the framework’s motion by

assigning instantaneous screws to each body. Analyzing a body’s possible

motions becomes equivalent to analyzing its corresponding 6 entries in each of

the null space vectors as they describe the screw that acts upon the body.

Here we discuss 3 different heuristics that we use for identifying relevant

infinitesimal motions, or equivalently, finding “interesting” null space vectors

as described in Section 4.2. All heuristics are based on the observation that

the allosteric effect involves a correlated movement of the allosteric and active

sites. Our goal is to find a “path” between them. Note that, since there is

more than one body that includes atoms from a particular site, we have many

different options for choosing an allosteric site body and an active site body in

the heuristics described below.

Heuristic 1: Counting zeros

Since we expect the motions of the allosteric and active sites to be related

regardless of the motions of other parts of the protein, we search for the null

space vectors that assign zero velocities to the largest number of bodies while

keeping the velocities of the allosteric site body and active site body nonzero.

By doing so, our goal is to find an interaction between the active and al-

losteric sites that minimizes motion from the rest of the protein. Following is

a pseudocode of the heuristic.

Let N be a matrix whose columns are the null space vectors of

the rigidity matrix

Let body_active be the active site body

Let body_allosteric be the allosteric site body

51

Initialize an empty vector zeros_count of length the number of

columns of N

For each column i in N

If the norm of the 6-vector in i corresponding to body_active

is not 0 and the norm of the 6-vector in i corresponding to

body_allosteric is not 0

count = 0

For each body j different than body_active and body_allosteric

If the norm of the 6-vector in i corresponding to j is 0

Increment count with 1

Endif

Endfor

If count is greater than 0

Set zeros_count[i] = count

Else

Set zeros_count[i] = 0

Endif

Endfor

Sort the vectors in a decreasing order of their corresponding

entries in zeros_count

Print the indices of the first 10 vectors

Heuristic 2: Finding maxima I

Another way to examine the interactions between the active and allosteric

sites is to look for null space vectors associated with simultaneous large move-

ments in the two sites. The intuition behind this heuristic is the hypothesis

52

that a big motion at the allosteric site should cause a big motion at the active

site. We find the relevant null space vectors by performing the following steps:

1. Rank the null space vectors by the degree to which they maximize the

active site motion

2. Rank the null space vectors by the degree to which they maximize the

allosteric site motion

3. For each vector, add the two numbers assigned to it by the two rankings

4. Sort the vectors according the these sums and print the indices of the

first 10 of them

Following is a pseudocode of the heuristic (note that when we say “max-

imum body” we mean that the norm of the 6-entries vector associated with

that body in a null space vector is maximum).

Let N be a matrix whose columns are the null space vectors of

the rigidity matrix

Let n and m denote the number of rows and columns in N

Let body_active be the active site body

Let body_allosteric be the allosteric site body

Initialize a vector act_site_ranking with m zero-elements

Initialize a vector all_site_ranking with m zero-elements

Initialize an empty sum_vector

act_rank = 1

While there are elements in act_site_ranking that are equal to 0

Find the vector with maximum active site body and index

such that act_site_ranking[index]=0

53

Set act_site_ranking[index] = act_rank

Increment act_rank with 1

Endwhile

all_rank = 1

While there are elements in all_site_ranking that are equal to 0

Find the vector with maximum allosteric site body and index

such that all_site_ranking[index]=0

Set all_site_ranking[index] = all_rank

Increment all_rank with 1

Endwhile

sum_vector = act_site_ranking + all_site_ranking

Sort the vectors in an increasing order of their corresponding

entries in sum_vector

Print the indices of the first 10 vectors

Heuristic 3: Finding maxima II

We based heuristic 2 on the hypothesis that a big motion at the allosteric

site should cause a big motion at the active site. However, it is possible that

one of the motions is smaller, but the correlated movement of the two sites still

causes a conformational change in the active site that changes the behavior

of the protein. In order to examine this possibility, we search for null space

vectors that maximize the velocity of the allosteric site bodies and active site

bodies separately. By applying either of these vectors, we can examine the

“effect” that one of the sites has on the other (for instance, we can check

whether a big motion at the allosteric site induces a conformational change in

the active site).

54

4.6 Identifying relevant infinitesimal motions

Once we identify the bodies that contain atoms from the active and allosteric

sites, we apply the heuristics described above in order to find null space vectors

that produce “interesting” motion (as explained in Section 4.3). We do this

by performing the following 3 steps:

1. Select bodies - The perl script that we run in order to find the bodies

at the active and allosteric sites usually gives us a large group of bodies

containing different number of atoms from the sites (for convenience we

will call these atoms site atoms). Since we manually analyze different

combinations of these bodies (as explained in the subsequent steps), we

select a smaller set of the bodies that will be used as a representative

body-set for that particular site. In the output file from the script, the

bodies are listed in a decreasing order by the number of site atoms that

they contain. For the representative body-set, we select the bodies with

the most number of site atoms.

2. Apply heuristics - Once we have the bodies at the active and allosteric

sites, we apply each of the heuristics described in Section 4.6 to obtain a

set of potentially relevant null space vectors. We say potentially relevant,

because not all of them necessarily produce colorings of the protein that

depict a clear relationship between the active and allosteric sites.

We create tables (such as the one in Figure 4.7) that list the active and

allosteric bodies for the protein, and, for each pair, record the computed

output from applying a particular heuristic. Note that the resulting null

space vectors in the table in Figure 4.7 follow a nice pattern (which makes

the identification of relevant null space vectors much easier). Often,

55

however, our data does not follow any patterns (i.e., we get different

numbers in the table entries), and in this case we start searching for the

null space vectors that appear most frequently.

Figure 4.7: Data from applying heuristic 1 to protein PDK1

3. Analyze - After we identify relevant null space vectors we visualize each

of them via the web application discussed in Section 4.3. This process

consists of setting the coefficient of the identified null space vector to

1, and the coefficients of all other null space vectors to 0, then visually

examining the resulting coloring of the protein. We may also visualize

various combinations of vectors as well (i.e., set the coefficients to more

than one vectors to equal non-zero numbers on the scale 0 to 1). The

next section shows the colorings that we have found for two proteins by

following this methodology.

56

4.7 Results

We have analyzed 2 proteins - checkpoint kinase 1 (CHK1) and phosphoinositide-

dependent protein kinase 1 (PDK1). The choice of these two proteins was

entirely based on the availability of the information required for the analy-

sis. The following sections list the steps described in Section 4.2 for each of

the proteins: step 1 gives the names of the PDB entries used to identify the

residues at the active and allosteric sites; step 2 lists the residues before and

after the application of SWISS-MODEL, as aligned by Pymol; step 3 outputs

the user-specified energy cutoff and a summary of the results from FIRST; step

4 shows the dimensions of the computed rigidity matrix and its null space, and

step 5 displays the discovered relevant bodies and illustrates the results via

three protein colorings.

4.7.1 CHK1

Checkpoint kinase 1 (CHK1) is a key element in the DNA damage response

pathway and plays a crucial role in the S-G2-phase checkpoint [34]. Inhibiting

CHK1 is a therapeutic strategy involving abrogation of the G2/M mitotic

checkpoint defense of tumor cells toward lethal damage induced by DNA-

directed chemotherapeutic agents.

1. Literature search - The protein structure that we use to identify the

residues forming the allosteric site appears as 3JVR in the Protein Data

Bank. It is the CHK1 protein bound to the ligand AGX. For the active

site we use the protein structure with PDB code 1NVQ, which is CHK1

bound to the ligand UCN at the ATP-binding pocket.

57

2. SWISS-MODEL - Table 4.1 lists the IDs of the residues at the active

and allosteric sites of the protein before (Before SM) and after (After

SM) it has been run through SWISS-MODEL. Note that the residue IDs

are shifted by 1. This shift results from the computation performed by

SWISS-MODEL and does not affect our analysis.

Active Site Residues Allosteric Site Residues
Before SM After SM Before SM After SM

Cys87 Cys86 Phe93 Phe92
Leu15 Leu14 Pro133 Pro132
Gly16 Gly15 Leu206 Leu205
Glu17 Glu16 Ala200 Ala199
Tyr20 Tyr19 Asp94 Asp93
Val23 Val22 Arg95 Arg94
Ala36 Ala35 Ile96 Ile95
Lys38 Lys37 Glu97 Glu96
Glu55 Glu54 Pro98 Pro97
Val68 Val67 Tyr173 Tyr172
Leu84 Leu83 Gly204 Glu203
Glu85 Glu84 Glu205 Glu204
Tyr86 Tyr85
Ser88 Ser87
Gly90 Gly89
Glu91 Glu90
Lys132 Lys131
Glu134 Glu133
Asn135 Asn134
Leu137 Leu136
Ser147 Ser146
Asp148 Asp147

Table 4.1: IDs of residues at the active and allosteric sites in CHK1

(RMSD=0.061)

58

3. FIRST output summary

Energy cutoff -0.500 kcal/mol

Rigid Clusters 685

Hinges 722

Bars 170

4. Infinitesimal Rigidity

Dimensions of rigidity matrix 7485× 4110

Dimension of null space 410

5. Analysis

5.1 Identifying relevant bodies - note that we present only some of the

bodies found to contain atoms from the active and allosteric sites. A

pair [i j] denotes that body i contains j number of atoms from that site.

Active Site Allosteric Site
[1 171] [1 124]
[16 10] [18 10]
[12 10] [3 6]
[2 6] [187 4]

[137 4] [186 4]
[136 4] [184 4]
[112 4] [116 4]
[111 4] [115 4]
[69 4] [412 3]
[57 4] [389 3]
[56 4] [326 3]
[54 4] [325 3]
[53 4] [324 3]

5.2 Identifying relevant null space vectors - following the methodology

described in Section 4.6, we identified a set of relevant null space vectors

and the colorings that we discuss are produced from some of them. In

Figures 4.8-4.10, the solid square frames show the location of the active

site in 3JVR, the circular frames show the location of the allosteric site,

59

and the dashed rectangular frames surround the regions that are zoomed

in at the bottom picture of the figures. Discussion for each coloring is

provided in the caption of the figures. Note that parts of the bottom

picture in Figure 4.10 are purposefully faded to illustrate a potential

“path” between the active and allosteric sites.

4.7.2 PDK1

Protein kinases are involved in the control and regulation of cellular processes

[30]. Their overexpression or loss of regulatory mechanisms are observed in

many diseases such as cancer, Alzheimer’s disease and type 2 diabetes. The

phosphoinositide-dependent protein kinase 1 (PDK1) is in the center of growth

factor and insulin signaling and is a master kinase that phosphorylates the

activation loop of several protein kinases from the AGC group [30].

1. Literature search - The protein structure that we use to identify the

residues forming the allosteric site appears as 3HRF in the Protein Data

Bank. It is the PDK1 protein bound to the ligand P47 at the PIF-pocket.

For the active site, we use the protein structure with PDB code 3IOP,

which is PDK1 bound to the ligand 8I1 at the ATP-binding pocket.

2. SWISS-MODEL - Table 2 lists the numbers of the residues at the

active and allosteric sites of the protein before (Before SM) and after

(After SM) it has been run through SWISS-MODEL. Note that the

residue IDs are shifted by 48. This shift results from the computation

performed by SWISS-MODEL and does not affect our analysis.

60

Active Site Residues Allosteric Site Residues
Before SM After SM Before SM After SM

Lys86 Lys38 Lys76 Lys28
Leu88 Leu40 Lys115 Lys67
Gly89 Glu41 Ile118 Ile70
Glu90 Glu42 Ile119 Ile71
Gly91 Gly43 Val124 Val76
Ser94 Ser46 Val127 Val79
Val96 Val48 Thr128 Thr80

Ala109 Ala61 Arg131 Arg83
Lys111 Lys63 Thr148 Thr100
Glu130 Glu82 Phe149 Phe101
Val143 Val95 Gln150 Gln102
Leu159 Leu111 Leu155 Leu107
Ser160 Ser112 Tyr156 Tyr108
Tyr161 Tyr113 Phe157 Phe109
Ala162 Ala114
Lys163 Lys115
Asn164 Asn116
Gly165 Gly117
Glu166 Glu118
Lys169 Lys121
Lys207 Lys159
Glu209 Glu161
Asn210 Asn162
Leu212 Leu214
Thr222 Thr224
Asp223 Asp225

Table 4.2: IDs of residues at the active and allosteric sites in PDK1

(RMSD=0.071)

3. FIRST output summary

Energy cutoff -1 kcal/mol

Rigid Clusters 642

Hinges 758

Bars 120

61

4. Infinitesimal Rigidity

Dimensions of rigidity matrix 3850× 3852

Dimension of null space 417

5. Analysis

5.1 Identifying relevant bodies - note that we present only some of the

bodies found to contain atoms from the active and allosteric sites. A

pair [i j] again denotes that body i contains j number of atoms from

that site.

Active Site Allosteric Site
[1 261] [1 142]
[13 10] [75 4]
[82 4] [74 4]
[77 4] [72 4]
[76 4] [64 4]
[50 4] [63 4]
[41 4] [62 4]
[40 4] [61 4]
[38 4] [60 4]
[37 4] [58 4]
[34 4] [57 4]
[324 3] [56 4]
[323 3] [55 4]

5.2 Identifying relevant null space vectors - following the methodology

described in Section 4.6, we identified a set of relevant null space vectors

and the colorings that we discuss are produced from some of them. In

Figures 4.11-4.13, the solid square frames show the location of the active

site in 3HRF, the circular frames show the location of the allosteric site,

and the dashed rectangular frames surround the regions that are zoomed

in at the bottom picture of the figures. Discussion for each coloring is

provided in the caption of the figures. Note that parts of the bottom

62

picture in Figure 4.13 are purposefully faded to illustrate a potential

“path” between the active and allosteric sites.

Considerations and future work

1. In both MATLAB and Java, comparisons with zero require special con-

sideration. Due to numerical approximations, results that would nor-

mally be zero are instead very close, but not equal, to zero. In order to

perform comparisons, we use “precision bubbles” with a certain radius

r. Thus, we consider a number to be 0 if that number is a distance less

than or equal to r from 0. Following are values for the radius of each

precision bubble used in the MATLAB and Java computation.

computation radius
comparing Plücker coordinates to 0 (MATLAB) 10−13

comparing singular values to 0 (MATLAB) 10−10

comparing the difference between velocity vectors to 0 (Java) 10−2

2. The infinitesimal rigidity analysis that we conduct is based on the model

produced by FIRST. As we mentioned in Section 4.1, FIRST uses chem-

ical interactions between atoms in order to model the protein as a body-

bar-hinge structure. It represents covalent bonds by hinges and hydrogen

bonds by 2 to 5 bars. There are, however, the so called hydrophobic in-

teractions reflecting the “preference” of certain parts of the molecule for

water. These interactions introduce additional constraints to the model

and in order to account for them, FIRST creates hydrophobic tethers and

represents them as single bars. This imposes certain assumptions which

have to be taken into account in the analysis.

63

Furthermore, the bars representing each hydrogen bond are identical

from our perspective since FIRST considers only the combinatorial char-

acteristics of the structure without specifying its geometry explicitly.

Thus, we have yet to determine an appropriate representation of the

hydrogen bonds when using the body-bar-hinge model for a protein.

64

Figure 4.8: (protein 3JVR; null space vector applied: 302) In this coloring,

both the active and allosteric sites are flexible while the rest of the protein seems

mostly rigid. Thus, we cannot make any conclusions about the relationship between

the two sites.

65

Figure 4.9: (protein 3JVR; null space vector applied: 396) Here we can see

again that the active and allosteric sites are flexible. However, most of the atoms

in the rest of the protein are also flexible and thus, we cannot justify the existence

of a relationship precisely between the two sites.

66

Figure 4.10: (protein 3JVR; null space vector applied: 6) In this coloring

most of the protein is either rigid or slightly flexible. However, the magnitudes of

the velocities of the atoms at the active and allosteric sites are larger, and, if we

look carefully, we can identify a potential “path” that leads from one of the sites to

the other, as illustrated in the bottom picture

67

Figure 4.11: (protein 3HRF; null space vector applied: 3) In this coloring

most of the protein is rigid while some of the atoms at the active an allosteric sites

have velocities different than 0. Thus, we cannot make any conclusions about the

relationship between the two sites.

68

Figure 4.12: (protein 3HRF; null space vector applied: 337) Here we can see

again that the active and allosteric sites are flexible. However, most of the atoms

in the rest of the protein are also flexible and thus, we cannot justify the existence

of a relationship precisely between the two sites.

69

Figure 4.13: (protein 3HRF; null space vector applied: 375) In this coloring

most of the protein is either rigid or slightly flexible. However, the magnitudes of

the velocities of the atoms at the active and allosteric sites are clearly larger, and

we can identify a potential “path” that leads from one of the sites to the other.

Note that the structure is 3-dimensional and the part of the path that seems to go

through “blue” atoms actually goes behind them.

Chapter 5

Infrastructure Design for

Motion Simulation Software

Conformational changes are essential to macromolecular function. As we saw

in Chapter 4, performing static analysis may give us intuition as to why some

of these changes occur. However, it cannot tell us how exactly they happen,

and therefore we study the dynamics, or motion, of macromolecules. Due to

the limitations of actual experimental observations, macromolecular motion is

simulated via standard computational approaches such as MD, as explained

in Section 1.2.2.

Unfortunately, macromolecules are typically composed of tens of thousands

of atoms, making these standard computations very expensive to perform on

the timescale in which “interesting” motions occur. As a result, novel tech-

niques are being developed to improve simulation efficiency. The implementa-

tion of most of these techniques, however, is not standardized. Different pieces

of code are written not necessarily in agreement with certain software engi-

neering rules, which makes code reuse or modification very difficult. Thus,

70

71

there is no effective method for comparing the performance of various ap-

proaches. Having the ability to perform such comparisons could improve the

development of new techniques and increase the efficiency of already existing

ones.

In this chapter, we present a design for an infrastructure that would assist

scientists in the application and comparison of motion simulation techniques.

By following standard software engineering principles, the infrastructure allows

for flexibility in programming and developing various combinations of methods.

Its design is motivated by simulation approaches, such as FRODA and ROCK,

which simulate motion by first, “moving” the system, potentially violating

constraints, then iterating to solve the constraints and resolve collisions [35,

23].

We should note, however, that this is preliminary work. The design has

not been implemented at this point, and its goal is mainly to establish the

foundation for future research in this direction.

The infrastructure (or, library, as we refer to it later) consists of two parts:

data representation and motion simulation. The subsequent sections de-

scribe the structure of each of these parts and present a discussion on the

benefits and limitations of the overall design. The organization of the library

is visualized via standard UML diagrams in which arrows with triangular ar-

rowheads, “_”, represent “is-a” relationships, and arrows with regular arrow-

heads, “→”, represent “has-a” relationships between classes. We also specify

the cardinality restrictions on the relationship lines by denoting 0 or more in-

stances by a star (*), and 1 or more instances by a plus sign (+).

72

Motivating example

To help the reader follow the design decisions, consider the context of pro-

tein motion as an example to which we will refer throughout the chapter.

Figure 5.1: Primary and secondary

structure of a protein. Adapted from

http://commons.wikimedia.org/

A protein has primary and sec-

ondary structure elements as shown

in Figure 5.1. The primary structure

is composed of a sequence, or “back-

bone,” of amino acids (residues),

while the secondary structure ele-

ments can be alpha helices or beta

sheets. When the protein folds into

its 3-dimensional structure, alpha he-

lices and beta sheets are formed

to maintain structural integrity and

could be approximated as rigid sub-

structures. Therefore, coarse-grained

and fine-grained approaches can be

used to simulate protein behavior. A

course-grained method simulates mo-

tion on the level of alpha helices and beta sheets, while fine-grained techniques

“operate” on the level of residues or atoms. Each amino acid has a side chain

with distinct chemical characteristics as explained in Chapter 1. Some motion

simulation methods, for instance, focus first on the position of the backbone

(ignoring the amino acid sidechains), then zoom in to place the sidechains once

a general structure has been achieved.

73

To accommodate a simulation of the protein that would allow for an inter-

change of coarse-grained and fine-grained approaches, we present a design that

offers the ability to rigidify substructures (e.g., sidechains) and later “undo”

the process.

5.1 Data representation

Figure 5.2: Data representation for the infrastructure

In order to apply motion simulation techniques to macromolecules, we first

need to model the structures. In fact, we choose a general representation that

would accommodate other applications, such as those coming from Computer

Aided Design (CAD).

The data representation design that we present is based on two main con-

structs called part and assembly. A part represents a rigid component whose

motion space consists only of the trivial deformations. An assembly, on the

other hand, is a flexible structure composed of parts with constraints between

them. The motion of an assembly in space is restricted by the constraints be-

tween its parts.

74

5.1.1 Geometric representation

Figure 5.3: GeometricRepresentation class and its children

Each part can be defined geometrically as either a geometric element

(i.e., a point, line, or plane), or a body. We distinguish between them be-

cause a body may contain geometric elements. Therefore, there are 2 separate

classes, GeometricElement and Body, that inherit GeometricRepresentation

as shown in Figure 5.3.

GeometricRepresentation: Geometric Element

Figure 5.4: GeometricElement class and its children

75

The class GeometricElement has three children, Point, Line and Plane

as shown in Figure 5.4. Each represents a geometric element with a speci-

fied position in space. A line can be defined by points, and a plane can

be defined by lines and points. Therefore, there exist “has-a” relationships

between Line and Point, Plane and Line, and Plane and Point. Note that

both Line and Plane have a method called equals that determines whether

two lines or two planes are the same, due to the infinite number of their

identical geometric representations.

GeometricElement: Point

Figure 5.5: Point class and its children

Figure 5.5 illustrates the structure of the Point class and its children.

There are different designs for this class. Our choice is based on the fact that

a d-dimensional point is a point and thus, 1DPoint, 2DPoint and 3DPoint

inherit directly the Point class.

We considered an alternative design, where 1DPoint inherits Point,

76

2DPoint inherits 1DPoint, and 3DPoint inherits 2DPoint. This representation

reflects the idea that a 2-dimensional point is a 1-dimensional point with an

additional coordinate, and a 3-dimensional point is a 2-dimensional point with

an additional coordinate. Although not entirely sound from a software engi-

neering perspective, this hierarchical design avoids the specification of extra

data and methods and should be considered for potential efficiency benefits.

Note that in the actual implementation it may be more practical if the

type of each dimensional variable (x, y, z) is declared as generic, instead of

double. This representation would allow for an easy switch between a double

and a pointer to a double, for instance.

GeometricRepresentation: Body

A body can be defined by either a transformation matrix, Euler translation

and rotation vectors, or a screw axis with a translation vector. The structure

of the class is shown in Figure 5.6.

Since a body does not have an explicitly specified shape, we can intuitively

think of it as a frame in space. As such, it has local and global coordinates.

The local coordinates specify the position of the body’s elements in relation

to the frame, while the global coordinates relate them to the larger system. A

body can “switch” between its local and global coordinates via the methods

convertToGlobalCoord and convertToLocalCoord.

5.1.2 Part and Assembly

As we mentioned at the beginning of the chapter, a part in the infrastructure

represents a rigid component, while an assembly is flexible and consists of

parts with constraints between them.

77

Figure 5.6: Body class and its children

Each part has a geometric representation and a collision shell, and

may contain a set of assemblies. If the geometric representation of a part

is a single point,for instance, the part does not have any assemblies, while

if it is a body, the part may consist of multiple assemblies.

Intuitively, we can think of the collision shell of a part as the “space” that

is occupied by the part, in which the presence of another object would cause

a collision. In our protein example, the collision shell for each atom would be

defined by its van der Waal radius (i.e., the radius of a sphere that models the

atom).

The CollisionShell class is a general class that could should be sub-

classed, for instance as depicted to represent a spherical or polyhedral shape.

It has a tolerance attribute that defines the level of flexibility of the collision

78

shell in handling collisions with other objects.

The “has-a” relationship between Part and Assembly allows a flexible sub-

set of the assembly to be rigidified at any time during the motion simulation

by converting it to a rigid part. As illustrated by the motivating example,

this design choice is necessary to accommodate for different motion simulation

techniques.

Figure 5.7: Structure of the Part class

An assembly has a set of parts and a set of constraints between these

parts. A constraint and a part can be added or removed from the assembly

via the corresponding methods addConstraint, remConstraint, addPart and

remPart.

An assembly also has the operations ungroup and group. Ungrouping a

part in the assembly is equivalent to modifying the assembly by dividing the

part into smaller parts and adding them to the assembly. Via ungrouping,

for instance, an alpha helix or a beta sheet can be “broken up” into its residues,

then into its atoms. Thus, a course-grained approach in simulating protein

motion could be refined to a more fine-grained one.

79

Due to the possibility of multiple parts nested in each other, a geometric

element may be contained in more than one part. This requires the addition

of a depth parameter specifying how many “levels down” we want to go when

ungrouping a part (the default value being 2). This whole process is accom-

panied by a change in the constraints list. The user may choose to keep or

remove some of the already existing constraints (this will be explained in

more detail in the next section).

Grouping a set of parts in an assembly is equivalent to rigidifying a subset

of the assembly. In order to do this, the user has to perform the following

steps:

1. Create a new assembly from the parts and the constraints between

them,

2. Make a new part from the new assembly and set its geometric repre-

sentation to be a body with transformation matrix the identity matrix,

and

3. Add this new part to the already existing assembly.

It is essential that when a non-level 0 part (i.e., a part containing

assemblies) is created, the body transformation matrix is set to be the iden-

tity. This ensures that the geometric representation of a part is always

local with respect to the parent part. Thus, in the case of a nested hierarchy,

the global coordinates of a geometric element can always be calculated by

multiplying the transformation matrices of all nested bodies.

80

Figure 5.8: Constraint class and its children

Part and Assembly: Constraints and Attachments

The parts in an assembly have constraints between them that attach to the

parts at special attachment objects. Consider, for instance, body-bar-hinge

structures. Rigid bodies in these structures are constrained by bars or hinges.

Each bar imposes a distance constraint between two bodies and attaches to

each of them at a single point. A hinge allows only one rotational degree of

freedom and can be viewed as a unique line “connecting” the bodies. Thus,

we say that a bar constraint has two point attachments, while a hinge has

one line attachment.

The Constraint class has an array of attachments as shown in Figure 5.8.

It also has a tolerance attribute that defines how “strict” the constraint is.

There are four different types of constraints - distance, angle, incidence,

and hinge. The distance and angle constraints specify the distance and

angle between parts; an incidence constraint is a geometric element con-

tained by each of the parts,and a hinge can be represented by a line or two

incidence points.

81

Each constraint attaches to a part via an attachment object. An

attachment object has a part and a geometric element.The geometric

element is the actual attachment point, line or plane. The Part attribute

specifies which part (if any) this attachment should be associated with if the

current part was to be ungrouped. It can be viewed as a way of declaring

whether a constraint should be maintained or removed after the part with

which it is associated is ungrouped.

5.1.3 Discussion

Our data representation design allows for the creation of structures containing

rigid and flexible components, as well as for an easy “transformation” between

them (i.e., grouping and ungrouping parts, thus rigidifying flexible components

or making rigid components flexible). This feature of the design plays an

important role in the motion simulation of macromolecules such as proteins.

Our design can accommodate various choices for geometric elements and

body representations as well and can be extended to include different types

of constraints and collision shells. However, it presents certain limitations as

discussed below.

Representing Constraints in the Assembly class

Each assembly consisting of n parts has an array with n elements of type

Part. The constraints between these parts are represented by an array of

n vectors in which the i-th element contains all constraints associated with

the i-th part. Since ungrouping or grouping parts may involve the removal of

certain constraints, this representation may turn out to be computationally

expensive.

82

Another possibility would be for each part to keep track of the

constraints associated with it. However, if two assemblies share a part

that has constraints with parts from both assemblies, this representation

would not be more efficient than the one proposed.

Creating new Parts

A new part can be created explicitly only if the part is at level 0, i.e., it

does not contain any assemblies. At the same time, a part can be created

implicitly with the method groupParts in the Assembly class. This represen-

tation ensures that a part is always in a nested hierarchy, and thus, cannot

be in more than one non-nested bodies. In order to allow for a part to be in

more than one non-nested bodies, the design needs to incorporate one of the

following:

• A geometric element keeps track of all of its local coordinates with

respect to its parents.

• A parent keeps track of all its geometric elements’ local coordinates.

• A convenience method for auto-creating an explicit constraint from an

implicit incidence, i.e., forcing duplications and adding

incidence constraints.

83

5.2 Motion simulation

Figure 5.9: Motion Simulation part of the infrastructure

The motion simulation part of the infrastructure assumes the data repre-

sentation design described in Section 5.1. It presents a library of classes whose

implementation would allow for the simulation of macromolecular motion or,

more generally, motion of constrained structures.

The basic design is shown in Figure 5.9. There is a SimulationStep class

that allows for iteration over a number of steps, and a MotionManager class

that inherits SimulationStep and controls the overall simulation. The motion

that can be modeled with this library follows a number of steps including

structure analysis, motion generation, collision detection and resolution, and

constraint satisfaction. The subsequent sections describe the classes associated

with these steps.

5.2.1 SimulationStep and Motion Manager

SimulationStep

The class SimulationStep (as illustrated in Figure 5.10) contains a sequence

of operations that define a single step of the motion simulation process. Each

84

operation corresponds to a class in the infrastructure, and hence sequence

is defined as a vector of objects. We could also represent sequence as a

vector of numbers where each object is identified by a number. However, this

representation would be more inefficient because the user would have to assign

new numbers to classes added at a later time; this would result in many checks

to find the object associated with a particular number.

Figure 5.10: SimulationStep, Motion Manager and their children

Besides the sequence of operations, SimulationStep has methods facili-

tating the implementation of the sequence. The method step (no parameters)

executes a single step of the simulation. The method step(specified sequence)

is abstract (to require the children of SimulationStep to provide their own im-

plementations of the method), and protected (to prevent unauthorized classes

from calling it directly). Two additional methods, run and run(numSteps),

85

execute step an infinite or specified number of times, respectively.

The class SimulationStep is inherited by MotionManager, Resolver and

PartMover.

MotionManager

MotionManager controls the overall motion simulation. It has a PartMover,

StructureAnalyzer, Resolver and MovieMaker, and can “execute” them in

any order since it inherits SimulationStep. One step may consist of ana-

lyzing the structure, moving it, resolving collisions, satisfying constraints and

producing a movie frame. The class also has a method that loads parameters

from a given file.

5.2.2 StructureAnalyzer

StructureAnalyzer has an abstract method, analyzeStructure, that is imple-

mented by each of its children. The purpose of the class is to give the option

of analyzing and modifying the structure of an assembly. For instance, the

user can modify an assembly by ungrouping or grouping some of its parts.

An example would be an algorithm like FIRST, which may identify and group

rigid components.

5.2.3 PartMover

PartMover (also shown in Figure 5.10) should be subclassed to define different

algorithms for motion simulation, such as velocity Verlet and random pertur-

bation. It moves the structure using one of these algorithms, which may result

in an embedding that violates constraints or has collisions.

86

5.2.4 Resolver

Figure 5.11: Resolver

After the structure has moved, Resolver checks for collisions and makes

sure the constraints are satisfied. It has a ConstraintSatisfier and a

CollisionResolver as shown in Figure 5.11, and controls the order and num-

ber of their executions since it inherits SimulationStep.

5.2.5 MovieMaker

MovieMaker creates movie frames. Since the user may want to save and/or

display these frames, MovieMaker has a MovieStore and a MovieDisplay

classes, each of which has children that implement different methods for storing

and displaying frames.

87

5.2.6 Discussion

The most significant benefit of our motion simulation design is its flexibility.

The library allows for the execution of different sequences of simulation steps

and supports step repetition; it can be easily extended to include more algo-

rithms for motion generation, as well as for collision detection and constraint

satisfaction, and we can even change the structure of the system whose motion

we are simulating by implementing the StructureAnalyzer class. This flexi-

bility provides the user with the opportunity to combine different algorithms

and compare their performance.

The limitations of the design come from the “division” of the simulation

steps. We assume that motion generation, constraint satisfaction, collision de-

tection and resolver, and structure analyzer are all separate steps that can be

executed in any order. However, it is possible to have an algorithm that com-

bines some of these actions in a single step (for instance, satisfies constraints

as it generates motion) and our design does not explicitly support this.

Chapter 6

Conclusions and Future Work

This thesis has addressed two problems: 1) understanding the allosteric

effect in proteins, and 2) improving the development of motion simulation

software.

The first problem has important applications in drug design. We ap-

proached it by applying concepts from computer science and mathematics

to examine protein structure and its potential for motion. We modeled pro-

teins as discrete structures whose movements are restricted by specific geo-

metric constranits. This allowed us to conduct rigidity analysis on 2 protein

structures, CHK1 and PDK1, and apply various tools to explore their in-

finitesimal motion space. Our “toolbox” was composed of matrix Lie groups,

instantaneous screws and Grassmann-Cayley algebra on the theory side, and

SWISS-MODEL, FIRST, MATLAB and Java on the applications side. We

performed the analysis via an interactive web application and visualized the

results through special colorings of the protein atoms corresponding to the

atoms’ infinitesimal velocities. Our analysis shows a potential relationship be-

tween the active and allosteric sites of the protein and provides a preliminary

88

89

foundation for further research on the mechanisms of the allosteric effect.

Future work on this project would include:

• Developing a method for visualization of not only the magnitudes of the

atoms’ infinitesimal velocities, but also their direction (the Java program

already computes the full velocity vectors).

• Automating the identification of relevant null space vectors, as well as

linear combinations of them, that produce colorings of the protein re-

vealing a relationship between the active and allosteric sites.

• Identifying and analyzing more protein candidates and collaborating

with biologists to verify the produced results.

• Developing a sound computational method for building the rigidity ma-

trix that would account for the double representation of bars in the

rigidity model of the protein produced by FIRST.

• Extending the web application to 1) allow users to specify a scale for

coloring the protein atoms, and 2) save different colorings and compare

them.

The second problem addressed in this thesis is related to the development

of motion simulation software. Different computational techniques exist for

motion simulation, each with advantages and limitations, but currently none

efficiently produce desired results. This creates a barrier for scientists trying

to understand the behavior of macromolecules. We approached the problem

by applying standard software engineering principles to design an infrastruc-

ture that would allow for the application and comparison of various motion

90

simulation techniques. Our design consisted of data representation and mo-

tion simulation parts. While it has some limitations, its main advantages are

its flexibility and easy extensibility. The future implementation of this library

would provide an effective infrastructure for comparing the performance of var-

ious approaches. This would foster the development of new motion simulation

techniques and could improve the efficiency of already existing ones.

Future work on this project would include:

• Determining the remaining details on the types of certain functions and

classes.

• Implementing the infrastructure and testing the optimality of the hier-

archical structure of the design.

• Extending the design to support algorithms that perform a number of

motion simulation steps simultaneously.

Bibliography

[1] Classical Normal Mode Analysis: Harmonic Approximation.
http://www.colby.edu/chemistry/pchem/notes/.

[2] FIRST: Floppy Inclusions and Rigid Substructure Topography.
http://flexweb.asu.edu/software/first/.

[3] HotPatch: Statistical analysis of unusual patches on protein surfaces.
http://hotpatch.mbi.ucla.edu/.

[4] Jmol: an open-source Java viewer for chemical structures in 3D.
http://www.jmol.org/.

[5] PDB: The Protein Data Bank. http://www.pdb.org/.

[6] K. Arnold, L. Bordoli, J. Kopp, and T. Schwede. The SWISS-MODEL
Workspace: A web-based environment for protein structure homology
modelling. Bioinformatics, 22:195–201, 2006.

[7] Leonard Asimow and Ben Roth. The rigidity of graphs II. Journal of
Mathematical Analysis and Applications, 68:171–190, March 1979.

[8] Ivet Bahar and Burak Erman. Direct evaluation of thermal fluctuations
in proteins using a single-parameter harmonic potential. Folding Design,
2:173–181, May 1997.

[9] Robert S. Ball. A treatise on the theory of screws. Cambridge University
Press, 1900.

[10] Sam Flores. The database of macromolecular motions: new features added
at the decade mark. Nucleic Acids Res, 34, 2006.

[11] Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial
rigidity. Graduate Studies in Mathematics, 2, 1993.

[12] Jenny Gu and Philip E. Bourne, editors. Structural Bioinformatics. John
Wiley Sons, Inc, Hoboken, New Jersey, second edition, 2009.

91

92

[13] Turkan Haliloglu, Ivet Bahar, and Burak Erman. Gaussian dynamics of
folded proteins. Physical Review Letters, 79(16):3090–3093, October 1997.

[14] Jeanne Hardy, Joni Lam, Jack Nguyen, Tom O’Brien, and James Wells.
Discovery of an allosteric site in the caspases. PNAS, 101(34):12461–
12466, August 2004.

[15] Jeanne Hardy and James Wells. Searching for new allosteric sites in
enzymes. Structural Biology, 14(6):706–715, December 2004.

[16] Donald Jacobs and Bruce Hendrickson. An Algorithm for Two-
Dimensional Rigidity Percolation: The Pebble Game. Journal of Compu-
tational Physics, 137(CP975809):346 365, 1997.

[17] Donald Jacobs, A. Rader, M. Thorpe, and Leslie Kuhn. Protein flexibilty
predictions using graph theory. Proteins, 44:150–165, 2001.

[18] Donald Jacobs and M. Thorpe. Generic Rigidity Percolation: The Pebble
Game. Phys. Rev. Letts., 75:4051–4054, 1995.

[19] F. Kiefer, K. Arnold, M. Künzli, L. Bordoli, and T. Schwede. The SWISS-
MODEL repository and associated resources. Nucleic Acids Research,
37:D387–D392, 2009.

[20] Vijay Kumar. Rigid body motion and the Euclidean group.
http://roboticscourseware.org, 2008.

[21] Audrey Lee. Geometric constraint systems with applications in CAD and
biology. PhD thesis, University of Massachusetts Amherst, May 2008.

[22] Audrey Lee and Ileana Streinu. Pebble game algorithms and sparse
graphs. Discrete Mathematics, 2007.

[23] Ming Lei, Maria Zavodszky, Leslie Kuhn, and M. Thorpe. Sampling pro-
tein conformations and pathways. Journal of Computatinoal Chemistry,
25(9):11331148, February 2004.

[24] J. Monod, J. Wyman, and J. P. Changeux. On the nature of allosteric
transitions: A plausible model. Molecular Biology, pages 88–118, May
1965.

[25] David L. Nelson and Michael M. Cox. Principles of Biochemistry. W. H.
Freeman and Company, fifth edition, 2008.

[26] M. C. Peitsch. Protein modeling by e-mail. Bio/Technology, 13:658–660,
1995.

93

[27] Harriet Pollatsek. Lie Groups: A problem-oriented introduction via matrix
groups. The Mathematical Assocition of America, 2009.

[28] Adam Schuyler and Gregory Chirikjian. Normal mode analysis of pro-
teins: a comparison of rigid cluster modes with C-alpha coarse graining.
Journal of Molecular Graphics and Modelling, 22:183–193, July 2004.

[29] J. M. Selig. Geometrical Methods in Robotics. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1996.

[30] Adriana Stroba and Francis Schaeffer. 3,5-Diphenylpent-2-enoic acids as
allosteric activators of the protein kinase PDK1: Structure-activity rela-
tionships and thermodynamic characterization of binding as paradigms
for PIF-binding pocket-targeting compounds. Journal of Medical Chem-
istry, 52:46834693, 2009.

[31] Godehard Sutmann. Classical Molecular Dynamics. NIC Series, Quan-
tum Simulations of Complex Many-Body Systems: From Theory to
Algorithms(10):211–254, 2002.

[32] Tiong-Seng Tay. Rigidity of multi-graphs. I. Linking rigid bodies in n-
space. Combinatorial Theory Series, B(26):95–112, 1984.

[33] Tiong-Seng Tay. Linking (n-2)-dimensional panels in n-space II: (n-2, 2)-
frameworks and body and hinge structures. Graphs and Combinatorics,
5:245–273, 1989.

[34] Darin Vanderpool and Ted Johnson. Characterization of the CHK1 al-
losteric inhibitor binding site. Biochemistry, 48:98239830, 2009.

[35] S. Wells, S. Menor, B. M. Hespenheide, and M. Thorpe. Constrained
geometric simulation of the diffusive motions in proteins. Physical Biology,
2, 2005.

[36] Neil White. Grassmann-Cayley algebra and robotics, 1994.

[37] Neil White. Geometric applications of the Grassmann-Cayley algebra.
Handbook of Discrete and Computational Geometry, 1997.

[38] Neil White and Walter Whiteley. The algebraic geometry of motions of
bar- and-body frameworks. SIAM Journal of Algebraic Discrete Methods,
8:1–32, 1987.

[39] Walter Whiteley. The union of matroids and the rigidity of frameworks.
SIAM Journal Discrete Mathematics, 1(2):237–255, May 1988.

94

[40] Hugh D. Young and Roger A. Freedman. Sears and Zemansky’s university
physics: with modern physics, volume 1. Pearson Education Inc., 11th
edition, 2004.

