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ABSTRACT 

When NASA’s Curiosity rover lands in August 2012, the rover will use a laser-

induced breakdown spectroscopy (LIBS) instrument to collect data in an effort to 

understand the chemical composition and geological classification of the rocks on 

Mars.  This is part of a larger endeavor to determine information about the 

planet’s habitability.  LIBS is a method used to determine the elemental 

composition of a given sample.  For each rock sample analyzed by the instrument, 

a LIBS spectrum consisting of over 6,000 different channels is obtained.   

In order to prepare for the return of LIBS data from the rover, this project aims to 

evaluate the accuracy of statistical methods, such as discriminant analysis,  

support vector machines, and clustering algorithms for categorizing the rock 

samples into groups with similar chemical compositions based on their LIBS 

spectra alone. Accurate classification is critical for rapid identification of similar 

unknown samples, novelty detection, and in the selection of a training set of data 

for use in the estimation of chemical compositions.  Similar studies have been 

performed; however, they generally fail to use statistical best practices and 

therefore have wildly optimistic results.  

 

The data used in this project is from the “century set”, a suite of 100 igneous rock 

samples.  These 100 samples are the only ones currently available for this project 

which have both LIBS spectra and known chemical compositions.  Having the 

known chemical compositions allowed the century set samples to be divided into 

groups with geological similarities based on their Total Alkali-Silica (TAS) 

classes, and provided a way to evaluate the predictive accuracy of the 

classification algorithms using K-fold cross validation. 

 

The results show that the small sample size and uneven distribution of samples in 

different TAS classes make classification into many groups difficult, 

contradicting many of the outcomes displayed in the literature.  However, some of 

the methods explored in this thesis do show promise based on their performance 

in simpler classification tasks, so the results should be reevaluated once more data 

is obtained.     

 

LIBS data is scarce, so this thesis also briefly explores the results from one 

method of simulating a LIBS spectrum based on the sample’s chemical 

composition.  Simulated data could be used to examine the effects of sample size 

on the accuracies of the various classification algorithms.      
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INTRODUCTION 

The curse of dimensionality is a term coined by mathematician Richard E. 

Bellman in 1961 to describe the challenges of working in high-dimensional 

spaces (Bishop 2006, 36).   This “curse” certainly poses many interesting 

problems in statistics, as advances in the sciences are causing high-dimensional 

data to become increasingly prevalent.       

Laser-induced breakdown spectroscopy (LIBS) is a method used to 

determine the quantity of various chemical elements in a given sample.  The LIBS 

technique was first performed in 1963 (Miziolek et al. 2006, 5).  Since then, the 

major advantages of LIBS over other similar techniques have caused a surge in 

LIBS-related research.  From its use in biological applications like tissue 

classification (Yueh 2009) and in the categorization of plastic polymers (Anzano 

et al. 2010) to extraterrestrial applications, LIBS is becoming a popular technique 

in the analytical chemistry community.   

Some of this activity is due to the presence of a LIBS instrument onboard 

NASA’s Curiosity rover currently en route to Mars.  Upon its landing in August 

of 2012, the rover will use the LIBS instrument (“ChemCam”) to collect data in 

an effort to understand the chemical composition and geological classification of 

the rocks on Mars.  Statistical methods will be used to translate the high-

dimensional spectral data collected by the instrument into meaningful information 
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about the chemistry of the rocks on Mars, which will in turn inform an 

understanding of Martian geology.  For each rock sample analyzed with the 

instrument, a LIBS spectrum consisting of over 6,000 intensities of light at 

various wavelengths is obtained.  Therefore, the limitations related to the curse of 

dimensionality certainly are present in the analysis of LIBS data and restrict the 

practical application of many statistical procedures in this situation (Duda et al. 

2001, 170).  

 

 

 

 

 

Figure 1:  Sketch of Curiosity rover 

http://www.nasa.gov/mission_pages/msl/multimedia/gallery/pia14156.html 
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 Laser-induced breakdown spectroscopy  

Laser-induced breakdown spectroscopy (LIBS) will be employed by the 

ChemCam instrument on the Mars Science Laboratory rover Curiosity to obtain 

data (atomic emission spectra) about Martian surface rocks and soils.  Researchers 

will use the tools on the rover to study whether the landing region has had 

environmental conditions favorable for supporting microbial life and for clues 

about whether life existed (NASA 2011).  LIBS is ideal for an extraterrestrial 

application because it provides real-time analysis and requires no sample 

preparation (Ukwatta et al. 2012). 

 

 

Figure 2:  Schematic of laser-induced breakdown spectroscopy 

http://www.nasa.gov/mission_pages/msl/multimedia/pia15103.html 
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The LIBS instrument onboard the rover will fire pulses of a laser at target 

rock and soil samples from up to seven meters away.  Energy from the laser 

excites a microscopic spot on the target into a glowing, light-emitting plasma 

(ionized gas).  The plasma light is collected by a telescope and focused into the 

end of a fiber optic cable (NASA Jet Propulsion Lab 2010).  The fiber optic 

cables carry the light to three different spectrometers incorporated into the 

instrument, one for each of ultraviolet (UV), visible (VIS), and near infrared 

(VNIR) regions of the electromagnetic spectrum (Lasue et al. 2011).  The 

spectrometers record a spectrum for each sample analyzed by collecting 

intensities of light emitted at over 6,000 different channels (wavelengths) between 

240 and 850 nm, which cover the range of these three regions.     

Every chemical element emits a different characteristic wavelength, or 

color of visible light, as shown in Figure 2 (NASA 2011).  Therefore, the peaks 

found in the spectrum of light emitted by the plasma can be used to identify the 

chemical elements present in the target sample (NASA Jet Propulsion Lab 2010).  

Typical rock and soil analyses yield detectable quantities of ten major chemical 

elements as well as trace amounts of many other minor elements.  These different 

chemical elements interact in the plasma and cause variations in the peak 

intensities.  This is referred to as the chemical matrix effect.  Multivariate 

statistical methods such as partial least squares – a regression method that 

mitigates the collinearity of the data that results from features of the data – can be 

used to predict the quantities of each element found in the sample. 
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Overview of Thesis 

When the Curiosity rover lands on Mars, it will begin to collect LIBS data 

that will be sent back to Earth.  We will have only photographic information 

about the target samples being analyzed.  In order to prepare to make meaningful 

conclusions about the returning data, we must use test data sets to investigate and 

develop statistical methods that are well suited to the analysis of this specific type 

of data.  This thesis contributes to the preparations in two ways.   

First, this project provides an empirical analysis to evaluate the predictive 

accuracy of various statistical methods for categorizing the rock samples into 

groups with similar chemical compositions based on their LIBS spectra alone.  

Current literature provides some studies presenting results of classification of 

 

Figure 3:  Sample LIBS spectrum with elemental peaks labeled 

http://msl-scicorner.jpl.nasa.gov/Instruments/ChemCam/ 
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LIBS data; however, the majority of sources fail to compare multiple methods, 

especially methods that span different subsets of statistical algorithms, or they fail 

to rigorously verify their results using techniques well-known in statistics.  This 

has led to results that seem to be overly optimistic.  The goal of this thesis is not 

to develop new methodology, but rather to apply rigorous error analysis to well-

established statistical techniques.  Accurate classification is critical for rapid 

identification of similar unknown samples, allowing us to gain a sense of the 

distributions of rock types on Mars on a broad scale.  Similarly, it can also be 

used for novelty detection, the identification of a new or unknown sample type.  

Also, being able to identify samples that are chemically similar to a given sample 

is important in the estimation of the chemical composition of a given sample.   

Data from the “century set”, a suite of 100 igneous rock samples, are the 

primary basis for this thesis.  Small-sample size effects can sometimes 

contaminate the design and evaluation of a proposed classification algorithm, 

especially in the case of high-dimensional data (Raudys and Jain 1991).  The 100 

samples in the century set are the only ones currently available for this project that 

have both LIBS spectra and known chemical compositions.  Data on the chemical 

compositions of many other rock suites are readily available, but LIBS data are 

scarce.  Therefore, the second objective of this project is to examine the 

possibility of producing a valid model that can be used to simulate the LIBS 

spectra of a sample for which we only have chemical composition data.  A model 

with good predictive accuracy would allow for the simulation of LIBS data, 
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which could be used to investigate the effects of sample size on the accuracies of 

the various classification algorithms. 

 

  

The Data 

The century set was analyzed by LIBS at Los Alamos National Laboratory 

under conditions to mimic the atmosphere of Mars.  Additionally, concentrations 

of major and minor elements were determined by X-ray fluorescence (XRF) using 

standard procedures at the University of Massachusetts Amherst.  Using the data 

 

Figure 4:  Total Alkali-Silica (TAS) Diagram 

http://umanitoba.ca/geoscience/faculty/arc/tas.html 
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from XRF, we divided the samples in the century set into classes with similar 

chemical compositions using the total alkali versus silica (TAS) diagram, as 

shown in Figure 4.  The century set is comprised of samples from 12 of the 15 

different TAS classes in the diagram.  The majority of samples in the century set 

are basalts by composition, which makes the distribution of sample sizes in the 

various TAS classes uneven.  More details about the distribution of TAS classes 

found in the century set are displayed in Table 1. 

 

 

 

 

 

 

Century Set (n = 100) 

TAS Class Frequency 

Andesite 4 

Basalt 42 

Basaltic andesite 2 

Basaltic trachyandesite 9 

Basanite tephrite 4 

Dacite 10 

Foidite 7 

Phonotephrite 4 

Picrobasalt 3 

Rhyolite 6 

Trachyandesite 1 

Trachybasalt 8 

 

Table 1:  Frequency of TAS classes in the century set 
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CLASSIFICATION AND CLUSTERING METHODS 

This section describes the methods used in a general sense and then specifies how 

each method is used in the scope of this project.  The next section displays the 

results from applying these methods to the century set. 

Machine Learning Algorithms 

Statistical data often can be naturally divided into two or more groups, 

where the reasoning behind the division is known in advance.  The goal of 

statistical classification is to establish rules, or classifiers, on the basis of objects 

with known group memberships.  These can be reliably used for predicting the 

group membership of new observations, as well as evaluating the performance of 

the rules (Varmuza and Filzmoser 2009, 197).   

Statistical methods for data classification fall into the larger category of 

machine learning algorithms.  A machine learning approach uses a data set of 

samples, called a training set, to tune the unknown parameters of an adaptive 

model (Bishop 2006, 2).  The known categories of the samples within the training 

set can be expressed in a vector of labels, t.  For classification of the century set, 

the TAS classes assigned to each sample will be used as labels.  The resulting 

model can be expressed as a function      that takes in vectors of input features, 

x, and generates an output vector, y, encoded in the same way as the label vector, 

in this case in the form of a predicted TAS class for each sample (Bishop 2006, 
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2).  The exact form of the model reduces the error on the training set.  This trained 

model can then be used to predict the label of new observations.  Algorithms in 

which class labels are provided for each sample in the training set fall into the 

category of supervised machine learning.       

In other pattern recognition techniques, the training data consists only of 

input features, x, without a vector of labels, t (Bishop 2006, 3).  Such methods are 

considered part of unsupervised learning.  In unsupervised techniques, algorithms 

form clusters or natural groupings of the input patterns (Duda et al. 2001, 17).   

In order to evaluate prediction error of the supervised classification 

models,  -fold cross-validation is used.  Ideally, if we had enough data, we could 

train our prediction model with a training set of data and then use different set of 

data, a validation set, to assess the model’s performance for prediction.  

Unfortunately, LIBS data are scarce so other methods like K-fold cross validation 

can be used.  K-fold cross validation allows one data set to be divided into test 

and validation sets and rotates the partition so that every sample is included in the 

test set.  The original sample is randomly split into K roughly equal-sized parts.  

For          the kth part is used as a validation set, and the other K – 1 parts 

are used as the training set to fit the model.  A chosen measure of error is 

calculated for predicting the classes of the samples in the validation set (Hastie et 

al. 2009, 241 – 242).  The K results can then be averaged to produce a single error 

estimation. 
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Methods for Dimension Reduction and Data Visualization  

Multidimensional Scaling 

High-dimensional data are impossible to visualize without the help of 

some form of dimension reduction technique.  Multidimensional scaling (MDS) is 

one of these techniques.  It projects data points to a lower-dimensional space so 

that the dissimilarities between original data points are represented as the 

distances between the points in the lower-dimensional space (Duda et al. 2001, 

573).  Classical multidimensional scaling uses the Euclidean distance as a 

measure of dissimilarity.  

Principal Component Analysis 

 Principal component analysis (PCA) is another method used for dimension 

reduction.  It can transform a group of many highly-correlated x-variables into a 

smaller set of uncorrelated latent variables (a variable that is not observed, but 

rather inferred) that can be used in place of the original variables (Varmuza and 

Filzmoser 2009, 59).  The data are first centered and scaled.  The latent variables 

are determined by finding the directions in the variable space that best keep the 

relative distances between the objects.  In other words, the latent variables best 

preserve the variance of the data values.  The variable that preserves the 

maximum variance of the data is called the first principal component (PC1).  For 

a data matrix with   variables, its first principal component is defined by the 

linear combination of the variables            
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with a loading vector of unknown coefficients                   
 
 with 

normalized length such that   
      (Holland 2008; Varmuza and Filzmoser 

2009, 69 -70).   

The  th principal component is the linear combination that accounts for 

the next highest variance after the       component.  It must be orthogonal to 

all previous directions.  Collectively, all of the vectors of coefficients    can be 

placed as columns in a matrix  , called the loading matrix, such that the 

transformation of the original variables to the principal components is  

    . 

The rows of A are the eigenvectors of the variance-covariance matrix of the 

original data.  The elements of the eigenvector are the weights     and are known 

as loadings.  The elements in the diagonal of the variance-covariance matrix of 

the principal components are the eigenvalues.  The variance explained by each 

principal component is equal to the eigenvalue (Holland 2008; Varmuza and 

Filzmoser 2009, 69 – 70).   

 Each observation in a principal component is called a score and is a linear 

combination of the original variables,    , and the loadings,    , for   

      and        .  The score for the    sample on the    principal 

component can be computed as 



23 
 

 
 

                               . 

Supervised Classification Techniques 

Discriminant Analysis 

 Discriminant analysis (DA) is a traditional approach to supervised 

classification.  Decision boundaries are constructed that separate the classes from 

one another.      

In linear discriminant analysis (LDA), we create decision boundaries to 

separate classes that are linear, as shown in Figure 5.  Suppose that there are   

classes, labeled        , where   represents the  th class.  It is assumed that the 

classes have a normal distribution and a common covariance matrix      ,    .  

Given an input vector  , linear discriminant functions follow the form (Hastie et 

al. 2009, 109) 

               
 

 
   

             . 

In practice, we do not know the parameters of the distribution, so they are 

estimated using the training data and maximum likelihood estimation: 

    
  

 
, where   is the number of class-k observations; 

               , where    represents the  th sample vector; 

           
 
                    

       .  
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The decision boundary between class   and   is where                Although 

there are many different types of discriminant analysis, LDA often produces the 

best classification results because of its simplicity and low variance (Hastie et al. 

2009, 439).  Sometimes, however, linear boundaries are not adequate to separate 

the classes.   

There are other types of discriminant analysis that create nonlinear 

boundaries to separate classes.  LDA can be recast as a linear regression problem, 

which can then be generalized into a more flexible, nonparametric form of 

regression.  This allows for a more flexible form of discriminant analysis, 

appropriately referred to as flexible discriminant analysis (FDA).  The feature 

vectors can be mapped into a higher dimensional space and LDA is then 

performed in this enlarged space (Hastie et al. 2009, 439).  This is similar to the 

procedure used with support vector machines, which will be explained shortly. 

Penalized discriminant analysis (PDA) is another method that creates 

nonlinear boundaries.  In a similar manner to FDA, the predictors are first 

expanded.  Then an LDA model is fitted, but coefficients are penalized to be 

smooth (Hastie et al. 2009, 440 – 446).     

Stabilized linear discriminant analysis (SLDA) is another method that 

performs dimension reduction followed by LDA.  The data are reduced into linear 

scores that are left-spherically distributed and are used as predictors for linear 

discriminant analysis (Peters and Hothorn 2012).  Similarly, shrinkage 
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discriminant analysis (SDA) shrinks the dimension of the data by determining a 

ranking of predictors by computing correlation-adjusted t-scores (CAT) scores 

between the group centroids and the pooled mean (Ahdesmaki and Strimmer 

2010).  Once again, LDA is performed on the shrunken data.   

 

The main way to evaluate discriminant analysis models is to compute the 

accuracy of classification based on K-fold cross validation.  Calculating the 

Kappa statistic (Cohen 1960) is another way to evaluate the results from 

discriminant analysis.  The Kappa statistic is a measure of agreement for 

classification relative to what is expected by chance.  A Kappa value of zero 

indicates a lack of agreement while a value of one indicates perfect agreement.  

Kappa is a useful statistic when the classes are highly unbalanced (Kuhn 2008). 

 

Figure 5:  Schematic of discriminant analysis 

http://www.music.mcgill.ca/~ich/classes/mumt611_07/classifiers/lda_theory.pdf 
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where   denotes the observed proportion of agreements among all classifications 

and    denotes the expected value of    under random agreement (Gross 1986). 

 Discriminant analysis was performed in R using the caret (classification 

and regression training) package (Kuhn et al. 2012).  Using this package, 

discrimination functions were tuned for the five different variations of 

discriminant analysis (linear, flexible, penalized shrinkage, and stabilized linear 

discriminant analysis).  A 10-fold cross validation was used for parameter tuning 

for flexible and penalized discriminant analysis.  The parameters selected 

minimized the expected classification error. 

Support Vector Machine 

 In the similar way to discriminant analysis, the support vector machine 

(SVM) is used to create hyperplanes to separate different classes.  Like FDA, 

SVM extends to the nonlinear case where the classes overlap.  SVMs construct a 

linear boundary between classes in a large, transformed version of the feature 

space in such a way to maximize the margin between the groups (Varmuza and 

Filzmoser 2009, 223). 

 In the  -dimensional case, a hyperplane separating one class from another 

is defined by 
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where                 and                and       (Varmuza and 

Filzmoser 2009, 224).  For a simple example, assume that we only have two 

classes that we are trying to classify into.  Given the feature vectors            

we know the group membership for each object, which is given by the value   .  

In the two-class case, we can say that        for membership in the first group, 

or        for membership in the second group.  We hope to find a hyperplane 

that gives a perfect group separation, such that 

                           . 

This is possible when the two groups are linearly separable (Varmuza and 

Filzmoser 2009, 225).  The position of the hyperplane is such that the margin 

between groups is maximized.  The data points that define the division of the 

hyperplanes are called support vectors (Varmuza and Filzmoser 2009, 225).     

 In the nonlinearly separable case, we have to allow for points to be on the 

wrong side of the resulting hyperplane in order to maximize the margin.  A slack 

variable is introduced,   , for        , which are defined by the distance from 

the hyperplane with margin  .      for objects on the correct side of the 

hyperplane and are positive otherwise (Varmuza and Filzmoser 2009, 225). 

These methods are generally performed in a transformed space that is 

enlarged using basis expansions.  Every object vector    is replaced with the 



28 
 

 
 

vector       with   dimensions (Varmuza and Filzmoser 2009, 226).  The linear 

hyperplanes in the transformed space translate to nonlinear boundaries in the 

original space.  For certain basis functions the “kernel trick” can be applied, 

which allows for implicit mapping into the transformed space with the use of 

kernel function (Karatzglou et al. 2006).  For example, two object vectors,    and 

   for           that are transformed by basis functions become 

              
       

where   is a kernel function that computes products in the transformed space 

(Varmuza and Filzmoser 2009, 226).  This allows us to specify the kernel 

functions without specifying the basis functions.  Three popular kernels are the 

linear kernel, radial basis function (RBF) kernel and the sigmoid kernel.  The 

kernel functions are below: 

Linear: 

            
    

Radial basis function:   

                       
 
          . 

Sigmoid (also referred to as Neural Network): 

                 
        with             
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where   and   are kernel parameters (Varmuza and Filzmoser 2009, 227).     

 Support vector machine methods are implemented with R’s e1071 

package (Dimitriadou et al. 2011).  The procedure for support vector machines 

was very similar to that of discriminant analysis.  The three kernel functions 

explained above are used.  10-fold cross validation is used to tune the parameters 

of the models, gamma and cost.  The parameter values considered were      to 

   for gamma and     to     for cost.  The optimal parameters were selected in 

correspondence with the lowest classification error from the cross-validated 

results.        

 

 

Figure 6:  Schematic of support vector machines (SVM).  The shaded squares 

and circles represent the support vectors. 

http://opencv.itseez.com/doc/tutorials/ml/introduction_to_svm/introduction_to

_svm.html 
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Figure 8:  Schematic of support vector machines.   

http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf 

 

 

Figure 7:  Schematic of the “kernel trick”:  we can imagine that non-linear 

separation between vectors in the original space (left image) can be equated to 

linear separation between vectors in a higher-dimensional space using inner 

products (right image). 

http://www.biostat.pitt.edu/biostat2055/11/110128_W4_Classification2.ppt 
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Discriminant Analysis versus Support Vector Machines 

Discriminant Analysis and Support Vector Machines may seem similar in 

their techniques of computing hyperplanes to classifying data, however, they 

differ in their methodology and assumptions.  In LDA, the hyperplane is only 

optimal if the covariance matrices of the classes are identical, which is commonly 

violated in practice (Gokcen and Peng 2002).  SVMs do not make this 

assumption.      

Unsupervised Learning 

k-means Clustering 

In the k-means algorithm, we start with an unlabeled data set and work 

top-down to create clusters.  We randomly initialize a set of k points to be our 

cluster centroids.  Then using our cluster centroids, we examine each point in our 

data set, determine which cluster centroid is closest to it using typically the 

Euclidean distance (although other metrics can be used), and assign that point to 

the corresponding cluster.  Once all points have been assigned to a cluster, we 

then update the cluster centroids so they represent the mean of all of the points 

that have been assigned to that particular cluster.  Then using our new cluster 

centroids, we repeat the process of assigning points to clusters and updating the 

cluster centroids until we reach convergence where the clusters no longer change.  

In this algorithm, we must choose k, the number of clusters to create (Hastie et al. 
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2009).  The k-means algorithm does not make any assumptions about the data 

(Varmuzza 2009, 267). 

Evaluating Clustering Outcomes 

 In standard classifications tasks, there is a correct classification against 

which we can compare the results of classification outcomes based on different 

algorithms.  This is often something like an accuracy rate of classification – the 

number of samples correctly classified divided by the total number of samples.  

Labels are not required with clustering algorithms, and therefore several intrinsic 

metrics exist that compute the quality of the clusters without taking labels into 

consideration.  However, since we do know true class labels for the century set, it 

is important to compare our clustering outcomes to these true clusterings.  This is 

also useful for being able to compare the results from supervised classification 

methods with the unsupervised clustering methods. 

 Purity is a measure that focuses on the frequency of the most common 

category into each cluster.  Purity does not reward the algorithm for grouping 

items together from the same class, but it does penalize for noise in a cluster 

(Amigó et al. 2008).  To compute purity, each cluster is assigned to the class that 

is most frequent in the cluster, and then the accuracy of this assignment is 

measured by counting the number of correctly assigned objects and dividing by N. 

The purity can be calculated as         
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where                 is the set of clusters and                 is the set 

of classes.     can be interpreted as the set of samples in    and    can be 

interpreted as the set of samples in    (Manning et al. 2008).  Purity ranges from 0 

to 1, where 0 implies a bad clustering and 1 implies a perfect clustering.  Purity 

does not consider the tradeoff between the quality of the clustering against the 

number of clusters.  For example, the purity of a clustering would be 1 if each 

object were in its own cluster (Manning et al. 2008).           

On the other hand, the Adjusted Rand Index (ARI) (Hubert and Arabie 

1985) is a different measure to compare clustering results against true clusterings 

that penalizes both false positives, where two dissimilar objects are assigned to 

the same cluster, and false negatives, where two similar objects are assigned to 

different clusters (Manning et al. 2008).  The ARI ranges from 0 when the two 

clusterings have no similarities, to 1 when the clusterings are identical.  Let     be 

the number of objects that are in both class    and cluster   .  Let     be the 

number of objects in class    and     be the number of objects in cluster   .  The 

formula for the Adjusted Rand Index is  
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The unsupervised k-means clustering algorithm was performed using the 

stats package (R Development Core Team 2011) in R.  The Adjusted Rand 

Index was computed using the mclust package in R (Fraley and Raftery 2010).   

Application of Classification to LIBS Data 

As previously stated, an investigation into different techniques for 

automatic categorization of the century set into groups with similar chemical 

compositions is a crucial task.  Accurate classification can be used for rapid 

identification of similar unknown samples, allowing us to gain a sense of the 

distributions of rock types on Mars on a broad scale.  Classification can also be 

used for novelty detection.  This involves determining if an unknown sample is 

different from others previously analyzed.  Lastly, classification is critical in the 

selection of the best possible training set for regression methods used to predict 

the weight percent oxide of the major elements commonly found in rocks.  Using 

samples that are chemically similar to an unknown sample to train the regression 

model will produce the most accurate estimates of the unknown sample’s 

composition.         
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CLASSIFICATION RESULTS 

This section explains how the methods explained in the previous section were 

used with the century set and presents the associated results for evaluating their 

performance in classifying the century set.   

Data Exploration  

Data Visualization 

The century set was subjected to classical multidimensional scaling and 

then plotted as a method of data visualization.  The samples were color coded by 

their TAS class as a way to evaluate the similarity of the samples within each 

TAS class using the Euclidean distance metric.  The three-dimensional plot in 

Figure 10 shows that there is a small amount of natural grouping of samples from 

the same TAS class, but overall, samples from different classes are generally 

mixed together.  This lack of separation of samples with the same TAS class 

based on Euclidean distance as the measure of dissimilarity, as shown in the MDS 

plots, may make classification using Euclidean distance metrics difficult.  This 

will be examined with the use of k-means clustering.       



36 
 

 
 

    

 

Figure 9:  Two-dimensional plot of first two multidimensional scaling 

coordinates of century set colored by TAS class 
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Figure 10:  Three-dimensional plot of the first three coordinates based on 

multidimensional scaling of century set, colored by TAS class 
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Similar plots can be made using principal components.  Figure 11 is a 

three-dimensional plot of the first three principal components with the samples 

colored based on their TAS class.  Here we see better separation of the TAS 

classes in this plot as compared to the plot from MDS. 

        

 

 

Figure 11:  Three-dimensional plot of first three principal components of 

century set colored by TAS class 

 

Figure:  Three-dimensional plot of the first 3 principal components.  Colors 

represent the TAS class that the sample belongs to.   
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Dimension Reduction for Classification 

Features (variables) in the data that had the same value across all samples 

were removed, reducing the number of features to 6,451.  This allowed the data to 

then be centered and scaled in order to account for the possible variations in the 

data due to differences across samples and shots.  Then, principal component 

analysis was used as a dimension reduction technique.  An important aspect in 

using principal components for training classification algorithms is choosing the 

appropriate number of components.  Generally, this is determined based on an 

examination of the variance explained by each component.  A scree plot showing 

the amount of variance in the original data that is explained by the first 20 

principal components can be seen in Figure 12.  Table 2 also displays the standard 

deviation, proportion of variance, and cumulative proportion of variance 

explained by several of the principal components.  Based on this information, two 

different numbers of components were selected for use in classification.  Six 

principal components were chosen using the “hinge heuristic” because there is a 

leveling off or hinge in the total variance explained at around the sixth 

component, shown in Figure 12.  After that, all subsequent components explain 

less than 2% of the total variance.  The principal components beyond the sixth 

may only reflect noise in the data (Varmuza and Filzmoser 2009, 64).  However, 

it is important to consider that cumulatively, the first six components only explain 

65.6% of the variance in the data.  Hence, 23 components, which explain a larger 

proportion of the total variance, 80.2%, will also be used as training data for the 
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classification algorithms.  Using a large number of components such as 23 for 

classification model training may cause concern for overfitting, but it is 

interesting to see if the predictive power of the algorithms is very different from 

the use of six components.               

 

 

 

Figure 12:  Scree plot:  variance explained by principal components 
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Outlier Removal and Evaluation of Normality 

Next the normality of the data was examined and outliers were removed.  

A Q-Q plot of the first principal component, shown in Figure 13 was constructed 

to compare the distribution of the century set factors to a theoretical standard 

normal distribution, which is represented by the straight line.  The heavy tails and 

deviation from the straight line in the Q-Q plot reveal that the first principal 

component does not appear to be normally distributed.  After removing the 

potential outliers apparent in the plot and creating a new Q-Q plot, the data did 

not become any more normal.  Table 2 shows that the first principal component 

only explains 44.5% of the variability in the data.  Therefore, in an effort to 

evaluate the normality of a better representation of the data as a whole rather than 

just the first principal component, we produce Q-Q plots based on the sum of 

multiple principal components.  Assuming that each principal component is 

normally distributed, the sum of multiple components would also be normally 

distributed.  Q-Q plots are constructed for the sum of six and 23 principal 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC23 PC48 

Standard 

Deviation 
44.52 29.06 25.87 19.85 14.43 11.43 10.46 5.89 4.46 

Proportion 

of Variance 
0.307 0.131 0.104 0.061 0.032 0.020 0.017 0.005 0.003 

Cumulative 

Proportion 

of Variance 

0.307 0.438 0.542 0.603 0.635 0.656 0.673 0.802 0.900 

 

Table 2:  Importance of the century set principal components 
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components separately, as displayed in Figure 14 and Figure 15, for reasons 

previously explained.  Samples that appeared to be outliers in the Q-Q plot were 

identified and removed from the data.  After outlier removal in both cases, we see 

in Figure 15 and Figure 17 that the normality of the data has improved.  The six 

principal components had six outliers removed and the 23 components had four.  

The TAS classes associated with the outliers were examined and are 

displayed in Table 3 and Table 5.  We can see that the outliers removed generally 

come from separate TAS classes, which gives us more confidence that these are 

true outliers.  If the outliers had come from the same TAS class, it could have 

been indicative of important differences in the distribution of that particular class. 
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Figure 13:  Normal Q-Q Plot based on the first principal component of the 

century set 
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Figure 14:  Normal Q-Q Plot of the sum of the first six principal components 

of the century set 
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6PC Century Set (n = 94) 

TAS Class Frequency 

Andesite 2 

Basalt 41 

Basaltic andesite 2 

Basaltic trachyandesite 9 

Basanite tephrite 4 

Dacite 10 

Foidite 6 

Phonotephrite 4 

Picrobasalt 2 

Rhyolite 6 

Trachyandesite 1 

Trachybasalt 7 

 

Table 4:  TAS class membership of the samples in data set with first six 

principal components after outlier removal 

 

 

Outliers Removed from 6PCs  

TAS Class Frequency 

Andesite 2 

Basalt  1 

Foidite 1 

Picrobasalt 1 

Trachybasalt 1 

 

Table 3:  TAS class membership of outliers removed from the first six principal 

components 
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Figure 15:  Normal Q-Q Plot of the sum of the first six principal components 

of the century set after outlier removal 
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Figure 16:  Normal Q-Q Plot of the sum of the first 23 principal components 

of the century set 
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23PC Century Set (n = 96) 

TAS Class Frequency 

Andesite 4 

Basalt 42 

Basaltic andesite 2 

Basaltic trachyandesite 9 

Basanite tephrite 4 

Dacite 10 

Foidite 7 

Phonotephrite 3 

Picrobasalt 2 

Rhyolite 4 

Trachyandesite 1 

Trachybasalt 8 

 

Table 6:  TAS class membership of the samples in the data set with the first 23 

principal components after outlier removal 

 

 

Outliers Removed from 23PCs  

TAS Class Frequency 

Phonotephrite 1 

Picrobasalt 1 

Rhyolite 2 
 

Table 5:  TAS class membership of outliers removed from the first 23 principal 

components 
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Figure 17:  Normal Q-Q Plot of the sum of the first 23 principal components 

of the century set after outlier removal 
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Classifiers for separation into 12 TAS classes 

k-means Clustering 

Table 7 displays the ARI for various k –means clustering outcomes using 

different subsets of data.  The full data set was used (all 6,415 channels in the 

LIBS spectra), as well as six and 23 principal components.  The value of k was set 

to be 12 and 13, as 12 is the number of true TAS classes and 13 allows for an 

extra or “garbage” cluster.  The ARIs are all extremely small, less than 0.18, 

indicating that the k-means clustering outcomes do not match well with the true 

TAS classes.  The ARI does not change much depending on whether k equals 12 

or 13.  The ARI is slightly higher when clustering on six principal components.      

 

Table 8 shows a closer examination of one of the clustering outcomes with 

k = 12 using the full LIBS spectrum (6,415 features) for each sample.  The 

samples assigned to each cluster were examined in order to find the most common 

TAS class.  Then the purity of each cluster was calculated by finding the 

Data Used k Adjusted Rand Index 

6 Principal Components 12 0.1607 

23 Principal Components 12 0.1558 

Full Spectrum (6,415 features) 12 0.1403 

6 Principal Components 13 0.1537 

23 Principal Components 13 0.1707 

Full Spectrum (6,415 features) 13 0.1503 

 

Table 7:  Adjusted Rand Indices for k-means clustering outliers for k = 12, 13 
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proportion of samples that belong to the most common TAS class for each cluster.  

This can be considered a measure of accuracy because we hope that each cluster 

should hold samples from the same TAS class. The overall purity for the 

clustering algorithm was then calculated to be 0.6.  This number is deceivingly 

high after closer examination of the makeup of the samples in each cluster 

because purity does not penalize for grouping items from the same class in 

different clusters.  We can see that eight of the 12 clusters are comprised of 

mostly basalts, only two of which are clusters of only basalt samples.  This 

suggests that the k-means algorithm is highly affected by the disproportionate 

number of basalt samples in the century set.  Ideally, we would hope to see one 

cluster containing all of the basalt samples.  
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Discriminant Analysis 

 We can see that in all cases other than for SLDA, accuracy rates and 

Kappa statistics were the highest when using the first six principal components to 

train the classifier.  SLDA is essentially performing dimension reduction on the 

23 components, which is most likely why it performed better with a larger number 

of components.  The best classifier based on accuracy, SDA with six principal 

components, had an accuracy rate of 60.8% and a Kappa value of 0.448.   

Accuracy rates ranged from approximately 50 to 60% with Kappa statistics all 

Cluster 

Size 
Most Common TAS class Cluster Purity  

13 Dacite 0.6923 

5 Foidite 0.8000 

16 Basalt 0.5000 

11 Basalt / Foidite 0.2727 

3 Rhyolite 1.000 

10 Basalt 0.7000 

10 Basalt 0.8000 

5 Basalt 0.6000 

7 Basalt 0.7143 

2 Basalt 1.000 

11 Basaltic Trachyandesite 0.4545 

7 Basalt 0.4286 

Overall Purity = 0.6 

Adjusted Rand Index = 0.1403 

 

Table 8:  k-means clustering on full spectra (k = 12).  Most common TAS class 

and cluster purity, the proportion of samples in the cluster that are contained in 

the most common TAS class, is displayed for each cluster. 
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less than 0.5 with values as low as 0.25, indicating fairly poor classification 

results.       

 

 

Full Spectra, All 12 TAS Classes (n = 100) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.496 0.252 0.0968 0.139 n prune = 3 

PDA 0.539 0.373 0.0894 0.137 lambda = 1 : 20 

SDA 0.551 0.427 0.261 0.284  

 

6 Principal Components, All 12 TAS Classes (n = 94) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.55 0.273 0.0915 0.171 n prune = 4 : 14 

LDA 0.606 0.452 0.142 0.164  

PDA 0.6 0.452 0.127 0.167 lambda = 1 : 20 

SDA 0.608 0.448 0.166 0.226  

SLDA 0.53 0.259 0.0938 0.142  

 

23 Principal Components, All 12 TAS Classes (n = 96) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.52 0.214 0.0786 0.0912 n prune = 2 

LDA 0.573 0.422 0.127 0.167  

PDA 0.53 0.395 0.16 0.188 lambda = 1 : 20 

SDA 0.526 0.323 0.102 0.156  

SLDA 0.579 0.377 0.119 0.168  

 

Table 9:  Discriminant analysis results from 10-fold cross validation for 

classification into all 12 TAS classes 
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Support Vector Machines 

 Once again, using the first six principal components produces the best 

prediction results for algorithms using SVM.  The best performance by far is seen 

in the use of the linear kernel with six principal components with an accuracy rate 

of approximate 65%.  However, the high number of support vectors, 76, may 

suggest overfitting or could be because of the large number of classes and small 

sample size.       

      Full Spectra, All 12 TAS Classes (n = 100) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.42 100 0.167 1 

Sigmoid 0.42 68 0.167 1 

 

6 Principal Components, All 12 TAS Classes (n = 94) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.585 88 0.125 0.5 

Sigmoid 0.436 77 4 0.03125 

Linear 0.649 76 3.05e-05 1 

 

23 Principal Components, All 12 TAS Classes (n = 96) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.438 96 0.5 2 

Sigmoid 0.438 84 0.25 0.125 

Linear 0.438 93 3.05e-05 1 

 

Table 10:  Support vector machine results from 10-fold cross validation for 

classification into all 12 TAS classes 
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Summary 

 All variations of the three main methods produced mediocre results when 

attempting to classify into 12 TAS classes.  Using six principal components seems 

to produce the best results.  Support vector machines generally perform the best; 

however, we must take into consideration the high number of support vectors that 

may suggest overfitting.          

Removing TAS Classes with Small Sample Size 

 The poor results from our attempt to classify into groups based on the 12 

TAS classes prompted a further investigation into the effects of having classes 

that contain a very small number of samples on classification accuracy.  TAS 

classes that contained less than four samples were removed from each of the data 

sets.  The new distributions of TAS classes after removing small groups are 

displayed in Table 11 and Table 12 for each of the data sets containing different 

numbers of principal components separately.       
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23PC Century Set Small TAS 

Classes Removed (n < 4) 

(n = 88, # TAS classes = 8) 

TAS Class Frequency 

Andesite 4 

Basalt 42 

Basaltic trachyandesite 9 

Basanite tephrite 4 

Dacite 10 

Foidite 7 

Rhyolite 6 

Trachybasalt 8 

 

Table 12:  Frequency of TAS classes for 23 principal components after 

removal of small classes where n < 4.  The TAS classes that were removed 

include basaltic andesite, phonotephrite, picrobasalt, and trachyandesite.   

 

6PC Century Set Small TAS Classes 

Removed (where n < 4) 

 (n = 87, # TAS classes = 8) 

TAS Class Frequency 

Basalt 41 

Basaltic trachyandesite 9 

Basanite tephrite 4 

Dacite 10 

Foidite 6 

Phonotephrite 4 

Rhyolite 6 

Trachybasalt 7 
 

Table 11:  Frequency of TAS classes for six principal components after removal 

of small classes where n < 4. The TAS classes that were removed include 

andesite, basaltic andesite, picrobasalt and trachyandesite. 
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k-means Clustering 

Purity values and ARIs increased slightly when the small TAS classes 

were removed; however, since the ARI is still low at around 0.2, the k-means 

clustering outcome is very different from the true TAS class assignment.   

 

Discriminant Analysis 

For both six principal components and 23 principal components, the best 

results based on both accuracy and Kappa were from linear discriminant analysis.  

Slightly better results are obtained from the use of 23 components, with an 

accuracy rate for classification of approximately 70% and Kappa value of about 

0.56.   

6 Principal Components, Small TAS Classes Removed  

(n = 89, # TAS Classes = 9) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.629 0.448 0.157 0.238 n prune = 5 

LDA 0.656 0.512 0.112 0.124  

PDA 0.64 0.49 0.158 0.204 lambda = 1 : 20 

SDA 0.61 0.412 0.129 0.212  

SLDA 0.621 0.387 0.103 0.182  

Data Used k Adjusted Rand Index Purity 

6 Principal Components 8 0.2173 0.6897 

23 Principal Components 8 0.1942 0.6364 

 

Table 13:  Adjusted Rand Indices for k-means clustering where k = 8 after 

small TAS classes were removed 
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23 Principal Components, Small TAS Classes Removed  

(n = 88, # TAS Classes = 8) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.635 0.452 0.15 0.225 n prune = 6 : 29 

LDA 0.698 0.563 0.141 0.184  

PDA 0.624 0.485 0.202 0.28 lambda = 1 : 20 

SDA 0.581 0.375 0.134 0.223  

SLDA 0.642 0.422 0.0833 0.121  

 

Table 14:  Discriminant analysis results from 10-fold cross validation for 

classification into TAS classes after removal of small classes 

 

Support Vector Machines 

For both six principal components and 23 principal components, the best 

results occurred with the use of the linear kernel.  The accuracy rates for 

classification with the linear kernel using six and 23 components were almost 

identical at around 70%, but the model trained on six components had seven 

fewer support vectors.   

6 Principal Components, Small TAS Classes Removed  

(n = 89, # TAS Classes = 9) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.621 80 0.25 1 

Sigmoid 0.471 67 8 0.03125 

Linear 0.701 63 3.05e-05 1 
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23 Principal Components, Small TAS Classes Removed  

(n = 88, # TAS Classes = 8) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.477 72 3.05e-05 0.3125 

Sigmoid 0.477 71 3.05e-05 0.3125 

Linear 0.697 70 3.05e-05 1 

 

Table 15:  Support vector machine results from 10-fold cross validation for 

classification into TAS classes after removal of small classes 

Summary 

Classification accuracy rates did improve slightly after the removal of 

small TAS classes.  In the k-means clustering and support vector machines, 

training the model on six principal components once again produced better 

results.  Accuracy rates for discriminant analysis were slightly higher with 23 

components.  Support vector machines produce the highest single accuracy rate, 

70.1%, but the number of support vectors is still high at 63.       

Binary Classifiers 

 In order to evaluate the performance of these methods for a simpler 

classification task with the century set data, we can consider binary classification.  

Since our data is comprised of mostly basalts, the data can be divided fairly 

evenly into two groups by considering if a sample belongs to a TAS class in the 

basalt family (basalt, basaltic andesite, basaltic trachyandesite, and trachybasalt) 

or if it falls into one of the other eight TAS classes.   
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 First, the data is replotted in three dimensions with the use of principal 

components and colored based on this binary division.  Figure 18 displays the plot 

and shows that there is good separation of samples from these two groups.   

 

 

 

Figure 18:  Three-dimensional plot of principal components colored by binary 

classification.  Black points are samples from the basalt family of TAS classes 

and the red points are samples from all other TAS classes.  
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k-means Clustering 

Once again, as shown in Table 16, purity values are moderate, but the 

ARIs are extremely low at around 0.1.  The k-means algorithm does not perform 

well when dividing the samples into groups with similar TAS classes, even in this 

simpler classification task. 

 

Discriminant Analysis 

We see much higher accuracy rates for this binary classification as 

compared to the multi-label classification.  Flexible discriminant analysis had the 

lowest errors for six components but all methods perform equally well when using 

23 components.   

6 Principal Components, Binary Classification (Basalt Family/Other) (n = 94) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.849 0.656 0.14 0.312 n prune = 7 

LDA 0.799 0.516 0.123 0.307  

PDA 0.828 0.593 0.106 0.259 lambda = 1 : 20 

SDA 0.807 0.548 0.0984 0.227  

SLDA 0.705 0.244 0.0979 0.281  

 

Data Used k Adjusted Rand Index Purity 

6 Principal Components 2 0.1176 0.6809 

23 Principal Components 2 0.0981 0.6667 

 

Table 16:  Adjusted Rand Index and Purity for k-means clustering when k = 2 

 



62 
 

 
 

23 Principal Components, Binary Classification (Basalt Family/Other) (n = 96) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Parameter 

FDA 0.867 0.691 0.0922 0.204 n prune = 6 

LDA 0.854 0.658 0.0523 0.137  

PDA 0.867 0.691 0.135 0.31 lambda = 1 : 20 

SDA 0.853 0.649 0.0872 0.214  

SLDA 0.886 0.73 0.0562 0.128  

 

Table 17:  Discriminant analysis results from 10-fold cross validation for binary 

classification 

Support Vector Machines 

For SVM, the radial kernel function performed the best for six 

components and 23 components and the sigmoid kernel performed equally as well 

with 23 components.  Accuracy rates are around 85%, which is much higher than 

in mutli-label classification.  The number of support vectors is much lower for 

this binary classification as compared to multi-label classification. 

6 Principal Components, Binary Classification (Basalt Family/Other) (n = 94) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.862 54 0.125 0.5 

Sigmoid 0.830 40 0.002 128 

Linear 0.830 38 3.05e-05 1 

 

23 Principal Components, Binary Classification (Basalt Family/Other) (n = 96) 

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Gamma Cost 

Radial 0.875 50 3.05e-05 1024 

Sigmoid 0.875 44 0.0039 32 

Linear 0.844 37 3.05e-05 1 

Table 18:  Support vector machine results from 10-fold cross validation for binary 

classification 
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Summary 

 Results from this binary classification task are much improved over the 

results from the two attempts at multi-label classification.  SLDA with 23 

components produces the highest accuracy rate, 88.6%, which is very good.  

Support vector machines also perform well overall, especially with the use of the 

radial kernel.  The number of support vectors is much lower in the binary 

classification task as compared to the multi-label classification tasks.  This 

implies that the high number of support vectors seen in the multi-label 

classification is most likely due to a combination of the many boundaries modeled 

between classes and the small sample size.  This reduces the concern for 

overfitting in the SVM algorithms.      
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MODEL TO SIMULATE SPECTRA 

Methods 

The results in the previous section showed an increase in accuracy rates 

for classification when small TAS classes were removed and an even bigger 

increase for a simpler classification task where the sample size in each class was 

larger.  This suggests that the small sample size and unequal balance of samples 

from different TAS classes may be having a significant impact on the 

performance of attempted algorithms.  With the scarcity of LIBS data but the 

abundance of data providing the chemical composition of rock samples, this led to 

the idea for a second investigation.  What if we could accurately simulate the 

LIBS spectrum of a rock sample based on its chemical composition?  If we could 

come up with a valid model that could produce realistic spectra, we could increase 

the sample size of the data we have to work with and even out the distribution of 

different sample types.    This could be extremely useful for evaluating the effects 

of sample size on the performance of the classification algorithms.   

 Available to work with are the LIBS spectra from the binary compounds 

commonly found in rocks.  If we make the assumption that the LIBS spectrum for 

each sample is the combination of LIBS spectra from the binary compounds that 

make up the rock sample weighted by the proportion of that compound contained 
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in the rock, these data are extremely useful.  Following this idea, the formula to 

simulate the LIBS spectrum for one sample is 

                                                               
               

   
                   

                                      

              

   

In other words, we produce a weighted sum of LIBS spectrum for each of the 10 

major elements found in a rock sample, weighted by the percent oxide of each 

element found in the sample.  It must be noted that this model does not account 

for the chemical matrix effect that is associated with variations in the peak 

intensities.   

To evaluate the model, we can calculate a mean squared error for a single 

sample: 

           
 

 
                                        

 

 

   

 

where   represents the     wavelength channel.  Using these sample errors, the 

formula used to calculate the overall error across all samples in the century set is 

            
 

 
            

 

   

 

where   is the number of samples (100).  One MSE is calculated to compare the 

true century set spectra with the simulated spectra based on our model.  Also, we 

can permute the samples to create a new data set of simulated spectra.  A second 
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MSE can be calculated that compares the true spectra with the permuted spectra.  

Since spectral data have many values at zero with occasional peaks, the MSEs 

will be small by nature.  Therefore, this second MSE gives us a baseline value 

that can help us evaluate the relative significance of the first MSE calculated with 

the model. 

Results 

 The MSEs are displayed in Table 19.  The MSE for the model predictions 

is small, as expected, but it is actually larger than the baseline MSE calculated 

with the permuted samples as the predicted spectra.  To further investigate the 

appropriateness of this model, several plots were created comparing the true and 

simulated spectra for individual samples.  An example of this is shown in Figure 

19.  The simulated spectra are quite different than the true spectra for the majority 

of these different plots.  Overall, this shows us that because of the interaction due 

to the chemical matrix effect, this is not an accurate model for simulating spectra 

from chemical compositions.  Interaction terms should be included in the model 

in order to make improvements.  Unfortunately, time did not permit for further 

exploration in the scope of this thesis. 
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Figure 19:  An example of true versus simulated spectrum for one sample 

 

 

Source MSE 

Model 2.17e-07 

Permutation 5.25e-08 

 

Table 19:  Calculated mean squared error for results based on proposed model 

and MSE calculated from a permutation of samples 
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CONCLUSION 

Summary of Findings 

 The methods explored in this thesis were not able to classify the samples 

of the century set into groups based on TAS classes accurately enough for 

practical use.  Yet, we see that by removing a few TAS classes that contained a 

small number of samples, we can improve the classification error rates.  

Additionally, when we perform a binary classification task where the sample size 

of both classes is roughly equal, we see much more reasonable results.  While 

being able to determine if a sample is a basalt or not is useful in some ways, being 

able to distinguish a larger number of rock types (based on multi-label 

classification) is more advantageous.     

Overall, support vector machines produce classifiers with the lowest error 

rates for classification for each of the three categorization tasks based on 10-fold 

cross validation, but the number of support vectors used in the model is always 

high.  While this sometimes suggests overfitting, it may not in this situation 

because of the small sample size.   Discriminant analysis constructs classifiers 

that perform almost as well as support vector machines without the risk of 

overfitting.  On the other hand, the k-means algorithm performs poorly in all 

situations, even when the classification task was simple.  This does show that the 

k-means clustering algorithm is not very effective at separating samples from 
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different TAS classes and seems to be affected by the unequal distribution of 

samples from different classes.  The natural structure of the data based on 

Euclidean distance does not seem to provide good separation of samples based on 

TAS class.     

A comparison of the results based on the number of principal components 

used shows different outcomes based on the classification task and the data used.  

The use of 23 principal components in the training set as compared to six does not 

impact the results for multi-label classification.  However, we see that in binary 

classification, training with 23 components always produced higher accuracy rates 

as compared to the rates from using six components in the training set.   

Discussion 

There are many possible factors playing into the inability to classify the 

samples of the century set into groups based on TAS classes using the methods 

explored in this thesis.  These are mainly normal based methods, so the potential 

violation of the normality assumptions is a likely possibility.  The improved 

performance of the supervised classifiers for simpler tasks, however, may suggest 

otherwise.  This leads to the possibility that the small sample sizes and uneven 

spread of samples in different classes is the root of the problem.  It is also possible 

that the results are better strictly because the binary classification task is much 

simpler as compared to a multi-label classification task.  This of course warrants 
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further investigation.  The best way to explore this further is to obtain more data 

and reevaluate.         

The k-means algorithm did not produce clusterings that were similar to the 

true groupings we created using TAS classes, even in the simple binary task.  As 

was expected based on the MDS plots, this suggests that when using the 

Euclidean distance as a similarity metric, the samples do not form natural clusters 

based on their TAS class.  In other words, the true class indices we selected, TAS 

classes, don’t correspond well with the natural structure of the data.  It is possible 

that the use of a different distance metric could produce better results. It should 

also be considered that creating true groups of similar samples with a method 

other than TAS classes could yield different results.    

It appears that discriminant analysis and support vector machines have the 

potential to accurately classify LIBS spectra given a proper training set containing 

a larger number of samples and an even spread of samples in the different true 

classes.  However, unsupervised methods should not be ruled out completely 

either.   

Future Work 

More data is necessary to evaluate the effects of sample size and sample 

imbalance on the error rates of classification.  Obtaining more real data would of 

course be ideal, but if it is not possible to do so in a timely manner, it may be 

worth exploring models for simulating spectra further.  As was seen with the 
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attempt to create a model to simulate spectra, more complicated models that take 

the elemental interaction due to the chemical matrix effect into account would 

likely be better. A good model that uses partial least squares regression is already 

in place to estimate elemental compositions from LIBS spectra.  Taking this 

model and running it backwards could be a viable option, although it would be 

complicated.  Using simulated data for classification of course adds more possible 

variation in the results.      

 There are many possibilities of other classification and unsupervised 

learning algorithms that could be examined. Once more data is obtained, it is 

certainly worth further exploration into more robust methods that are more 

complicated, but may produce better results.  For example, mixture modeling 

using the expectation maximization (EM) algorithm might be worth trying 

because of its flexibility in choosing component distributions.  While the k-means 

algorithm makes a hard assignment of data points to clusters where each cluster is 

associated with only one cluster, the EM algorithm makes a soft assignment based 

on a probabilistic model (Bishop 2006, 443).  Also, different distance metrics 

could be examined in k-means clustering.  There are also other kernel functions 

for SVM that could be useful, such as the Fourier kernel.         
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Final Remarks 

This thesis shows that it is critical to use rigorous methods for error 

analysis in the classification of LIBS data.  This work has provided evidence 

against the optimistic results of many of the LIBS classification studies that did 

not use statistical best practices.  There is an essential need for more data before 

reevaluating these and other methods for the classification of LIBS data.  

 

 

 

 

 

 

 

 

 

 

 



73 
 

 
 

 

APPENDIX 

Note:  These are the same results displayed in earlier sections, however, here they 

are displayed in a different format that allows for easier comparison of results 

from different methods. 

 

Full Spectra, All 12 TAS Classes (n = 100) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal Parameter 

FDA 0.496 0.252 0.0968 0.139 n prune = 3 

PDA 0.539 0.373 0.0894 0.137 lambda = 1:20 

SDA 0.551 0.427 0.261 0.284  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.42 100 0.167 1 

Sigmoid 0.42 68 0.167 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

12 0.1403 

13 0.1503 
 

Key of abbreviations: 

FDA = Flexible Discriminant Analysis (with tuning parameter n prune) 

LDA = Linear Discriminant Analysis 

PDA = Penalized Discriminant Analysis (with tuning parameter lambda) 

SDA = Shrinkage Discriminant Analysis 

SLDA = Stabilized Linear Discriminant Analysis 
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6 Principal Components, All 12 TAS Classes (n = 94) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal Parameter 

FDA 0.55 0.273 0.0915 0.171 n prune = 4 : 14 

LDA 0.606 0.452 0.142 0.164  

PDA 0.6 0.452 0.127 0.167 lambda = 1 : 20 

SDA 0.608 0.448 0.166 0.226  

SLDA 0.53 0.259 0.0938 0.142  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.585 88 0.125 0.5 

Sigmoid 0.436 77 4 0.03125 

Linear 0.649 76 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

12 0.1607 

13 0.1537 
 

23 Principal Components, All 12 TAS Classes (n = 96) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal Parameter 

FDA 0.52 0.214 0.0786 0.0912 n prune = 2 

LDA 0.573 0.422 0.127 0.167  

PDA 0.53 0.395 0.16 0.188 lambda = 1 : 20 

SDA 0.526 0.323 0.102 0.156  

SLDA 0.579 0.377 0.119 0.168  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.438 96 0.5 2 

Sigmoid 0.438 84 0.25 0.125 

Linear 0.438 93 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

12 0.1558 

13 0.1707 
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6 Principal Components, Small TAS Classes Removed (n = 89, # TAS Classes = 9) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal Parameter 

FDA 0.629 0.448 0.157 0.238 n prune = 5 

LDA 0.656 0.512 0.112 0.124  

PDA 0.64 0.49 0.158 0.204 lambda = 1 : 20 

SDA 0.61 0.412 0.129 0.212  

SLDA 0.621 0.387 0.103 0.182  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.621 80 0.25 1 

Sigmoid 0.471 67 8 0.03125 

Linear 0.701 63 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

8 0.1939 
 

 

23 Principal Components, Small TAS Classes Removed (n = 88, # TAS Classes = 8) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal Parameter 

FDA 0.635 0.452 0.15 0.225 n prune = 6 : 29 

LDA 0.698 0.563 0.141 0.184  

PDA 0.624 0.485 0.202 0.28 lambda = 1 : 20 

SDA 0.581 0.375 0.134 0.223  

SLDA 0.642 0.422 0.0833 0.121  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.477 72 3.05e-05 0.3125 

Sigmoid 0.477 71 3.05e-05 0.3125 

Linear 0.697 70 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

8 0.1942 
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6 Principal Components, Binary Classification (Basalt Family/Other) (n = 94) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kapp
a 

Accuracy SD Kappa SD Optimal Parameter 

FDA 0.849 0.656 0.14 0.312 n prune = 7 

LDA 0.799 0.516 0.123 0.307  

PDA 0.828 0.593 0.106 0.259 lambda = 1 : 20 

SDA 0.807 0.548 0.0984 0.227  

SLDA 0.705 0.244 0.0979 0.281  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.862 54 0.125 0.5 

Sigmoid 0.830 40 0.002 128 

Linear 0.830 38 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

2 0.1176 
 

23 Principal Components, Binary Classification (Basalt Family/Other) (n = 96) 

DISCRIMINANT ANALYSIS 

Method Accuracy Kappa Accuracy SD Kappa SD Optimal 
Parameter 

FDA 0.867 0.691 0.0922 0.204 n prune = 6 

LDA 0.854 0.658 0.0523 0.137  

PDA 0.867 0.691 0.135 0.31 lambda = 1 : 20 

SDA 0.853 0.649 0.0872 0.214  

SLDA 0.886 0.73 0.0562 0.128  

SUPPORT VECTOR MACHINES 

Kernel Accuracy # Support Vectors Optimal 
Gamma 

Optimal 
Cost 

Radial 0.875 50 3.05e-05 1024 

Sigmoid 0.875 44 0.0039 32 

Linear 0.844 37 3.05e-05 1 

K-MEANS CLUSTERING 

k Adjusted Rand Index 

2 0.1942 
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