
A B S T R A C T

Computer Aided Design software allows mechanical engineers and

architects to design complicated systems by specifying geometric con-

straints on small building blocks. One goal of CAD software is to give

users feedback on whether the specified constraints are consistent or

not. To approach this problem, we model a design as a body-and-cad

framework, turn the framework into a primitive cad graph, and then use

a combinatorial property called [a,b]-sparsity to analyze body-and-cad

rigidity. We work with an efficient algorithm called the [a,b]-pebble

game to check [a, b]-sparsity using Knuth′s algorithm for matroid par-

titioning in the pebble game. The [a, b]-pebble game additionally

finds [a,b]-circuits which indicate minimal inconsistencies in the con-

straints. A categorization of the structures of these circuits can help

in giving more intuitive feedback to CAD users.

This thesis studies the structures of circuits from a combinatorial per-

spective. Three categories of circuits were identified previously, but

it remained open if the categorization was complete. By systematic

enumeration of [a,b]-sparse graphs, we find circuits not in the known

categories. We present both statistical results on the enumeration and

categorization of [a, b]-circuits and case studies on selected uncatego-

rized circuits. We also offer theoretical analysis on the relationship be-

tween the structures of circuits and properties of an associated graph

called the Knuth graph.

1

Mount Holyoke College

Senior Thesis

Combinatorial Analysis for CAD

Xilin Yu

Supervised by

Prof. Audrey St. John

June 26, 2016

A C K N O W L E D G E M E N T S

This thesis is not a work only by myself. I have been lucky enough to

have had so much help and support from my advisers, my professors,

friends, and families.

I joined Prof. Audrey St. John, Prof. Jessica Sidman, and Dr. Louis

Theran to work on their project two years ago and an open question

led to this thesis. None of this would have happened without their

previous work and ongoing help.

I want to first thank my thesis adviser Prof. Audrey St. John, for

introducing me to this exciting topic. Her constant guidance, support,

and encouragement are what make this thesis possible.

I also want to thank Prof. Jessica Sidman as a mentor in mathematics.

Her help gives me the mathematical foundation that is so crucial for

understanding the core concepts of this project.

My summer internship with Dr. Louis Theran has been nothing but

enlightening for me. Discussions with him initiated the main research

method for this project. I am very grateful for the opportunity to

work with him, which is supported by the Aalto Science Institute

(AScI) internship.

This research project is also partially supported by NSF IIS-1253146.

3

C O N T E N T S

List of Figures 6

List of Tables 8

1 introduction 9

1.1 Research Question 9

1.2 Related Work 10

1.3 Contributions 10

1.4 Structure of Thesis 11

2 preliminaries 12

2.1 Graph Theory 12

2.2 Matroid Theory 13

3 background and previous work 15

3.1 Body-and-cad Frameworks and Degrees of Freedom 15

3.2 Cad Graph and Primitive Cad Graph 19

3.3 The [a, b]-Pebble Game Algorithm 24

3.4 Knuth Graph 27

4 [a ,b]-circuits 31

4.1 Circuit Identification 31

4.2 Circuit categorization 35

4.3 Circuit Structures and Knuth graphs 37

5 methodology for circuit enumeration and cat-

egorization 40

5.1 Graph and Circuit Enumeration 40

5.2 Circuit Categorization 44

5.3 Knuth Graph Generation 46

4

Contents 5

6 results of circuit enumeration and categoriza-

tion 48

6.1 Statistical Results 48

6.2 Case studies 49

7 future work 53

8 bibliography 55

L I S T O F F I G U R E S

Figure 1 Overview diagram of important concepts in

body-and-cad rigidity theory 16

Figure 2 A body-and-cad framework in 2D 17

Figure 3 Diagrams of degrees of freedom in both 2D

and 3D 18

Figure 4 The cad graph of the framework in Figure 2 19

Figure 5 A two-body-three-bar framework in 2D and its

corresponding cad graph 20

Figure 6 The primitive cad graph of the cad graph in

Figure 4 21

Figure 7 The final [a, b]-pebble game configuration on

the primitive cad graph from Figure 6 26

Figure 8 The Knuth graph of the pebble game configu-

ration in Figure 7 28

Figure 9 A [1, 2]-pebble game configuration with an ex-

tra edge and the Knuth graph 30

Figure 10 A [1, 2]-circuit of Type 1 36

Figure 11 A [1, 2]-circuit of Type 2 36

Figure 12 A [1, 2]-circuit of Type 3 36

Figure 13 A [1, 2]-circuit of both Type 1 and Type 3 37

Figure 14 Overview of how the algorithms that we will

present form an infrastructure to study [a, b]-

circuits 41

6

LIST OF FIGURES 7

Figure 15 Four undirected bi-colored graphs each of whose

edge set forms a circuit not in the known cate-

gories 50

L I S T O F TA B L E S

Table 1 Number of graphs with different parameters

of a, b, and n 42

Table 2 Number of graphs with different parameters a,

b, n, p, and q 43

Table 3 Number of different types of circuits generated

in enumerations under different parameters a,

b, n, p, and q 49

8

1

I N T R O D U C T I O N

Computer Aided Design software such as Solidworks and AutoCAD

are widely used in the fields of engineering and architecture. Users

input various components and geometric constraints to create precise

2D drawings or 3D models. A function of CAD software is that it can

determine if the system given by the user is consistent and, in the case

of a detected inconsistency, provides the user with a set of constraints

to check to remove the inconsistency. However, current software often

lists not only the constraints causing the inconsistency, but also other

constraints whose removal will not actually resolve the inconsistency,

causing potential confusion for users. Therefore, effective detection

and analysis of the set of minimally inconsistent constraints would en-

able more useful feedback. We study these constraints from a purely

combinatorial perspective using matroid theory. The set of minimally

inconsistent constraints corresponds to a circuit, which is an object in

a matroid defined as a minimally dependent set and which will be the

main subject of this thesis.

1.1 research question

To improve user feedback for Computer Aided Design software, we

study the structures of circuits. The main research question we ask

is whether we can categorize the structures of circuits using their

9

1.2 related work 10

combinatorial properties. Previously, three (non-exclusive) types of

circuits were identified by [2]. However, whether they comprise a

complete categorization is undetermined. To answer the question,

we want to check if all circuits necessarily fall under one of the three

categories.

1.2 related work

Related work of this thesis comes from two main communities: the

CAD community [3] [4], and the rigidity theory community [8]. White

and Whiteley consider bar-and-joint systems categorizing the infinites-

imal rigidity of systems using a notion called a stress [9] and later

extend their work to bar-and-body frameworks [10]. In comparison,

we consider a wider range of geometric constraints by studying body-

and-cad frameworks. While Owen and Jackson analyze 2D point-line

frameworks and use Edmond′s algorithm for matroid partitioning as

a black box, our approach works with cad-frameworks in arbitrary

dimensions and improves the running time complexity by adapting

Knuth′s algorithm into the [a, b]-pebble game algorithm [2].

1.3 contributions

This thesis project has three main contributions. First, it proves that

the [a, b]-pebble game correctly detects circuits. Second, it provides

the infrastructure needed for understanding structures of circuits.

One program enumerates all possible circuit-generating bi-colored

graphs given a set of parameters and checks one-by-one if the cir-

cuits generated belong to any of the three known categories. Another

program produces a graph associated with each circuit, called the

Knuth graph, to analyze the combinatorial properties of the struc-

1.4 structure of thesis 11

tures of circuits. Third, with this infrastructure and one particular

set of parameters, we are able to find a few thousand circuits that do

not belong to any of the three existing categories, thus showing that

the previous conjectured categorization is not complete. By studying

some sample circuits and their associated Knuth graphs, we are able

to make observations and come up with a new conjecture about how

to categorize these newly discovered circuits. We also prove results

that relate some structures of circuits to properties of their associated

Knuth graphs.

1.4 structure of thesis

Chapter 2 reproduces definitions of some fundamental concepts of

matroid theory and graph theory from [1] and [8]. Chapter 3 presents

previous work on rigidity and [a, b]-sparsity which set the foundation

for this thesis. Chapter 4 focuses on the theoretical analysis of struc-

tures of [a, b]-circuits that are done before we use the enumeration

and categorization tool to study them. Then in Chapters 5 and 6,

we show experiments to test some conjectures not proven in Chapter

4. Chapter 5 describes in detail the approach to build the programs

to enumerate and categorize circuits and to generate Knuth graphs,

while Chapter 6 gives statistical results on the enumeration of some

sets of parameters and presents a few case studies of selected circuits

that do not fall under known categories. We conclude with Chapter

7, which presents open questions that arose during the project and

future work that we want to do to answer those questions.

2

P R E L I M I N A R I E S

This chapter reproduces definitions of relevant concepts in matroid

theory and graph theory from [1] and introduces notation.

2.1 graph theory

A graph is a widely used data structure to represent pairwise rela-

tions between objects. This section introduces a few common types

of graphs: directed graphs, undirected graphs, multigraphs, and bi-

partite graphs.

Definition 1. A directed graph G is a pair (V, E), where V is a finite set

and E ⊆ V ×V is a binary relation on V. V is the vertex set of G and E is

the edge set of G. For u, v ∈ V, if (u, v) ∈ E, then there is an edge from u

to v.

Definition 2. An undirected graph G is a pair (V, E), where the finite

set V is the vertex set of G and the edge set E consists of unordered pairs of

vertices. For u, v ∈ V, if there is an edge between u and v, then {u, v} ∈ E.

By convention, we use (u, v) instead of {u, v} to represent an edge in

an undirected graph.

12

2.2 matroid theory 13

Definition 3. A multigraph G is a pair (V, E), where V is a finite set of

vertices and E is a multiset of pairs of vertices. E is the edge set of G, and

there can be multiple edges between one pair of nodes.

Definition 4. A bipartite graph is an undirected graph G = (V, E),

where V can be partitioned into two disjoint vertex sets V1 and V2 such

that for u, v ∈ V, (u, v) ∈ E implies that either u ∈ V1 and v ∈ V2 or

u ∈ V2 and v ∈ V1.

In a bipartite graph, there is no edge between vertices from the same

vertex set.

Definition 5. A subgraph of G = (V, E) is a graph G′ = (V ′, E′) such

that V ′ ⊆ V, E′ ⊆ E.

The following definition provides shorthand notation from [2].

Definition 6. If H is a subgraph of G, G/H denotes the graph obtained by

contracting edges in H and identifying the vertices of every contracted edge

wit one vertex.

2.2 matroid theory

Intuitively, a matroid is a mathematical object that generalizes the

idea of linear independence of vectors.

Definition 7. A matroid is an ordered pair M = (S, I), satisfying the

following conditions.

1. S is a finite set.

2. I is a nonempty family of subsets of S such that if B ∈ I and A ⊂ B,

then A ∈ I . Note that the empty set ∅ is necessarily a member of I .

2.2 matroid theory 14

3. If A ∈ I , B ∈ I , and |A| < |B|, then there exists some element

x ∈ B \ A such that A ∪ x ∈ I .

In a matroid M = (S, I), S is the ground set of M and I is the set of

independent subsets of S.

Definition 8. A subset A of the ground set S is dependent if A /∈ I .

Definition 9. A circuit in a matroid M = (S, I) is a minimal dependent

set C such that C /∈ I , but for every x ∈ C, C \ {x} ∈ I .

Definition 10. A basis of a matroid M = (S, I) is a maximal independent

set B such that B ∈ I , but B ∪ {x} /∈ I for every x ∈ S \ B.

3

B A C K G R O U N D A N D P R E V I O U S W O R K

This thesis relies heavily on previous work and the relevant back-

ground is presented in this chapter, including the following concepts:

body-and-cad frameworks that we use to model CAD user input, cad

graphs and primitive cad graphs that further model the combinatorics

of the frameworks, the [a,b]-pebble game algorithm which takes a prim-

itive cad graph as input and decides whether it is rigid or flexible and

independent or dependent, and the Knuth graph, a bipartite graph un-

derlying the implementation of the pebble game. Figure 1 displays

an overview of how the above concepts fit into the project.

3.1 body-and-cad frameworks and degrees of freedom

To tackle the challenge of providing more insightful user feedback for

CAD users, we first model the CAD structures given by users using

body-and-cad frameworks.

Definition 11. A body-and-cad framework consists of rigid bodies with

pairwise cad (coincidence, angular, and distance) constraints between ge-

ometric elements.

Each component in a CAD user input becomes a rigid body in the

framework, and each geometric constraint becomes a cad constraint.

15

3.1 body-and-cad frameworks and degrees of freedom 16

body-and-cad
framework

primitive cad
graph

[a,b]-pebble
game

A B
1

2

BA

1

1

2

Knuth graph
a

b
c

τ

α

[a,b]-sparsity
matroid

Geometry

Modeling

Combinatorics

Algorithm

Figure 1: Overview diagram of important concepts in body-and-cad
rigidity theory

In 2D, the pairwise constraints can be line-line, point-line, and point-

point cad constraints. In 3D, we can additionally have plane-plane,

plane-line, and plane-point cad constraints [7]. See Figure 2 for a

concrete example.

Given a body-and-cad framework, the main questions we consider

are whether the framework is rigid or flexible and whether the con-

straints are independent or dependent. Associated to a body-and-cad

framework is its rigidity matrix which allows us to define the inde-

pendence and dependence of constraints of a framework.

3.1 body-and-cad frameworks and degrees of freedom 17

A B
1

2

Figure 2: A body-and-cad framework in 2D. Square A and triangle B
are two bodies while 1 and 2 are two constraints. 1 is a line-line
coincidence constraint that requires lines on A and B to coincide, and
2 is a point-point distance constraint that fixes the distance between

the two specified points on A and B.

Definition 12. The constraints of a framework are independent if the rows

of the rigidity matrix corresponding to that framework are linearly indepen-

dent. Otherwise, the constraints of a framework are dependent.

Refer to [7] for more details about the development of the rigidity

matrix. For this work, we will not work with this algebraic represen-

tation of the body-and-cad framework. Instead we will consider the

matroid associated to the rigidity matrix, called the rigidity matroid,

which captures the independence information of the body-and-cad

framework.

To provide some intuition, we discuss the degrees of freedom that

count the dimension of the space of motions allowed to a body. There

are two kinds of degrees of freedom for a body: rotational and trans-

lational. We use a and b as general parameters to represent the ro-

tational and translational degrees of freedom of a body, respectively.

The space we work in determines the values of a and b. For example,

in 2D, a = 1 and b = 2, while in 3D, a = 3 and b = 3; refer to Figure

3. However, our approach extends to other values of a and b. For ex-

ample, we can analyze a space where a = 2 and b = 2, even though

this does not correspond to any Euclidean space.

3.1 body-and-cad frameworks and degrees of freedom 18

Figure 3: Diagrams of degrees of freedom in both 2D and 3D. The
left diagram shows that a body in 2D has 2 translational degrees
of freedom and 1 rotational degree of freedom. The right diagram
shows that a body in 3D has 3 translational degrees of freedom and 3
rotational degrees of freedom as it can move in three directions and
rotate around three axes.

Intuitively, each body in a framework adds a + b degrees of freedom

while constraints block degrees of freedom. A framework as a whole

will always have a rotational degrees of freedom and b translational

degrees of freedom in the space. We call these a + b degrees of free-

dom the trivial degrees of freedom. A body-and-cad framework con-

sisting of n bodies and no constraints has n · (a + b) degrees of free-

dom. Besides the a + b trivial degrees of freedom, the remaining

n · (a + b)− (a + b) degrees of freedom of the framework are called

the internal degrees of freedom. Only the internal degrees of freedom

can be blocked by constraints.

Definition 13. If a framework has no internal degrees of freedom, it is rigid;

otherwise, it is flexible. If a framework is rigid but becomes flexible if we

remove any constraint, then it is minimally rigid.

Note that rigidity and independence describe different concepts. Rigid-

ity is a characteristic of the framework while independence is a char-

acteristic of the set of constraints. A framework can be flexible but

have some constraints that are dependent; it can also be rigid and

3.2 cad graph and primitive cad graph 19

BA
line-line coincidence

point-point distance

1

2

Figure 4: The cad graph of the framework in Figure 2. The square A
and the triangle B from the framework both become vertices. The line-
line coincidence constraint 1 and the point-point distance constraint
2 both become labeled edges.

have all constraints independent of each other, which makes it mini-

mally rigid.

3.2 cad graph and primitive cad graph

Body-and-cad frameworks, and their associated rigidity matrices, model

the structures given by the user and maintain their geometry. How-

ever, as we will see, we can use combinatorics alone to study the

independence of generic constraints of a framework, and thus the

consistency of constraints in a given structure. To do that, we asso-

ciate a cad graph to each framework.

Definition 14. A cad graph is an undirected multigraph with labeled edges,

where each vertex represents a body in the corresponding framework, and

each edge represents a cad constraint in the framework.

The cad graph ignores the geometry of the cad constraints, and only

stores the combinatorial properties of the framework. For example,

it ignores the specific angle between two lines on which a line-line

angular constraint is applied or the specific distance of a point-point

distance constraint. Figure 4 gives an example of cad graph.

3.2 cad graph and primitive cad graph 20

A B BA
point-point distance

point-point distance

point-point distance

Figure 5: A two-body-three-bar framework in 2D and its correspond-
ing cad graph. The framework is rigid. The three point-point distance
constraints correspond to three blind constraints, two of which block
the two translational degrees of freedom and one of which block the
one rotational degree of freedom.

Different kinds of cad constraints exert different effects on the sys-

tem. In observing these distinct algebraic behaviors of cad constraints,

Haller et al. decomposed each cad constraint into a combination of

primitive constraints, called angular and blind constraints [7]. An

angular constraint can block a rotational degree of freedom while a

blind constraint can block either a rotational or a translational degree

of freedom. Therefore, we can quantify the abilities that different cad

constraints possess to constrain the system by decomposing them into

primitive cad constraints. Figure 5 gives an example where a blind

constraint can be seen blocking a rotational degree of freedom.

We further associate a primitive cad graph to each cad graph. Each la-

beled edge which represents a cad constraint becomes a combination

of colored edges, which represent primitive constraints.

Definition 15. A primitive cad graph G = (V, E = R t B) is a bi-

colored undirected multigraph, where the edge set E is partitioned into a set

R of red edges and a set B of black edges.

As in a cad graph, each vertex in a primitive cad graph represents a

rigid body. Each red edge in R represents an angular constraint and

3.2 cad graph and primitive cad graph 21

BA

1

1

2

Figure 6: The primitive cad graph of the cad graph in Figure 4. A line-
line coincidence constraint is associated to one angular constraint and
one blind constraint, so 1 corresponds to one red edge and one black
edge. A point-point distance constraint is associated to just one blind
constraint, so 2 corresponds to one black edge.

each black edge in B represents a blind constraint. The number of

red and black edges associated to each labeled cad edge depends on

the specific cad constraint. Refer to Figure 6 as an example.

Recall that a framework with n bodies has n ∗ (a + b) − (a + b) in-

ternal degree of freedom, (n ∗ a − a) of which are angular degrees

of freedom and (n ∗ b− b) are translational degrees of freedom. In-

tuitively the framework is independent if, and only if, there are no

excess primitive constraints, i.e., if the number of red edges does not

exceed (n ∗ a − a) and the number of total edges does not exceed

n ∗ (a + b)− (a + b). In fact, this property needs to be true not only

for the whole framework, but also for any sub-framework. Further-

more, not only is this condition necessary, but also it is related to suffi-

ciency under certain conditions. The following two theorems charac-

terize the independence of constraints of a body-and-cad framework

in terms of [a, b]-sparsity, the definition of which will be given after

the theorem.

Theorem 1. The constraints of a 2D body-and-cad framework are indepen-

dent if and only if its corresponding primitive cad graph is [1, 2]-sparse [2].

3.2 cad graph and primitive cad graph 22

Theorem 2. The constraints of a 3D body-and-cad framework (not contain-

ing point-point coincidence constraint) are independent if and only if its

corresponding primitive cad graph is [3, 3]-sparse [2].

Note that we use a property called [a, b]-sparsity to decide whether

the constraints of a body-and-cad framework are independent in a

space with a rotational degrees of freedom and b translational degrees

of freedom. However, [a, b]-sparsity is not a property specific to a

primitive cad graph. It can be applied, as we will see in the following

definition, in any undirected bi-colored multigraph.

Definition 16. Let a, b ∈ Z+. A undirected bi-colored multigraph G =

(V, E = R t B) is [a,b]-sparse if E can be partitioned into two disjoint

sets A and T such that R ⊆ A, A is (a, a)-sparse, and T is (b, b)-sparse.

Additionally, G is [a,b]-tight if G is [a,b]-sparse but G ∪ {e} is not [a,b]-

sparse for any e ∈ V ×V \ E [2].

In the above definition, we define [a, b]-sparsity in terms of (a, a)-

sparsity and (b, b)-sparsity. Notice that we use a square racket around

the parameters in the first sparsity property and parentheses in the

latter two to differentiate two different sparsity properties. In general,

we define (k, k)-sparsity in the following way.

Definition 17. Let k ∈ Z+. A graph G = (V, E) is (k, k)-sparse if

for every subgraph G
′

of G, m
′ ≤ k ∗ n

′ − k, where m
′
= |E(G′)|, and

n
′
= |V(G

′
)|. G is (k,k)-tight if G is (k,k)-sparse but G ∪ {e} is not

(k,k)-sparse for any e ∈ V ×V \ E.

From now on, we may also refer to a set of edges E as [a, b]-sparse or

(k, k)-sparse. It means that the graph, which consists of the vertex set

spanned by E and the edge set E, is [a, b]-sparse or (k, k)-sparse.

3.2 cad graph and primitive cad graph 23

These sparsity conditions are actually matroidal, allowing us to study

a family of [a, b]-sparsity matroids and (k, k)-sparsity matroids [2].

Definition 18. Let k ∈ Z+. The (k, k)-sparsity matroid for a graph G =

(V, E) is M = (E, I) defined as follows:

• The ground set for M is the edge set E of G.

• For any set F ⊆ E, F ∈ I if and only if (V, F) is (k, k)-sparse.

Recall that a basis for a matroid is a maximal independent subset of

the ground set, so if G = (V, E) is (k, k)-tight, E is a basis for the

(k, k)-matroid. We call E a (k,k)-block.

Definition 19. Let a, b ∈ Z+. The [a, b]-sparsity matroid for a undirected

bi-colored multigraph G = (V, E = R t B) is M = (E, I) defined as

follows:

• The ground set for M is the edge set E of G.

• For any set F ⊆ E, F ∈ I if and only if (V, F) is [a, b]-sparse.

Note that the [a, b]-sparsity matroids are not identical to the corre-

sponding rigidity matroids (discussed in Section 3.1) due to the re-

quirement of omitting point-point coincidence constraints in 3D. An

example can be find in [2] to show how the inclusion of point-point

coincidence constraints in 3D creates the discrepancy between the two

matroids.

Recall that determining the [a, b]-sparsity of a graph depends on find-

ing an appropriate partition that satisfy a few conditions. We define

such a partition as an [a, b]-partition.

3.3 the [a , b]-pebble game algorithm 24

Definition 20. Let a, b ∈ Z+. Let G = (V, E = R t B) be an undirected

bi-colored multigraph. P = (A, T) is an [a,b]-partition of E if E = At T,

R ⊆ A, A is (a, a)-sparse, and T is (b, b)-sparse.

Lemma 1. An undirected bi-colored multigraph G = (V, E = R t B) is

[a,b]-sparse if and only if there exists an [a, b]-partition P of E.

3.3 the [a , b]-pebble game algorithm

Theorem 1 and Theorem 2 can be generalized to characterize all body-

and-cad frameworks in terms of [a , b]-sparsity (with a few excep-

tions). This generalization gives us a counting condition that we can

use to determine if the framework is rigid and if the constraints of a

framework are independent. However, a naive approach would check

every partition and further rely on checking all O(2n) subgraphs.

Therefore, checking the counting condition by brute force takes run-

ning time of O(2n). In order to check this counting condition more

efficiently, we devise a polynomial time combinatorial algorithm for

sparsity called the [a,b]-pebble game algorithm [2].

The [a , b]-pebble game takes in a bi-colored graph G = (V , E =

R t B) and determines [a , b]-sparsity properties by trying to insert

the edges of G one by one into a directed bi-colored multigraph
−→
H = (V ,

−→
F =

−→
A t −→T) with aqua and tan pebbles on vertices.

We call the second graph a pebble game configuration.

We will give the formal definition of a pebble game configuration

later, but to understand it intuitively, we can think of pebbles as repre-

senting degrees of freedom. Each aqua pebble represents a rotational

degree of freedom and each tan pebble represents a translational de-

gree of freedom. Therefore, before inserting edges, each vertex has a

3.3 the [a , b]-pebble game algorithm 25

aqua pebbles and b tan pebbles. When we insert an edge, we use a

pebble to cover the edge; this can be thought of as representing the

primitive constraint blocking a degree of freedom. Before each inser-

tion, we check if we have enough pebbles on the vertices to make sure

that the counting condition will be maintained after insertion.

In essence, the pebble game is a way of trying to find an [a,b]-partition

for E. The colors of the pebbles mark which edges end up in parti-

tions A and T ; the steps of the algorithm make sure that the partitions

A and T are (a , a)-sparse and (b , b)-sparse as we proceed. Therefore,

if all edges can be inserted, there exists an [a , b]-partition of E, certi-

fying that the input graph is [a , b]-sparse. Now we give the formal

definition of a pebble game configuration.

Definition 21. Let a, b ∈ Z+ and let G = (V, E = R t B) be the input to

the [a,b]-pebble game. A pebble game configuration is a directed bi-colored

multigraph
−→
H = (V,

−→
F =

−→
A t −→T), where F is the set of inserted edges

that corresponds to a subset of E,
−→
A is a set of edges

−−−→
(u, v) covered by aqua

pebbles, and
−→
T is a set of edges

−−−→
(u, v) covered by tan pebbles.

For efficiency of notation, we will also use H = (V, F = A t T) to

denote the undirected version of a pebble game configuration
−→
H .

Let us describe how the pebble game run on a graph G informally.

Each vertex in H has a aqua pebbles and b tan pebbles at the be-

ginning. For any pebble game configuration H, the number of aqua

pebbles on each vertex v is a minus the number of edges going out of

v covered by aqua pebbles. The number of tan pebbles on each vertex

v is b minus the number of edges going out of v covered by tan peb-

bles. We can collect pebbles on vertices by flipping the direction of

an existing edge if the original end vertex has an appropriate pebble

to cover the edge. After the edge is flipped, the pebble on the edge

3.3 the [a , b]-pebble game algorithm 26

Figure 7: The [a,b]-pebble game configuration after successfully in-
serting each edge in the primitive cad graph from Figure 6. The
algorithm decides that the input is [a,b]-tight.

is returned to the original start vertex and a pebble from the original

end vertex is used to cover the edge.

The complete pseudo-code for the [a,b]-pebble game algorithm and

the proof of its correctness can be found in [2].

As said, the [a, b]-pebble game efficiently checks if a given undirected

bi-colored graph satisfies the counting condition of [a, b]-sparsity by

maintaining the counting conditions using pebbles and this is for-

mally stated in the following theorem and lemma, which follows

from the correctness of the [a, b]-pebble game.

Theorem 3. Let a, b ∈ Z+. An undirected bi-colored graph G = (V, E =

R t B) is [a, b]-sparse if and only if every edge in G can be inserted into a

pebble game configuration by the [a,b]-pebble game [2].

Lemma 2. In an [a, b]-pebble game on G = (V, E = Rt B), for any pebble

game configuration H = (V, F = At T), the partition (A, T) is always an

[a, b]-partition for F, which is a subset of E.

The [a,b]-pebble game additionally finds the [a,b]-circuits of the asso-

ciated sparsity matroid using searches on a corresponding bipartite

graph called the Knuth graph which we will define and discuss in the

next section.

3.4 knuth graph 27

3.4 knuth graph

During the [a, b]-pebble game, the algorithm uses searches on a bi-

partite graph associated to the current pebble game configuration to

determine if we can collect enough pebbles to insert an edge. We

call this bipartite graph a Knuth graph because it is a special case of

the kind of graphs built for Knuth’s algorithm for matroid partition-

ing [5]. We formally define a Knuth graph as follows.

Definition 22. Let a, b ∈ Z+. Let G = (V, E = R t B) be an undirected

bi-colored multigraph. Let P = (A, T) be an [a, b]-partition of E. Then a

Knuth graph Γ = (X tY, S) of G under the partition P is a bipartite graph

with vertex sets X and Y and edge set S defined as follows :

X = A ∪ {α},

Y = T ∪ {τ},

S = {
−−−→
(x, y) | x ∈ A ∩ B, y ∈ T, and T \ {y} ∪ {x} is (b,b)-sparse}

∪ {
−−−→
(y, x) | y ∈ T, x ∈ A, and A \ {x} ∪ {y} is (a,a)-sparse}

∪ {
−−−→
(x, τ) | x ∈ A ∩ B, and T ∪ {x} is (b,b)-sparse}

∪ {
−−−→
(y, α) | y ∈ T, and A ∪ {y} is (a,a)-sparse}

Note that every edge in G corresponds to a vertex in Γ, and Γ has two

extra vertices: two terminal vertices α and τ [5]. Refer to Figure 8 for

an example.

The meaning of a directed edge in the Knuth graph is as follows: if
−−→
(x, c) ∈ S, where c is α or τ, then a can be added into the partition C

(C being A or T depending on c), without destroying graph sparsity

of G. If
−−−→
(x, y) ∈ S, where x and y are two vertices other than α or τ

in different partitions, then we can take y out of its partition and put

x into y’s original partition without destroying graph sparsity of G.

3.4 knuth graph 28

a

b

c

τ

α

Figure 8: The Knuth graph of the [1, 2]-pebble game configuration in
Figure 7. The two black edges become the vertices a and b and the
red edge becomes the vertex c.

Intuitively, this Knuth graph thus gives us a way to redo partitioning

assignment of G by redirecting edges and changing the color of peb-

bles covering the edges along a path starting from a terminal vertex

α or τ and going backwards to any Knuth vertex (which is an edge

in G), provided that the path is the shortest from the vertex to the

terminal [2].

For our purpose, we will introduce the theorem that describe how an

[a, b]-pebble game determines if an edge can be inserted at a given

stage of the pebble game without proving correctness. The proof can

be found in [2]. Before the theorem can be presented, we need a

definition of an augmented Knuth graph.

Definition 23. Let a, b, G = (V, E = R t B), P = (A t T), and Γ =

(X tY, S) denote the same objects as in the definition of a Knuth graph. Let

e ∈ V × V be an edge not in P. Let c ∈ {1, 2}. An augmented Knuth

graph Γc(e) = (X′ t Y′, S′) is an Knuth graph defined in the following

way: if c = 1,

X′ = X ∪ {e},

Y′ = Y,

if e ∈ R, S′ = S,

if e ∈ B, S′ = S ∪ {
−−→
(e, y) | y ∈ T, and T \ {y} ∪ {e} is (b,b)-sparse}

3.4 knuth graph 29

∪ {
−−→
(e, τ) | T ∪ {e} is (b,b)-sparse}

and if c = 2:

X′ = X,

Y′ = Y ∪ {e},

S′ = S ∪ {
−−→
(e, x) | x ∈ A, and A \ {x} ∪ {e} is (a,a)-sparse}

∪ {
−−→
(e, α) | A ∪ {e} is (a,a)-sparse}.

Figure 9 gives an example of an augmented Knuth graph. For brevity,

we will abuse terminology and simply refer to an augmented Knuth

graph as a Knuth graph.

Let a, b ∈ Z+. Let H = (V, F = At T) be the undirected version of a

pebble game configuration.

Theorem 4. Let e ∈ V×V be an edge not inserted by the [a,b]-pebble game.

Let Γ1(e) and Γ2(e) be the two associated Knuth graphs. The [a, b]-pebble

game can insert e if and only if there is a path from e to a terminal α or τ in

either Γ1(e) or Γ2(e).

This follows from Theorem 10 of [2], where the graph used is the

union of Γ1(e) and Γ2(e), and the observation that any shortest path

in the union is contained in one of the Γi(e).

If there is no path from e to any terminal, then e cannot be inserted

by the [a, b]-pebble game, indicating that G is not [a, b]-sparse. For an

[a, b]-dependent input, the [a, b]-pebble game additionally finds the

circuits in it using searches on the Knuth graph, which we prove in

the next chapter.

3.4 knuth graph 30

a
b

c
d

f
e a

b

c

τ

α

d

e

e

Figure 9: A pebble game configuration with an extra edge e and its
corresponding Knuth graph. Since there is a path from e to α in the
Knuth graph, the edge will be successfully inserted.

4

[A , B] - C I R C U I T S

In this chapter we turn to study the circuits of the [a, b]-sparsity ma-

troid. Recall that a circuit of a matroid is a minimally dependent set,

therefore an [a,b]-circuit is a minimally dependent set of the [a, b]-

sparsity matroid. Similarly, a (k,k)-circuit is a minimally dependent

set of the (k, k)-sparsity matroid.

To fix some notation, let a, b ∈ Z+. Let G = (V, E = R t B) be an

undirected bi-colored graph. Let H = (V, F = A t T) represent the

undirected version of a pebble game configuration at some stage of

the pebble game run on G. From Lemma 2, we know that the par-

tition P = (A, T) is always an [a, b]-partition of F and F ⊆ E. Let

Γ = (X tY, S) be the corresponding Knuth graph of G under the par-

tition P. Let x ∈ X t Y be any vertex of Γ. The reachable area from

x in Γ is the set of all vertices y ∈ X t Y such that x = y or there is a

path from x to y.

4.1 circuit identification

If the [a, b]-pebble game cannot insert every edge of G into H, it deter-

mines that G is not [a,b]-sparse and E is dependent. For every edge e

that cannot be inserted, there is a circuit of e in E. The way the pebble

game finds the circuit for a given failed edge e is to search on the

31

4.1 circuit identification 32

associated augmented Knuth graphs of G under the partition given

by the current pebble game configuration H = (V, F = A t T). In

order to present the proofs of the theorems that summarize the above

information, we first look at Lemmas 3 and 4 and their proofs.

Let e ∈ V × V be the edge that the [a, b]-pebble game fails to insert.

Let H = (V, F = A t T) be the current pebble game configuration.

Lemma 3. Let Γ1(e) = (X1 t Y1, S1), Γ2(e) = (X2 t Y2, S2) be the two

associated Knuth graphs. Let Z denote the union of the two sets of vertices

reachable from e in Γ1(e) and Γ2(e), not including e. Then Z ∪ {e} is not

[a, b]-sparse.

Proof. Assume for contradiction that Z∪ {e} is [a, b]-sparse, where Z1

and Z2 denote the reachable area from e in Γ1(e) and Γ2(e), respec-

tively, and Z = Z1 ∪ Z2. Let AZ = A ∩ Z and TZ = T ∩ Z. Since

(A t T) is an [a, b]-partition, (AZ t TZ) is also an [a, b]-partition. Let

Γ1(e)′ and Γ2(e)′ be the two associated augmented Knuth graphs un-

der the partition (AZ t TZ).

Since Z ∪ {e} is [a, b]-sparse, by Theorems 3 and 4, there is a path

from e to a terminal α or τ in either Γ1(e)′ or Γ2(e)′.

Let Γc(e)′ be the Knuth graph in which there is a path from e to a

terminal α or τ. If e ∈ R, then by definition there is no edge out of e

in Γ1(e)′, so Z1 = ∅, and c = 2. If e ∈ B, c can be 1 or 2.

Without loss of generality, say the terminal is α. Let x be the last

vertex on the path from e to α in Γc(e)′. Then
−−−→
(x, α) indicates that

x /∈ AZ and AZ ∪ {x} is (a, a)-sparse.

Since the pebble game fails to insert e , there is no path from e to any

terminal in Γc(e). Since x ∈ Z, x is reachable from e in Γc(e), so there

is no path from x to a terminal in Γc(e), in particular,
−−−→
(x, α) /∈ S. Since

4.1 circuit identification 33

x ∈ Z but x /∈ AZ, then x /∈ A. Then, by definition of the absence of
−−−→
(x, α), A ∪ {x} is not (a, a)-sparse. However, A is (a, a)-sparse. Then

there must exist an (a, a)-circuit in A ∪ {x} that contains x. We use

D ∪ {x} to denote that circuit. By definition of an (a, a)-circuit, for

every y ∈ D, D ∪ {x} \ {y} is (a, a)-sparse. So there is an edge
−−−→
(x, y),

for all y ∈ D.

Recall that x is reachable from e, then y is reachable from e, for all y ∈

D. Therefore, D ⊆ Z. Since D ∪ {x} ⊆ Z and D ∪ {x} ⊆ A ∪ {x}, we

know D∪ {x} ⊆ AZ ∪ {x}. Since D∪ {x} is an (a, a)-circuit, AZ ∪ {x}

is not (a, a)-sparse. This is a contradiction to our earlier deduction that

AZ ∪ {x} is (a, a)-sparse.

Therefore, the assumption is wrong. So we have proved that Z ∪ {e}

is not [a, b]-sparse.

Lemma 4. Let Γ1(e) = (X1 t Y1, S1), Γ2(e) = (X2 t Y2, S2) be the two

associated Knuth graphs. For any vertex f reachable from e in either Γ1(e)

or Γ2(e), F \ { f } ∪ {e} is [a, b]-sparse.

Proof. Let Z1 and Z2 denote the set of vertices reachable from e in

Γ1(e) and Γ2(e), respectively, not including e. Let Z = Z1 ∪ Z2 ∪ {e}.

We want to show that for f ∈ Z, F \ { f } ∪ {e} is [a, b]-sparse.

If f = e, then F \ { f } ∪ {e} = F. By Theorem 3, since (V, F) is a valid

pebble game configuration, it is [a, b]-sparse.

Now let f ∈ Z and f 6= e. Let Γc(e) denote the Knuth graph f is in.

Let g ∈ F ∪ {e} be a vertex such that
−−−→
(g, f) ∈ Sc and that either g = e

or there is a path from e to g. Since f is reachable from e, there must

exist such a vertex g.

If g = e, then
−−→
(e, f) ∈ Sc. If c = 1, then f ∈ T and T \ { f }∪ {e} is (b, b)-

sparse. If c = 2, then f ∈ A and A \ { f } ∪ {e} is (a, a)-sparse. Now

4.1 circuit identification 34

consider removing f from the original graph. That is, if c = 1, let

A′ = A, T′ = T \ { f }, and F′ = A′ t T′, then T′ ∪ {e} is (b, b)-sparse.

If c = 2, let A′ = A \ { f }, T′ = T, and F′ = A′ t T′, then A′ ∪ {e} is

(a, a)-sparse. Therefore in the associated Knuth graph Γc(e)′ of (V, F′),

there is an edge
−−→
(e, τ) if c = 1, or

−−→
(e, α) if c = 2. Then by Theorem 4,

we can insert e when the pebble game configuration is (V, F′). Thus

by Theorem 3, F′ ∪ {e} = F \ { f } ∪ {e} is [a, b]-sparse.

If g 6= e, then similarly we can show that if we remove f from the

original graph and define A′, T′, F′, and Γc(e)′ the same way, there is

an edge
−−−→
(g, α) or

−−−→
(g, τ) in Γc(e)′. Since removing f does not make any

currently sparse graph non-sparse, all edges that are neither from nor

to f in Γc(e) are still present in Γc(e)′. Therefore, there is a path from

e to g in Γc(e)′. This together with the edge
−−−→
(g, α) or

−−−→
(g, τ) gives rise

to a path from e to a terminal. Now we can apply Theorems 3 and 4,

and we have F′ ∪ {e} = F \ { f } ∪ {e} is [a, b]-sparse.

So we have shown that for any f ∈ Z, i.e., for any f reachable from e

in either Γ1(e) or Γ2(e), F \ { f } ∪ {e} is [a, b]-sparse.

Now, we are ready to present the theorem of how to detect an [a, b]-

circuit of the failed edge e using searches on the Knuth graphs.

Theorem 5. Let Γ1(e) = (X1 t Y1, S1) and Γ2(e) = (X2 t Y2, S2) be

the two associated Knuth graphs. The circuit containing e is defined by the

union of the reachable area from e in Γ1(e) and in Γ2(e).

Proof. Let Z1 and Z2 denote the set of vertices reachable from e in

Γ1(e) and Γ2(e), not including e, respectively. Let Z = Z1 ∪ Z2.

To show that the union of the reachable area, i.e., Z ∪ {e}, defines

the circuit containing e, we want to show two things. First, we want

to show that Z ∪ {e} is not [a, b]-sparse; this follows from Lemma 3.

4.2 circuit categorization 35

Second we want to show that for any f in Z ∪ {e}, Z ∪ {e} \ { f } is

[a, b]-sparse; this follows from Lemma 4.

4.2 circuit categorization

With the algorithm to find the [a,b]-circuits, we try to analyze their

structures from a combonatorial perspective. Previously, three main

categories of [a, b]-circuits were established [2]. Two of the three cate-

gories can also have a sub-variation, which depends on the following

concept of expansion.

Definition 24. Let G and H be undirected bi-colored graphs, and let H be

an [a, b]-tight subgraph. Then G′ is an expansion of G if G = G′/H.

Circuit Categories:

type 1 (k, k)-circuits where k = a + b.

type 2 (a, a)-circuits of red edges.

type 2’ expansion of a type 2 circuit.

type 3 (b, b)-circuits in a spanning (a, a)-block of red edges.

type 3’ expansion of a type 3 circuit.

Examples of each type of circuit are shown in Figures 10, 11, and 12.

Note that these types are not exclusive. Consider the [1, 2]-circuit

in Figure 13. First, the circuit shown in the example is a (k, k)-circuit

where k = a+ b, i.e., it is a (3, 3)-circuit because it has 3× (2− 1)+ 1 =

4 edges. Second, it is also a (b, b)-circuit in a spanning (a, a)-block of

red edges, i.e., it is a (2, 2)-circuit in a spanning (1, 1)-block of red

edges as the only red edge forms the spanning (1, 1)-block of red

edges and the three black edges form the (2, 2)-circuit.

4.2 circuit categorization 36

Figure 10: A [1, 2]-circuit of Type 1, i.e., a (3, 3)-circuit.

Figure 11: A [1, 2]-circuit of Type 2, i.e., a (1, 1)-circuit of red edges.

Figure 12: A [1, 2]-circuit of Type 3, i.e., a (2, 2)-circuit in a red span-
ning (1, 1)-block. The two red edges form a red spanning (1, 1)-block
and the three balck edges covering two vertices form a (2, 2)-circuit.

4.3 circuit structures and knuth graphs 37

A B

Figure 13: A [1, 2]-circuit of both Type 1 and Type 3.

4.3 circuit structures and knuth graphs

Since we can detect an [a, b]-circuit by searching on the Knuth graph

associated to the graph of the circuit under an [a, b]-partition, we sur-

mise that the structures of [a, b]-circuits are related to the properties

of their Knuth graphs. Here we present some claims we derive from

observation and their proofs.

Claim 1. For any e ∈ E, if e is a red edge, then e is a sink in its correspond-

ing Knuth graph Γ = (X tY, S) under any [a, b]-partition P = (A, T).

Proof. Let e be a red edge. For any edge
−−−→
(u, v) ∈ S, u ∈ A∩ B or u ∈ T.

Since e ∈ R ⊆ A, R t B, and A t T, then e /∈ A ∩ B and e /∈ T. So no

edge directed out of e is defined and the claim is trivially true.

Claim 2. For any e ∈ E, if e is a black edge, then e cannot be a sink in

its corresponding Knuth graph Γ = (X t Y, S) under any [a, b]-partition

P = (A, T).

Proof. Let e be a black edge. Without loss of generality, assume that

e ∈ A. If we change the partition of e, i.e., take it from A and put

it into T, the new partition is (A \ {e}) t (T ∪ {e}). T ∪ {e} is either

(b, b)-sparse or not (b, b)-sparse. If T ∪ {e} is (b, b)-sparse, then by the

construction of the Knuth graph, there is an edge from e to a terminal

vertex τ in Γ. Then e is not a sink. If T ∪ {e} is not (b, b)-sparse, there

is a (b, b)-circuit in T ∪ {e} that contains e. Then for every edge f that

4.3 circuit structures and knuth graphs 38

is not e in the circuit, T \ { f } ∪ {e} is (b, b)-sparse. Therefore, there

is an edge from e to every such an f in Γ. We conclude that in any

Knuth graph under any given [a, b]-partition, a black edge must have

an out-edge and therefore cannot be a sink.

Claim 3. For an proper [a,b]-tight subgraph, its corresponding component

in the Knuth graph has no out-edge.

Proof. Let H = (V, F = A t T) be a pebble game configuration and Γ

be its Knuth graph. Let H′ = (V ′, F′ = A′ t T′) be a proper [a,b]-tight

subgraph and let Γ′ be its corresponding component in the Knuth

graph. Suppose Γ′ has an out-edge e→ f where e is an edge in F′ and

f is an edge not in F′. Assume that e ∈ C (C being either the partition

A or T). Let D be the other partition. Therefore f ∈ D. Since
−−→
(e, f),

D \ { f } ∪ {e} is independent ((a, a)-sparse, or (b, b)-sparse depending

on D). Since f is not in F′, (D \ { f } ∪ {e}) ∩ F′ = (D ∪ {e}) ∩ F′ =

{e} ∪ (D ∩ F′) = {e} ∪ D′, where D′ is either A′ or T′. So {e} ∪ D′

is a subset of D \ { f } ∪ {e} and therefore it is independent. But we

know H′ is [a,b]-tight, so D′ is (a, a)-tight (if D′ = A′) or (b, b)-tight

(if D′ is T′). Since e /∈ D′, then {e} ∪ D′ must be dependent. Thus

there is a contradiction, which means the assumption that Γ′ has such

an out-edge is wrong. Therefore we proved that in any Knuth graph

there is no edge out of the corresponding component of an [a,b]-tight

subgraph.

The converse of the above claim is obviously not true. We know all

red edges correspond to sinks in a Knuth graph. Therefore a compo-

nent in a Knuth graph consisting of only nodes which correspond to

red edges necessarily has not out-edges, but it does not correspond to

an [a, b]-tight subgraph. However, we might think that if we exclude

this case, the converse of the above claim is true.

4.3 circuit structures and knuth graphs 39

Question 1. If a component in the Knuth graph has no out-edge and does

not correspond to a set of edges that are all red, does it correspond to an

proper [a,b]-tight subgraph in the pebble graph?

It turns out that the answer is no because we are able to find coun-

terexamples through the circuit enumeration. More will be presented

in Section 6.2.

Claim 4. A circuit is of type 2 (a red (a,a)-circuit) if and only if its Knuth

graph has only sinks.

Proof. We prove the forward direction first. Let C be a circuit of type

2. Then C only has red edges. Since each Knuth node corresponding

to a red edge is a sink by Claim 1, the Knuth graph of C has only

sinks.

We then show the backward direction. Let C be a circuit whose Knuth

graph has only sinks. Since a Knuth node corresponding to a black

edge cannot be a sink, then C does not have black edges. Then C

consists of only red edges, thus C is of type 2.

5

M E T H O D O L O G Y F O R C I R C U I T E N U M E R AT I O N

A N D C AT E G O R I Z AT I O N

The main goal of this thesis is to study the structures of the circuits for

[a,b]-sparsity matroids. To investigate circuits, given a set of parame-

ters we enumerate all possible undirected bi-colored graphs that can

generate non-trivial circuits and try to categorize them into the three

known categories or identify the circuits as not categorized. Since a

Knuth graph is the underlying graph that we search on in the [a, b]-

pebble game to identify the circuits, we want to explore potential

connections between the structures of circuits and properties of their

corresponding Knuth graphs. Thus, we explicitly generate the asso-

ciated Knuth graphs for the uncategorized circuits to make observa-

tions on the relationship between the two.

In this section we present the methods and algorithms used to enu-

merate and categorize circuits and to generate the Knuth graphs. Re-

fer to Figure 14 to see how these algorithms together give an infras-

tructure to study [a, b]-circuits.

5.1 graph and circuit enumeration

Given the parameters a, b, and the number of nodes in a graph, which

is denoted as n, we devise a systematic way of enumerating all possi-

40

5.1 graph and circuit enumeration 41

circuit
enumeration

list of circuits

circuit
categorization

Knuth graph
generation

uncategorized
circuits

circuits of
known types

Knuth graphs

analysis

Figure 14: Overview of how the algorithms that we will present form
an infrastructure to study [a, b]-circuits

ble undirected bi-colored graphs without trivial dependency.

To avoid some trivial dependencies, we allow at most a red edges and

a+ b black edges between any pair of nodes because any extra edge is

guaranteed to cause a trivial (k,k)-circuit between that pair of nodes.

We also only allow (a + b)(n − 1) total edges in the graph because

any extra edge is guaranteed to cause a trivial (k,k)-circuit. These

two types of dependencies are not interesting for our study, thus we

do not allow them during the enumeration in order to reduce the

number of graphs to be enumerated.

Now, we do some algebra to show how many graphs we need to enu-

merate with our current setup and why it quickly becomes compu-

tationally infeasible to enumerate them all. With n nodes, we have

(n
2) = n(n − 1)/2 possible pairs of nodes and between each pair

of nodes we can have at most a red edges and a + b black edges.

5.1 graph and circuit enumeration 42

Thus in total we have (2a + b)n(n − 1)/2 edges as candidates to

choose from. Because we only allow (a + b)(n − 1) total edges in

the graph, the number of graphs we will generate can be calculated

as ((2a+b)n(n−1)/2
(a+b)(n−1)). Refer to Table 1 to see the of graphs that we will

need to enumerate if no other restrictions are imposed during the

enumeration to reduce the number of graphs.

a b n Number of Graphs

1 1 4 1.85× 104

1 1 5 5.85× 106

1 2 4 1.31× 106

1 2 5 5.59× 109

2 2 4 1.25× 109

2 2 5 1.50× 1014

2 3 4 9.87× 1010

2 3 5 1.62× 1017

3 3 4 9.69× 1013

3 3 5 4.40× 1021

Table 1: Number of graphs with different parameters of a, b, and n

As we can see, the number of graphs, i.e., ((2a+b)n(n−1)/2
(a+b)(n−1)), has a facto-

rial increase with respect to the parameters, so that for any interesting

combination of parameters it is impossible to enumerate all graphs

within reasonable time. Since all graphs we generate are relatively

small, we assume that the time to generate one graph is constant.

Therefore, the running time increases roughly linearly with respect

to the number of graphs. The time used to enumerate 1.85× 104

graphs (where a = 1, b = 1, n = 4) is around 6 minutes. Then, enu-

merating 1.25× 109 graphs (where a = 2, b = 2, n = 4) would take

approximately 280 days if we assume linear running time.

Considering the time limitation of this project, we further scale down

the number of graphs to enumerate by introducing two more param-

5.1 graph and circuit enumeration 43

eters p and q. Instead of allowing at most a red edges and a + b black

edges between each pair of nodes, we allow at most p red edges and q

black edges. Obviously, p ≤ a and q ≤ a + b. Thus we have a total of

(p + q)n(n− 1)/2 candidates of edges instead of (2a + b)n(n− 1)/2.

Additionally, the number of candidates we allow has to be no less

than the number of edges we need to form a circuit under given a, b,

and n. Therefore, (p + q)n(n− 1)/2 ≥ (a + b)(n− 1), which simpli-

fies to (p + q) ≥ 2(a + b)/n.

Depending on the values of p and q, we may be unable to generate

some non-trivial circuits. In this way, it is not guaranteed that we

will find uncategorized circuits, but it greatly reduces the number

of graphs to enumerate. Table 2 shows the number of graphs to be

enumerated with given a, b, n and possible p and q. If we compare

this table to Table 1, we will see that the magnitude of the number of

graphs to enumerate is greatly reduced.

a b n p q Number of Graphs

1 1 5 1 1 1.26× 105

1 2 4 1 2 4.86× 104

1 2 5 1 2 8.65× 107

2 2 4 1 3 2.70× 106

2 2 4 2 1 1.86× 104

2 2 4 2 2 2.70× 106

2 2 5 1 2 1.45× 108

2 3 4 1 3 1.31× 106

2 3 4 2 2 1.31× 106

2 3 4 2 3 1.55× 108

Table 2: Number of graphs with different parameters a, b, n, p, and q

Our whole approach of enumerating the circuits given a set of param-

eters as described above i captured concisely in algorithm 1.

5.2 circuit categorization 44

Algorithm 1 Circuit Enumeration Algorithm
Input: a, b, n, p, and q.
Output: A list of [a, b]-circuits on n vertices.

1. Initialize V = {v1, v2, ..., vn}, L = ∅.

2. For every pair (vi, vj), create p red undirected edges and q black
undirected edges between (vi, vj). Uniquely index each edge
with an integer starting from 0.

3. In lexicographic order, generate all combinations of (a + b)(n−
1) integers from the set of integers including 0 to ((p + q)n(n−
1)/2)− 1 using the Lexicographic Generation Algorithm from
[6].

4. For each combination, let E be the set of edges whose index
correspond to the integers in the combination. Run the [a, b]-
pebble game algorithm on the input G = (V, E) to retrieve a list
of failed edges. For each failed edge, use the pebble game to
identify the circuit C containing that edge and add C to L.

5. Output L.

5.2 circuit categorization

Now with all the circuits generated by the circuit generation algo-

rithm, we try to see if each circuit can be categorized into any one of

the three types we know. Algorithm 2 demonstrates how we use the

[a, b]-pebble game with special parameters to help identify the circuit

categories. Note that in this algorithm, we contract all the [a, b]-tight

subgraphs before checking if the circuit belongs to Type 2 or Type 3 or

none of the two. Therefore, Type 2’ and Type 3’ circuits are counted

as Type 2 and Type 3 respectively. Checking circuit types in the order

of Type 1, 2, and 3, this algorithm also only assigns one type to any

circuit, even if the circuit may belong to more than one types.

If some circuits are identified as not belonging to any of the three

known categories, the graph of the circuit will be saved into an XML

5.2 circuit categorization 45

Algorithm 2 Circuit Categorization Algorithm
Input: an undirected bi-colored graph G = (V, E = R t B), where E
is an [a, b]-circuit.
Output: ”(k, k)-circuit”, ”(a, a)-circuit of red edges”, ”(b, b)-circuit in a
red spanning (a, a)-block” or ”uncategorized”.

1. Check if E is a (k, k)-circuit. If |E| = (a + b)(|V| − 1) + 1, output
”(k, k)-circuit”; otherwise, continue.

2. Contract [a, b]-tight subgraphs. For every subset V ′ of V, let E′

be the set of edges spanned by V ′. If |E′| = (a + b)(|V ′| − 1),
contract the subgraph G′ = (V ′, E′) into one vertex by reassign-
ing any edge coming out of or into G′ to one vertex in V ′ and
then deleting all other vertices and edges in G′ from G. Repeat
until there is no such subset.

3. Check if E is an (a, a)-circuit of red edges. If every edge in E is
red and |E| = a(|V| − 1) + 1, output ”(a, a)-circuit of red edges”;
otherwise, continue.

4. Check if E has a red spanning (a, a)-block. Let GR = (V, R) be
the graph with only red edges and run the [a, 0]-pebble game on
GR. If GR is not [a, 0]-tight, output ”uncategorized”; otherwise
continue.

5. Check if E is a (b, b)-circuit in a red spanning (a, a)-block. Let
GB = (V, B) be the graph with only black edges and run the
[0, b]-pebble game on GB. If GB is not [0, b]-sparse and has ex-
actly one failed edge, output ”(b, b)-circuit in a red spanning
(a, a)-block”; otherwise, output ”uncategorized”.

5.3 knuth graph generation 46

file that can be easily read into the [a, b]-pebble game and the Knuth

graph generation program for future analysis.

5.3 knuth graph generation

For each unclassified circuit, we generate its Knuth graph with e rep-

resenting the failed edge that causes us to detect the [a, b]-circuit.

In Algorithm 3, we give a general algorithm for generating both

the Knuth graph for any undirected bi-colored graph with an [a, b]-

partition of the edges and the special case where we have an failed

edge e that doesn’t fit into the [a, b]-partition.

5.3 knuth graph generation 47

Algorithm 3 Knuth Graph Generation Algorithm
Input an undirected bi-colored graph G = (V, E = R t B) and an
[a, b]-partition (A, T) of E. Optionally, a failed edge e with an index
c ∈ {1, 2}.
Output a Knuth graph Γ = (X t Y, S), or Γc(e) = (X t Y, S) if e is
specified in input.

1. Initialize the vertex and edge sets. X = A ∪ {α}. Y = T ∪ {τ}.
S = ∅

2. Let GT be the graph consisting of all the edges in T and the
vertices spanned by T. Similarly, let GA be the graph consisting
of all the edge in A and the vertices spanned by A.

3. For each e ∈ B,

• If e ∈ X, try to obtain a pebble game configuration where
there are (b + 1) tan pebbles on the endpoints of e in the
[0, b]-pebble game on GT. If this succeeds, add an edge
−−→
(e, τ) to S.

• If e ∈ Y, try to obtain a pebble game configuration where
there are (a + 1) aqua pebbles on the endpoints of e in the
[a, 0]-pebble game on GA. If this succeeds, add an edge
−−→
(e, α) to S.

• In either of the above case, if it fails to obtain the desired
pebble game configuration, let D denotes the set of edges

visited in the pebble game. Add an edge
−−→
(e, x) to S for all

x ∈ D.

4. If there is an additional edge e,

• If c = 1, let X = X ∪ {e} and follow the procedure in step
3.

• If c = 2, let Y = Y ∪ {e} and follow the procedure in step
3.

5. Output the Knuth graph (X tY, S).

6

R E S U LT S O F C I R C U I T E N U M E R AT I O N A N D

C AT E G O R I Z AT I O N

With the circuit enumeration and circuit categorization algorithms,

we are able to enumerate and categorize circuits ranging from [1, 1]-

circuits on three nodes to [3, 3]-circuits on five nodes. Not all enu-

merations yield interesting categorization results. In this chapter, we

present part of the statistical results and case studies of some circuits

that do not fit into our established categories.

6.1 statistical results

Table 3 presents part of the statistical results of our circuit enumera-

tion and categorization. Note in this table, type 2 and type 3 circuits

includes type 2’ and type 3’ respectively.

We notice that for every set of parameters, there are many more type

1 and type 2 circuit than type 3 circuit (if there is any). Among all

the trials, we are only able to find uncategorized circuits under one

particular set of parameters, i.e., when a = 2, b = 2, n = 4, p = 2, and

q = 2.

48

6.2 case studies 49

a b n p q Type 1 Type 2 Type 3 Unknown

1 1 4 1 2 5064 3371 32 0

1 2 4 1 2 3373 23274 177 0

2 2 3 2 3 355 731 18 0

2 2 4 1 2 334 222 0 0

2 2 4 2 2 110606 1527310 34545 2491

2 3 3 2 4 22764 27642 768 0

2 3 4 1 3 25278 10182 0 0

Table 3: Number of different types of circuits generated in enumera-
tions under different parameters a, b, n, p, and q

6.2 case studies

Since the only setup in which we are able to find circuits that do not

belong to the known categories is where a = 2, b = 2, n = 4, p = 2,

q = 2, in all the following case studies, circuits are with respect to

the [2, 2]-sparsity matroid. We will first present four different [2, 2]-

circuits, then show why they do not belong to the known three cate-

gories. Since similar arguments can be made for each of the circuit,

we will argue in general after all cases are presented to avoid repeti-

tion.

Consider the following four graphs G = (V, E = R t B) in Figure

15. In each example, the set of all edges E is the circuit we find not

belonging to the three previous categorizations.

In each of the cases, we know E is an [a, b]-circuit because it is de-

tected by the [a, b]-pebble game and the correctness of the [a, b]-pebble

game to detect circuits is proven. Now we show that E is not in any

of the three established categories.

First, E is not a type 1 circuit, i.e., a (k, k)-circuit where k = a + b = 4.

It is easy to check that for every subgraph G = (V, E) of G, |E| <=

k ∗ |V| − k, where k = (a + b) = 4. Therefore G is (4, 4)-sparse, so E is

6.2 case studies 50

Figure 15: Four undirected bi-colored graphs each of whose edge set
forms a circuit not in the known categories. Each graph has five red
edges and six black edges.

6.2 case studies 51

not a (4, 4)-circuit.

E is also not a type 2 circuit, i.e., an (a, a)-circuit of red edges, where

a = 2. The reason is that E clearly contains black edges. We continue

to demonstrate why E is not a type 3 circuit, i.e., a (b, b)-circuit in a

spanning (a, a)-block of red edges, where a = 2 and b = 2. This can be

shown by simply counting the number of red edges. Since |V| = 4, a

spanning red (2, 2)-block would require 4 ∗ 2− 2 = 6 red edges. Since

we only have five red edges, E cannot be a type 3 circuit.

Through observation, we find that the above four circuits share some

common properties of edge counts. They all contain 6 black edges

that span 3 of the vertices, which is one edge more than a (b, b)-circuit

where b = 2. They also all contain 5 red edges that span the whole

vertex set, which is one edge less than a (a, a)-block where a = 2. We

intuitively categorize them as a (b, b)-circuit plus one edge in a red

spanning (a, a)-block minus one edge.

Formally, for a undirected bi-colored graph G = (V, E), if E consists

of only black edges and |E| = b ∗ (|V| − 1) + 2 such that there exists

an edge e ∈ E such that E \ {e} is a (b, b)-circuit, then we day E is a

(b, b)-circuit plus one edge.

For a undirected bi-colored graph G = (V, E), if E consists of only

red edges and |E| = a ∗ (|V| − 1)− 1 such that there exists an edge

e ∈ V×V \ E such that E∪ {e} is a red spanning (a, a)-block, then we

say E is a red spanning (a, a)-block minus one edge.

Now we state the natural resulting conjecture.

Conjecture 1. A (b, b)-circuit plus one edge in a red spanning (a, a)-block

minus one edge is an [a, b]-circuit.

The intuitive idea behind a (b, b)-circuit plus one in a red spanning

(a, a)-block minus one is that we have too many black edges, i.e., blind

6.2 case studies 52

constraints, that one must be used to block a rotational degree of

freedom. Therefore, we almost have a spanning (a, a)-block of red

edges. Even though one edge in the block is black, together with all

red edges, i.e., angular constraints, the system is angular rigid.

Following the intuitive idea of too many black edges, we ask whether

an [a, b]-circuit can be a (b, b)-circuit plus two in a red spanning (a, a)-

block minus two, or in general, a (b, b)-circuit plus k in a red spanning

(a, a)-block minus k. We leave this as an open question for now.

7

F U T U R E W O R K

This thesis project develops an infrastructure to enumerate and cat-

egorize [a, b]-circuits and to generate their associated Knuth graphs.

With this infrastructure, we can study the structures of circuits in

hope to provide more helpful feedback to the CAD software users.

We successfully generated circuits not belonging to any of the three

known categories. However, due to the limited time, we are unable

to answer all the questions that arise during the project. There are

several things we wold like to do next.

First, even though we came up with a formal description for the cir-

cuits in our case studies, we have not been able to prove the conjecture

that edge sets constructed according to the description are necessarily

[a, b]-circuits. We would like to study more examples of circuits and

their associated Knuth graphs snd hope to find relations between the

two that help to prove the conjecture.

Second, it remains an open question whether the description can be

generalized into a (b, b)-circuit plus c edges in a red spanning (a, a)-

block minus c edges where c ∈ Z+. If we can prove that edge sets

constructed according to the generalized description are indeed [a, b]-

circuits, it can define a new type of [a, b]-circuits. Then our original

type 3 circuits will be a special case of this type where c = 0. More

enumerations with larger parameters and less repetition of graphs

53

future work 54

may also generate more examples to help answer the question.

Third, with larger parameters of a, b, or n, the number of graphs to

enumerate increases exponentially, thus making the enumeration too

long for this project. Other sets of parameters may produce more

circuits that do not fit into the three established categories. However,

to run the enumeration under larger parameters, we have to find a

way to reduce the number of graphs we generate. Currently, our cir-

cuit enumeration algorithm does not take graph isomorphism into

account. For each graph, our algorithm may generate hundreds or

thousands of isomorphic ones throughout the enumeration process,

which means that if we have some way to detect obvious isomorphic

graphs, we can reduce the number of graphs to enumerate by a mag-

nitude of two or three.

8

B I B L I O G R A P H Y

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to algorithms. Cambridge, Mass. : MIT

Press, c2009., 2009.

[2] James Farre, Helena Kleinschmidt, Audrey Lee-St.John, Jessica

Sidman, Stephanie Stark, Louis Theran, and Xilin Yu. Algo-

rithms for detecting dependencies and rigid subsystems for cad.

Submitted to Computer Aided Geometric Design, 2015.

[3] Sebti Foufou and Dominique Michelucci. Interrogating wit-

nesses for geometric constraint solving. Information and Compu-

tation, 216:24 – 38, 2012. Special Issue: 8th Conference on Real

Numbers and Computers.

[4] Jack Graver, Brigitte Servatius, and Herman Servatius. Combina-

torial Rigidity, volume 2 of Graduate Studies in Mathematics. Amer-

ican Mathematical Society, 1993.

[5] Donald Knuth. Matroid partitioning. Technical report, Standford

University, March 1973.

[6] Donald Ervin Knuth. The art of computer programming, volume 4.

Addison-Wesley, third edition, 2005.

55

bibliography 56

[7] Audrey Lee-St.John and Jessica Sidman. Combinatorics and the

rigidity of cad systems. Computer-Aided Design, 45(2):473–482,

2013.

[8] James G. Oxley. Matroid Theory. Oxford University Press, 1992.

[9] Neil White and Walter Whiteley. The algebraic geometry of

stresses in frameworks. SIAM Journal on Algebraic Discrete Meth-

ods, 4(4):481–511, 1983.

[10] Neil White and Walter Whiteley. The algebraic geometry of mo-

tions of bar-and-body frameworks. SIAM Journal of Algebraic Dis-

crete Methods, 8:1–32, 1987.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Figures
	List of Tables

	List of Tables
	Introduction
	Research Question
	Related Work
	Contributions
	Structure of Thesis

	Preliminaries
	Graph Theory
	Matroid Theory

	Background and Previous Work
	Body-and-cad Frameworks and Degrees of Freedom
	Cad Graph and Primitive Cad Graph
	The [a,b]-Pebble Game Algorithm
	Knuth Graph

	[a,b]-circuits
	Circuit Identification
	Circuit categorization
	Circuit Structures and Knuth graphs

	Methodology for Circuit Enumeration and Categorization
	Graph and Circuit Enumeration
	Circuit Categorization
	Knuth Graph Generation

	Results of Circuit Enumeration and Categorization
	Statistical Results
	Case studies

	Future Work
	Bibliography

