
Motion Simulation of Geometric
Constraint Structures

Felicia Cordeiro

This thesis was prepared under the guidance of Professor
Audrey St. John.

Presented to the faculty of Mount Holyoke College in partial
fulfillment of the requirements for the degree of Bachelor of

Arts with Honors

Department of Computer Science

South Hadley, Massachusetts
May 2012



I give permission for public access to my thesis and for any copying to

be done at discretion of the archives librarian and/or the College librarian.

May 9, 2012 .................................

Felicia Cordeiro



Acknowledgements

I would like to thank my thesis advisor, Audrey St.John, for her hard

work, guidance, and for her high expectations and advice about how to get

there.

I would also like to thank all my Computer Science and Math Professors

for their support.

I would like to thank my good friend Phoebe for introducing me to

rock climbing and for knowing just when I needed a friend to pull me from

my studies to the gym, and my pals Lucia and Liz Mac for all the great

laughs! And I can’t forget Rittika and Ilene for their continuous support,

confidence and friendship; you are like sisters to me.

Finally, I want to thank my student colleagues, the track and field team,

my coaches, and all my other good friends, for all their help and confidence

in me.



Abstract

Motion simulation is a classical problem in areas of research such as

CAD (Computer Aided Design), robotics, and protein folding and flexibil-

ity. Efficient motion simulation techniques could facilitate advancements in

many such domains. Improvements in CAD motion simulation would offer

mechanical engineers more quantitative feedback about the components of

their mechanisms resulting in faster development. A model of protein mo-

tion and flexibility could help predict how molecules will interact, which

may be able to considerably reduce trial and error for researchers attempt-

ing to design drugs that could ameliorate or cure various diseases.

While sophisticated motion simulation techniques exist, most have

computational limitations. FEA (Finite Element analysis) allows engineers

to study structural performance of their mechanisms. However, the grow-

ing complexity in models requires newer techniques for motion simulation.

Molecular dynamics is widely recognized as the most accurate method for

simulating the motion of proteins; however, similarly, it is computationally

very expensive and, in some cases, requires prohibitive computing power

and resources.



Rather than relying on current, computationally expensive tech-

niques, we worked to help distill the intricacies of structural motion by

using geometric constraints to model structural interactions. This level of

abstraction has facilitated development of more efficient motion simulation

techniques, through incorporating methodologies from other domains, such

as the video game industry. In particular, we focused on generalizing the

approach of Ragdoll physics.

In this thesis, we will describe the software tool we developed to

simulate the motion of geometric constraint structures and new strategies

for doing so. We will also explain and analyze the experimental results

from applying our different techniques and comparing them to some cur-

rent methods, specifically those of Ragdoll physics. For certain strategies

and classes of structures, we found that our techniques outperform exist-

ing ones. These results indicate that our work may lead to algorithms that

improve simulation for molecular motion.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Video Games . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Molecular Simulations . . . . . . . . . . . . . . . . 9

1.3.3 Simulation in CAD Software . . . . . . . . . . . . . 13

1.4 SolidWorks Simulation . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Robotics . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Preliminaries 20

2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Geometric Constraint Structure . . . . . . . . . . . 22

2.2 Search Algorithms . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Ragdoll Physics . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Verlet Integration . . . . . . . . . . . . . . . . . . . 24

2.3.2 Constraint Satisfaction . . . . . . . . . . . . . . . . 25

2.3.3 Implementation Considerations . . . . . . . . . . . 26

3 Methodologies 27

3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Structure Classification . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.2 1-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 2-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.4 n-Cycle . . . . . . . . . . . . . . . . . . . . . . . . 34

i



3.3 Structure Enumeration . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Tree Graph Generation . . . . . . . . . . . . . . . . 34

3.3.2 1-Cycle Graph Generation . . . . . . . . . . . . . . 35

3.3.3 2-Cycle Graph Generation . . . . . . . . . . . . . . 35

4 Software Toolkit 37

4.1 MotionSim . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Software Components . . . . . . . . . . . . . . . . . 38

4.2 Input, Output and Features . . . . . . . . . . . . . . . . . 42

4.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Techniques, Results and Analysis 48

5.1 Techniques for Tree Structures . . . . . . . . . . . . . . . . 49

5.1.1 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Techniques for 1-cycles and 2-cycles . . . . . . . . . . . . . 52

5.2.1 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.2 Reverse . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Techniques unique to 1-cycles . . . . . . . . . . . . . . . . 61

5.3.1 Adapt . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.2 BFS Random . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions 65

A Physics Behind Verlet Integration 67

B BFS and DFS Pseudo-Code 70

C Constraint Satisfaction Results 71

Bibliography 87

ii



List of Figures

1.1 An example of a CAD part being created in SolidWorks . . 2

1.2 HIV-1 protein structure . . . . . . . . . . . . . . . . . . . 3

1.3 Ragdoll Physics Motion Simulation Approach. . . . . . . . 8

1.4 Deformable bodies . . . . . . . . . . . . . . . . . . . . . . 8

1.5 The motion of an ethane molecule determined by FRODA. 10

1.6 The break-resolve-iterate approach of FRODA. . . . . . . . 11

1.7 Decomposition of IMD components . . . . . . . . . . . . . 12

1.8 Finite Element Analysis done on a connecting rod. . . . . 14

1.9 Motions of an elliptical trammel . . . . . . . . . . . . . . . 15

1.10 A 7R robot with arrows showing the degrees of freedom. . 16

1.11 Inverse Kinematics of an overconstrained 6R robot . . . . 18

2.1 A cycle graph C5, left vs. a cycle in a graph (red) right. . . 22

2.2 BFS and DFS spanning trees . . . . . . . . . . . . . . . . 23

2.3 Fixing a broken constraint with .5/.5 weighting. . . . . . . 25

2.4 1D pseudo-code for satisfying the constraint between x1 and
x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A PUMA robotic arm . . . . . . . . . . . . . . . . . . . . 28

3.2 An octahedral Stewart-Gough platform . . . . . . . . . . . 28

3.3 An overview of the generalized Ragdoll physics motion sim-
ulation approach. . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 An overview of our approach. . . . . . . . . . . . . . . . . 30

3.5 An example of a tree graph, T. . . . . . . . . . . . . . . . 31

3.6 An example of a 1-cycle graph, S, created from the tree
graph, T. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 An example of a 2-cycle graph, D, created from the 1-cycle
graph, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 The basic architecture of the software tool. . . . . . . . . . 38

iii



4.2 Read in the XML graph file and display it on the screen. . 39

4.3 Apply a force to a joint in the structure. . . . . . . . . . . 39

4.4 Apply Verlet Integration to the affected joint. . . . . . . . 39

4.5 Repeatedly apply a constraint resolution technique . . . . 40

4.6 The file structure of StructGen’s output when in testing mode. 41

4.7 The MVC architecture of the software tool. . . . . . . . . . 46

4.8 The Model-View-Controller separation of MotionSim. . . . 47

4.9 The graphical user interface that the user interacts with. . 47

5.1 BFS tree and DFS tree tree graph results. . . . . . . . . . 50

5.2 BFS cycle and DFS cycle orderings of a 2-cycle graph. . . 53

5.3 BFS cycle and DFS cycle 1-cycle graph results. . . . . . . 54

5.4 BFS cycle and DFS cycle 2-cycle graph results. . . . . . . 55

5.5 BFS reverse ordering of a 1-cycle graph. . . . . . . . . . . 57

5.6 BFS reverse and DFS reverse 1-cycle graph results. . . . . 58

5.7 BFS reverse and DFS reverse 1-cycle graph results. . . . . 59

5.8 BFS adapt ordering of a 1-cycle graph. . . . . . . . . . . . 62

5.9 BFS adapt and BFS random 1-cycle graph results. . . . . 63

5.10 BFS random applied to a 2-cycle graph. . . . . . . . . . . 64

B.1 Pseudo-code for the Breadth-First Search algorithm. . . . 70

B.2 Pseudo-code for the Depth-First Search algorithm. . . . . . 70

C.1 BFS tree tree graph results. . . . . . . . . . . . . . . . . . 72

C.2 DFS tree tree graph results. . . . . . . . . . . . . . . . . . 73

C.3 Random tree graph results. . . . . . . . . . . . . . . . . . 74

C.4 BFS adapt 1-cycle graph results. . . . . . . . . . . . . . . 75

C.5 BFS cycle 1-cycle graph results. . . . . . . . . . . . . . . . 76

C.6 DFS cycle 1-cycle graph results. . . . . . . . . . . . . . . . 77

C.7 BFS reverse 1-cycle graph results. . . . . . . . . . . . . . . 78

C.8 DFS reverse 1-cycle graph results. . . . . . . . . . . . . . . 79

C.9 BFS random 1-cycle graph results. . . . . . . . . . . . . . 80

iv



C.10 Random 1-cycle graph results. . . . . . . . . . . . . . . . . 81

C.11 BFS cycle 2-cycle graph results. . . . . . . . . . . . . . . . 82

C.12 DFS cycle 2-cycle graph results. . . . . . . . . . . . . . . . 83

C.13 BFS reverse 2-cycle graph results. . . . . . . . . . . . . . . 84

C.14 DFS reverse 2-cycle graph results. . . . . . . . . . . . . . . 85

C.15 Random 2-cycle graph results. . . . . . . . . . . . . . . . . 86



Chapter 1

Introduction

Motion simulation entails computationally generating parameters en-

coding feasible motions within the domain and range of a given application.

The goal of motion simulation is to provide a highly reality-related por-

trayal of actual movement events, but on a computer, at, or faster than,

real-time. Simulation allows observation of a model, instead of testing an

actual system, which would be too time consuming, too expensive, nearly

impossible or dangerous. Simulation using an accurate model can project

future effects or alternative results, routes, or strategies, or allow designs

of systems to be tested and evaluated before building them.

Advancements in technology are continual, and the role of technology

in research continues to be central and critical. The growing integration

of technology with most fields of study all but demands the incorporation

of simulation into every field of research. Models are used in the armed

forces, to simulate battles and train soldiers on land, sea, and air, in flight

simulation, to train pilots, in video games, for more realistic interactions

1



among characters, in the automotive industry, to train novice truck drivers,

in medicine, to simulate surgical procedures, in biology, to simulate the

movement and interaction of proteins and other molecules, and in many

more venues, with many more actions. Simulation in general, and motion

simulation in particular, is often considered a bridge or link between theory

and experiment since it allows hypotheses and theories about motion to be

tested [11].

1.1 Motivation

Motion simulation is a classical problem in areas of research such as

CAD (Computer Aided Design) software design, robotics, and protein

folding (by predicting their flexibilities). Efficient motion simulation tech-

niques, specifically for geometric constraint structures, could facilitate ad-

vancements in many such domains.

Figure 1.1: An example of a CAD part being created in SolidWorks. Figure
reproduced from http://www.prlog.org/10341476-solidworks-3d-modeling-
services.jpga.

2



CAD software is used by mechanical engineers to create sophisti-

cated designs. CAD can be used to make designs or objects in either

2-dimensional or 3-dimensional space; see Figure 1.1. CAD is commonly

used to create floor plans for houses, to create models of cars or motor-

cycles, and to design machinery. When these designs are finalized, they

can later be used to build the actual physical parts, machines, and assem-

blies. Advancements in CAD motion simulation would offer mechanical

engineers more intuitive, qualitative and quantitative feedback about com-

ponents, enabling faster development of mechanisms.

Figure 1.2: HIV-1 protein structure.
Figure reproduced from http://polbase.neb.com/structures/402.

The flexibility of proteins affects how they work as catalysts, muscle

building-blocks, and chemical messengers. The three-dimensional shape of

3



a protein, known as its stereochemistry, has a major influence on its biologi-

cal activity; see Figure 1.2. A model of protein motion and flexibility would

help predict how proteins fold to become active, and how other molecules

interact with given proteins, thereby possibly considerably reducing the

trial and error researchers must encounter, attempting to design drugs

that could ameliorate or cure various diseases.

1.2 Problems

Although sophisticated motion simulation techniques exist, most have

computational limitations. For example, FEA (Finite Element Analysis),

one of the first simulation tools utilized in CAD software, which reduces

a complex problem into finite simpler ones, allows engineers to study the

structural performance of their mechanisms. However, the growing com-

plexity of real (and virtual) assemblies necessitates newer techniques for

motion simulation. Even the approach of molecular dynamics, which is

widely recognized as the most accurate method for simulating the motion

of proteins, is computationally very expensive and, in some cases, it re-

quires prohibitive computing power and resources.

Real time motion simulation is currently hampered by the compu-

tational limitations of the customary techniques. The key step of many

4



motion simulation techniques is an integration process, used to calculate

the new position of the structures or entities, after they have been subjected

to a force. Fortuitously, this step can be approximated, substantially re-

ducing its computational expense. However, a new problem arises: how do

you resolve the constraints of a structure after a force breaks them? This

problem will be referred throughout this thesis as the constraint satisfac-

tion problem.

A current research question that naturally arises, which is treated

by this thesis, is how to evaluate techniques designed to attempt to solve

the constraint resolution problem. Questions that need to be answered

include: how does one method compare to another, in terms of speed, effi-

ciency, and perceived quality? Is one method more effective than all others,

and if so, to what extent? The problem of determining a quantitative and

qualitative method for comparison and evaluate of different motions sim-

ulation techniques will be referred to throughout the rest of this thesis as

the performance evaluation problem.

In order for researchers to incorporate motion simulation tools and

related software into their studies, not only does the simulation need to be

done in real time or faster, but the tool needs to be easy to use and needs

to supply informative feedback. There should be an interactive, intuitive

interface that allows users to gain insights about the structures they are

5



studying.

Our primary research question is to determine if the goal can be

realized: can motion simulation be made more computationally tractable

by using a modified form of Ragdoll physics, the current method, which

incurs low computational cost. The questions remains as to what relative

motion simulation qualities and benchmark timings are produced by using

Ragdoll physics versus our enhanced techniques.

1.3 Related Work

Motion simulation is used within many different domains including, but

not limited to, molecules such as proteins, computer aided design, robotics,

and video games. There is a rich history of research throughout each do-

main, and many techniques have been developed. Ragdoll physics animates

characters in video games, molecular dynamics is most commonly used for

molecular motion simulation, finite element analysis was the first simula-

tion tool used by CAD software, and kinematics is prevalent in robotics.

1.3.1 Video Games

Visually-realistic gameplay, encompassing the characters’ appearances,

motions, and interactions, has had a significant influence on the popularity

6



of video games. A common goal for video game designers is to create an

accurate, immersive, and fun virtual world that characters can interact

with, through the user. In this section we will describe some of the current

research involved with realistic simulation in video games.

Ragdoll Physics

A current internal methodology in video games is known as Ragdoll

physics, which is used to animate a player’s death or fall and to pro-

duce realistic interactions within the video game’s environment. Ragdoll

physics enables video game developers to simulate the laws of physics by

programming so-called physics engines using mathematical formulas. Rag-

doll physics employs a common motion simulation approach, break-resolve-

iterate, as shown in Figure 1.3. We use Ragdoll physics as our benchmark

because, as demonstrated in sophisticated video-gaming displays, it is a

clearly effective and computationally ”cheap” methodology, and may well

be a reasonable candidate for optimizations needed for more demanding

applications and structures, such as in biology. Details will follow in the

next chapter.

7



Figure 1.3: Ragdoll Physics Motion Simulation Approach.

Fluid Simulation in Video Games

Although physical simulations in video games have become more real-

istic, “pervasive simulations of continuous media” are not very common.

For example, a cloth, or thread, or soft bodies are not usually simulated.

(See figure 1.4.)

Figure 1.4: Deformable bodies: (a) thread, (b) cloth, and (c) soft bodies.
Figure reproduced from [10].

According to [10] a fluid is any substance that flows (or takes the

shape of its container) and does not resist deformation (it can slide when

8



dragged). Simulation of fluids involves fluid dynamics which entails large,

complex computations. Since fluids have more degrees of freedom and

non-linear motion, their equations involve non-linear partial differential

equations along with initial and boundary constraints.

According to [10], the key differences between reality and simulation

are approximation and discretization, and thus they are approximating the

fluid dynamics equations to the extent that the simulations look accept-

ably real. Since the simulations are for video games, their accuracy is not

as demanding as those of molecular simulations.

1.3.2 Molecular Simulations

Molecular simulation involves producing bio-chemically feasible mo-

tions and is used to understand protein folding and flexibility, enzyme

catalysis, DNA, conformation changes. Improvements to molecular sim-

ulations could help predict how molecules will interact, which would aid

researchers when designing new drugs to cure various diseases. In this

section we will discuss current molecular simulation research.

9



Figure 1.5: The motion of an ethane molecule determined by FRODA. (b)
is the ghost template. Figure reproduced from [24].

FRODA

FRODA (framework rigidity optimized dynamic algorithm) was devel-

oped at Arizona State University and is a computational method to explore

the flexibility of proteins. The algorithm first determines the rigid regions

in the protein, which are replaced by so-called ghost templates, then ran-

dom perturbations are applied so the available conformation phase space of

a protein can be explored. Ghost templates are virtual rigid bodies and are

used by FRODA to represent the potential energies of the atoms. FRODA

can find the conformational space of a 100 residue protein in about 10-100

minutes of computing time, depending on how complexly the 100 amino

acids are stereochemically conformed, using a computer containing only a

single processor. Of course, the elapsed determination time depends sig-

10



nificantly on the throughput of the computer being used. They state that

their algorithm is O(N), linear [24].

FRODA uses a break-resolve-iterate approach, similar to that of

Ragdoll physics.(See Figure1.6.) Instead of Verlet integration, FRODA

applies random displacements to the atoms, then resolves the structure

by iteratively fitting the templates to atomic positions to a certain error

tolerance [24].

Figure 1.6: The break-resolve-iterate approach of FRODA.

IMD:Interactive Molecular Dynamics

It is hoped that our optimized motion simulation methods may be ex-

tended to model the motions and interactions of macromolecules. Stone

et al. of the University of Illinois Urbana designed and built a system

called Interactive Molecular Dynamics (IMD) which combines a software

11



tool called Visual Molecular Dynamics (VMD) with a molecular dynamics

program (NAMD) and a haptic device to show molecular dynamics simu-

lations [20].

IMD is an improvement of a previous system called Steered Molec-

ular Dynamics (SMD) which used springs. A limitation of SMD that IMD

has alleviated is that SMD had to set certain constants before the simu-

lation could begin, and also it ran in batch mode at large supercomputer

facilities. IMD takes advantage of the newer, faster PCs and personal

supercomputer workstations and allows the tool to run as an interactive

system, making it more effective; users of IMD can more easily and quickly

try a myriad of experimental cases [20].

Figure 1.7: Decomposition of IMD components into asynchronous commu-
nicating processes. Figure reproduced from [20].

The IMD system was built such that each component runs on a

separate machine and therefore must communicate, requiring an efficient

12



network setup. Although the components need not reside on separate ma-

chines, IMD results are based on such a setup. While IMD extends molec-

ular dynamics, it also inherits its computational expensiveness. Even when

force feedback communication through a haptic device (an advanced force-

feedback joystick) permits intuitive 3D interaction with the tool, IMD still

is limited by its computational bottleneck.

1.3.3 Simulation in CAD Software

Mechanical engineers using CAD software need a way to determine the

kinematics, the dynamics, and the structural performance of the mecha-

nisms they are designing. Accurate simluations can replace expensive and

time-consuming prototype creation. In this section, we will discuss current

simulations used in CAD software.

Finite Element Analysis (FEA)

Finite Element Analysis (FEA) was one of the first simulation tools

adopted by computer aided design (CAD) software, dating back to the

1980s when CAD became more widely used by engineers, which simulates

structural performance of mechanisms. In SolidWorks, a CAD program,

FEA is combined with another simulation tool to offer mechanical engi-

neers more quantitative feedback about the components of their mecha-

13



nisms which extends to faster development [4].

Figure 1.8: Finite Element Analysis done on a connecting rod. Figure
reproduced from [2].

FEA uses a numerical analysis method called finite element method

(FEM) which basically breaks a complex problems into smaller, simpler

problems, called the finite elements. FEM turns the model into a mesh

which has certain material and structural properties defining how it will re-

act to certain conditions. It uses mathematical techniques to find solutions

to the partial differential equations governing the model by approximat-

ing them with ordinary differential equations and numerically integrating.

This method still cannot avoid computational expense. [4].

1.4 SolidWorks Simulation

SolidWorks, a common CAD software tool, has several methods of simu-

lation throughout. One mode is the assembly animation that shows the rel-

ative motion of assembly components, however, this mode considers speed

and timing irrelevant. For a designer to find velocities, accelerations, power

14



requirements and other quantitative feedback he must use a motion sim-

ulation tool. See 1.9 for an illustration of motion in an elliptical trammel

[2].

Figure 1.9: Motions of an elliptical trammel simulated with a CAD simu-
lator. Figure reproduced from [2].

SolidWorks states that they have a method of providing complete

information about the kinematics and the dynamics of all components of

a moving mechanism. Their simulation tool uses material properties from

the CAD parts to define the inertial properties and translates the mating

conditions from the CAD assembly to kinematic joints. The problem of

recognizing kinematic joints in geometric constraint systems introduces an-

other research problem described in [16]. SolidWorks models their mech-

anisms as assemblies of rigid components with few degrees of freedom,

and states that quantitative information can be realized almost instantly.

However, SolidWorks is commercial software, and thus their techniques are

proprietary [2].

15



1.4.1 Robotics

Humans and other animals utilize proprioception and other senses to

know where and how their bodies are oriented, however, robotic movement

in the 3D world depends on spatial perception and knowledge of the degrees

of freedom for various robotic parts. (See Figure 1.10.) When a person

grabs a fork and uses it to pick up a piece of food on a plate to bring it

to their mouth to eat it, the person has no thought about the position of

their arm, its degrees of freedom, and the angles through which they must

move their joints in order to grab the fork. However, those are necessary

questions which need to be answered when dealing with a robotic arm. In

this section, we will describe current technique for robotic simulation.

Kinematics

Figure 1.10: A 7R robot with arrows showing the degrees of freedom.
Figure reproduced from [17].

16



One of the ways robotics deals with motion is via kinematics (the

study of motion, independent of causative forces). Two types of kinematics

that are involved are forward kinematics and inverse kinematics. Forward

kinematics finds the position and orientation of any point from the angle

of the joints and the length of the links. Inverse kinematics finds the re-

quired angle of each joint which produces the desired end position with the

desired length of the links [17].

Basically, forward kinematics solves the problem of: “Given all of

the joint angles, what is the position of the robot’s arm?” and inverse kine-

matics solves the problem of: “Given the desired position and orientation

of the robot arm, what must the joint angles be?” [17].

Kinematics involves many systems of equations and is a computa-

tionally expensive method particulary for solving large structures.

Geometric Methods In Robotics

Currently, a research group at the University of Catalonia is working

to develop efficient algorithms for solving kinematic constraints. They are

using methods from distance geometry to translate the number of kine-

matic constraints to the number of distance constraints among a set of

points. The problem is, given a set of n points in 3-space, and a set of

specified distances between them, how to compute all spacial realizations

17



of the point set that will satisfy all set distances [17].

The group is expressing polynomials as Cayley-Menger determi-

nants which only depend on unknown distances. Their algorithm takes

advantage of the fact that the Cayley-Menger equations are multilinear,

and has been able to solve problems in Robotics (see figure 1.11), CAD,

and structural biology [17].

Figure 1.11: Inverse Kinematics of an overconstrained 6R robot. Figure
reproduced from [17].

1.5 Thesis Structure

The subsequent chapters explain the theory behind the motion simulation

and the techniques that have been developed, tested, and analyzed. Chap-

ter 2 introduces graph theory, geometric constraints structures, Ragdoll

physics, and our motion simulation approach. Chapter 3 builds on the

18



basics from chapter 2, giving both an overview of our technique in general

and going into detail on the specific classes of structures we study. and the

techniques developed specifically for each class. Chapter 4 will describe

the software toolkit for evaluation of motion simulation techniques and

chapter 5 will describe in detail, the techniques that we developed, and

their performance as analyzed from the results. Finally, the thesis will end

with chapter 6 where we state our conclusions along with future work and

directions for the research.

19



Chapter 2

Preliminaries

Proteins (or other molecules), CAD designs, and robotics arms can all

be modeled by geometric constraint structures. By representing them ab-

stractly, we are making their complexities transparent, allowing techniques

from other domains to be utilized. We begin by defining one of the most

basic combinatorial objects, the graph, and relating it to geometric con-

straint structures and Ragdoll physics. We then give the details of the

Verlet integration step used in Ragdoll physics and an overview of the

general motion simulation process we have developed.

2.1 Definitions

In this section we will introduce standard definitions relating to graph

theory, stylistically following the presentation in [9].

20



2.1.1 Graph Theory

A graph G = (V, E) is a combinatorial object consisting of a vertex set

V with |V| = n, and an edge set E with |E| = m, where E is a collection

of unordered pairs of vertices. A directed graph is a graph, G = (V, E)

where the edges have a direction associated with them, that is E is a set

of ordered pairs of vertices from G.

A vertex v is incident with an edge e if and only if e={v,w} for

some vertex w. A walk is an alternating sequence of vertices and edges

that begins and ends with the same vertex, in which each vertex, with the

exception of the last, is incident with the edge that follows and the last

vertex is incident with the preceding edge. A walk is closed if the first

vertex is the same as the last, otherwise the walk is said to be open.

A path is an (open) walk (all the vertices are distinct [none in com-

mon]), whereas a trail is a walk with all distinct edges. A circuit is simply

a closed trail.

A graph, G, is connected if there is a walk between any two vertices

in G. A cycle in a graph is a circuit where the first vertex appears exactly

twice, and there is no other vertex that appears more once. [9] This is not

to be confused with a cycle graph, Cn which is a graph that entails a single

cycle of n vertices. See Figure 2.1.

21



Figure 2.1: A cycle graph C5, left vs. a cycle in a graph (red) right.

A subgraph of a graph, G is a graph whose vertices and edges are

subsets of those of G. A tree is a connected graph that does not contain

any circuits, where as a spanning tree of a graph, G, is a subgraph which

is a tree and is comprised of all the vertices of G.

2.1.2 Geometric Constraint Structure

A geometric constraint structure is a structure that contains geometric

entities upon which constraints are placed. Constraints restrict entities to

satisfy a geometric relationship, such as two lines remaining perpendicular,

or two points a fixed distance apart.

A fundamental type of geometric constraint structure is the bar-

and-joint. Bar-and-joint structures have joints serving as points, and bars

representing constraints between them as fixed-length distances. The bars

22



restrict the joints, defining the structure’s degrees of freedom and motions.

A graph G = (V, E) along with a distance function on the edges L : E →

R, defines the framework (G, L) which describes a bar-and-joint structure.

2.2 Search Algorithms

Two of the most basic and commonly used graph search algorithms

are Breadth-First Search (BFS) and Depth-First Search (DFS). Both are

linear-time algorithms that traverse a graph, G, from a root node, s, and

output a spanning tree of G of reachable nodes from s. BFS explores

nodes layer by layer, while DFS explores nodes going as deeply as possible,

then retreats, or backtracks. See Figure 2.2 for a visual interpretation and

Appendix B for pseudo-code [8].

Figure 2.2: A cycle graph C5 (left), BFS spanning tree from root a, DFS
spanning tree from a (right). BFS order produced:{(a,b),(a,c),(b,d),(c,e)}.
DFS order produced: {(a,b),(b,d),(d,e),(e,c)}.

23



2.3 Ragdoll Physics

As mentioned earlier, Ragdoll physics, used to animate a player’s death

or fall and to produce realistic interactions within a video game’s environ-

ment, employs the break-resolve-iterate approach of motion simulation.

Verlet integration determines the effect of the forces on the structure and

calculates new positions of the affected joints, and then a constraint sat-

isfaction technique involving a random ordering and a .5/.5 weighting re-

solves the structure. Iteration occurs as forces are repeatedly applied.

2.3.1 Verlet Integration

Verlet integration stems from basic physics formulas, but throttles them

by holding the acceleration and the timestep constant. The velocity is

inferred by calculating the difference between the current and previous

position of the particle or body. This approximation simplifies the compu-

tational approach to motion, while remaining fairly accurate and realistic.

Basically, Verlet integration allows greater stability and fewer computa-

tions compared to other approaches [12].

Another important step in Ragdoll physics is collision handling.

Since we are not handling collisions, we refer the reader to a seminal article

on character physics [12], which elucidates how to handle collisions.

24



2.3.2 Constraint Satisfaction

After Verlet integration moves affected joints, it is likely that con-

straints have been violated. At this stage, Ragdoll physics examines the

structure’s constraints in a random order, resolving them with a .5/.5

weighting. See Figure 2.3.

Figure 2.3: Fixing a broken constraint with .5/.5 weighting. Figure repro-
duced from [12].

During the examination of a constraint, the error, if any, is calcu-

lated as the difference between the length of the constraint and the distance

between the joints in the constraint. A negative error implies the joints

need to move closer together, inversely, a positive error indicates the joints

need to move further apart. See Figure 2.3.

The weighting ratio refers to the percent of the constraint distance

error that each joint must resolve. A .5/.5 weighting implies each joint

25



involved in the constraint moves 50% of the error. See Figure 2.4 for

pseudo-code.

Figure 2.4: 1D pseudo-code for satisfying the constraint between x1 and
x2. Figure reproduced from [12].

2.3.3 Implementation Considerations

Ragdoll physics is based on numerical calculations, particularly during

the constraint satisfaction stage, thus requiring certain parameters to be

set before execution, such as error tolerance and maximum constraint iter-

ations. An error tolerance states an acceptable error for a constraint to be

proclaimed satisfied, since basing it on perfection, error of 0, is unrealistic

and possibly impossible. An upper bound must also be set to stop an un-

solvable break in a constraint to cause infinite looping. These parameters

have a large impact on the efficiency and accuracy of Ragdoll physics.

26



Chapter 3

Methodologies

Graphs can be of many different types, sizes, and shapes, but to sim-

plify the issue of real time motion simulation we will be extending the

break, resolve, iterate (BRI) approach of Ragdoll physics, and focusing in

on smaller specific classifications of graphs. We are working to find the

best techniques for each specific structure however, formal mathematical

analysis is a research problem of its own. Thus we have developed a soft-

ware tool for evaluation and comparison of our techniques to the current

methods.

3.1 Our Approach

Rather than relying on current, computationally expensive techniques,

such as molecular dynamics, finite element analysis, and kinematics, we

are elucidating the intricacies of structural motion by using geometric con-

straints to model the structural interactions. The geometric constraint

27



structure that we focus on is the 3D bar-and-joint structure which reduces

the complexity of the structures while also supplying an expandable, uni-

versal format. A 3D bar-and-joint complex can model many different CAD

constraints, molecular structures, and robotic body parts; see Figures 3.1

and 3.2. This level of abstraction facilitates the development of more effi-

cient motion simulation techniques, by incorporating methodologies from

other domains, such as the video game industry.

Figure 3.1: (a) A PUMA robotic arm (b) it’s associated bar-and-joint
framework. Figure reproduced from [17].

Figure 3.2: (a) An octahedral Stewart-Gough platform (b) it’s associated
bar-and-joint framework. Figure reproduced from [17].

Our approach for improving motion simulation is to enhance Rag-

doll physics by adjusting the ordering and the weighting of the constraints.

(See Figure 3.3.) Where Ragdoll physics strictly uses a .5/.5 weighting, we

28



Figure 3.3: An overview of the generalized Ragdoll physics motion simula-
tion approach.

are exploring weighting techniques including 1/0, .75/.25, and also .5/.5

and where Ragdoll physics strictly uses a random ordering, we are exploit-

ing BFS and DFS orderings.

To begin we first classify a specific set of structures for evaluation.

Then we enumerate a large random selection of structures, develop con-

straint satisfaction algorithms, and evaluate each technique on each class

of structures. The yardstick by which the techniques are measured is the

number of constraint iterations required to solve the each structure. An

assumption is that individual iterations take the same amount of time,

since each iteration processes every constraint in the structure. See Figure

3.4 for a diagram illustrating our approach.

29



Figure 3.4: An overview of our approach.

3.2 Structure Classification

The first step in our approach is to categorize different classes of struc-

tures. In this section we will explain the different classes of graphs that we

will be focusing on, and give an example of each.

For the purposes of this thesis, we redefine a graph to have an enhance-

ment: that is, a graph G=(V,E,C) is a combinatorial object consisting of

a vertex set V, with |V| = n, an edge set, E, a collection of unordered

pairs of vertices, with |E| = m, and an additional parameter, a cycle set,

C, a collection of sets of ordered edges that create a cycle, with |C|=k, the

number of cycles in the graph.

30



3.2.1 Tree

The first type of graph that we have chosen to focus on is the tree. A

tree, T, is any undirected, connected graph such that n=m+1, and con-

tains no cycles, k=0. There is a path between every pair of vertices in a

tree. It is important to note that if one edge is added to T, connecting two

existing vertices, then T will contain a cycle and no longer be a tree. See

Figure 3.5 for an example.

Figure 3.5: An example of a tree graph, T.

The graph T=(V,E,C) in Figure 3.5 contains a vertex set V={a,b,c,d,e,f,g},

an edge set E={(a,c),(b,c),(c,d),(c,e),(e,f),(e,g)}, and a cycle set C=∅,

where |V|=7, |E|=6, and |C|=0.

31



3.2.2 1-Cycle

The next type of graph that we consider is the 1-cycle graph. We de-

fine a 1-cycle graph to be any undirected, connected graph that contains

exactly one cycle. That is, if S is a 1-cycle graph, then |C|=1. Every cycle

graph, Cn is also a 1-cycle graph. A 1-cycle graph is a tree with one edge

added to it, connecting two vertices. Throughout the rest of this thesis,

we will call this type of edge a problem constraint.

Figure 3.6: An example of a 1-cycle graph, S, created from the tree graph,
T.

Starting with T in Figure 3.5, then adding an edge between two

vertices, f and g, creates a 1-cycle graph, S. See Figure 3.6 for an ex-

ample. The graph S=(V,E,C) contains vertex set V={a,b,c,d,e,f,g}, edge

set E={(a,c),(b,c),(c,d),(c,e),(e,f),(e,g),(f,g)}, and cycle set C={(e,g,f)},

where |V|=7, |E|=6, and |C|=1.

32



3.2.3 2-Cycle

The next type of graph that we have chosen to focus on is the 2-cycle

graph. We define a 2-cycle to be any undirected, connected graph that

contains exactly two cycles. That is, if D is a 2-cycle graph, then |C|=2.

A 2-cycle graph is a tree with two edges added to it between two separate

pairs of vertices, that is, a 2-cycle has two problem constraints.

Figure 3.7: An example of a 2-cycle graph, D, created from the 1-cycle
graph, S.

Starting with the graph T shown in Figure 3.5, then adding one edge

between two vertices, f and g, will give us a 1-cycle, S, shown in Figure

3.6. If we then add an edge between vertices d and g, we will get a 2-cycle,

D. This is represented by Figure 3.7. There are three different types

of 2-cycles. Either two 1-cycles joined by a tree, two 1-cycles joined at one

vertex, or a 1-cycle with a path between a pair of its vertices.

33



3.2.4 n-Cycle

The complexity of cyclic graphs rapidly increases with increasing num-

bers of cycles, but the concepts and algorithms used in this thesis are gen-

eral, and can be applied to directly evaluate greater complexities. That is,

an n-cycle would be any connected, undirected graph with exactly n cycles.

An n-cycle graph is a tree graph with n edges added to it between n pairs

of vertices, that is, an n-cycle graph has n problem constraints. However,

for this thesis, we will be focusing on trees, 1-cycles, and 2-cycles.

3.3 Structure Enumeration

In order to fully test our motion simulation approach, we randomly

generate structures of various shapes and sizes. How to generate completely

random structures is another research question in itself. In this section we

will describe the direction we have taken to enumerate our test structures.

3.3.1 Tree Graph Generation

To randomly generate tree graphs:

1. Create a root joint, r, at a randomly generated position,(x,y,z)

34



2. Create a new joint, j, again, at a randomly generated position, and

then create a bar connecting r and j.

3. Set the root joint r equal to the new joint j; r=j.

Steps 2 and 3 together are called createBar-joint-pair

4. While we have not reached the randomly preset numberOfChildren,

call createBar-joint-pair. Then if we have not reached the preset

treeDepth, make a recursive call.

3.3.2 1-Cycle Graph Generation

To randomly generate 1-cycle graphs we either:

1. Create a random tree and add a bar between a random pair of joints.

2. Create a random number of bar-joint-pairs and then connect the root

to the last joint from the bar-joint pairs. Then add random trees to

random joints in the cycle.

3.3.3 2-Cycle Graph Generation

To randomly generate 2-cycle graphs, we either:

1. Create a random tree, and add two bars between two separate, ran-

dom, pairs of joints.

35



2. Create a 1-cycle graph and then create another 1-cycle graph starting

from a random joint in the first 1-cycle graph. Both 1-cycle graphs

share a joint.

3. Create two 1-cycle graphs and connect them by a random tree. A

tree separates both 1-cycles.

4. Create a 1-cycle graph and create a path between two random vertices

in the 1-cycle.

36



Chapter 4

Software Toolkit

As structures get larger and more complicated, obtaining mathemati-

cal proofs that a technique will be optimal becomes a challenging research

question of its own. Thus in order to evaluate the proficiency of our con-

straint satisfaction techniques, we have developed a software tool employ-

ing the motion simulation approach shown in Figure 4.1, that allows ma-

nipulation of structures and resolution of their constraints through a user

selection of ordering and weighting. In this chapter we will describe this

software, MotionSim, its design and infrastructure, as well as the output

and evaluation methods used.

4.1 MotionSim

MotionSim is a complex software tool, comprised of many separate pro-

grams, whose aim is to provide real-time motion simulation of geometric

constraint structures through utilization of the constraint satisfaction tech-

37



Figure 4.1: The basic architecture of the software tool.

niques we developed, and to allow for quick and easy development of new

techniques. Detailed information regarding our techniques will follow in

chapter 5, also to see an example of the motionSim process; see Figures

4.2 - 4.5.

In the rest of this section, we will describe the individual components

of the software tool, and later in this chapter its features, and implemen-

tation details.

4.1.1 Software Components

Structure Generator

One of the main components of MotionSim is the structure generator

which outputs random XML representations of trees, 1-cycles, and 2-cycles,

38



Figure 4.2: Read in the XML graph file and display it on the screen.

Figure 4.3: Apply a force to a joint in the structure.

Figure 4.4: Apply Verlet Integration to the affected joint.

39



Figure 4.5: Repeatedly apply a constraint resolution technique, counting
the number of iterations required before the structure is resolved.

40



refer to Chapter 3 for the methodology behind the generation. structGen

can be used to output a single XML graph file of a specified type, or for

testing, it will output a complete set of trees, 1-cycles, and 2-cycles.

Figure 4.6: The file structure of StructGen’s output when in testing mode.

In testing mode, the generation of unique data files, by category,

is a main feature of this component. (See Figure 4.6.) Note that fold-

ers are created for each type of graph (trees, 1-cycles, and 2-cycles), and

within those folders there is a sub-folder created for each graph that is

put out. Continuing to drill down the folder hierarchy, each graph’s folder

contains an XML file that represents the graph, a constraint file declaring

the constraint ordering, and a heuristic folder. The heuristic folder has

a sub-folder for each heuristic being tested, and a sub-folder of files with

random forces to be applied to the graph. Back at the top of the folder

hierarchy, there is an XML file, results.xml, which stores a representation

of the entire set of generated files. Results.xml is used when running the

41



test of all the structures so that the output ends up in the correct path.

Force Generator

ForceGen is used to create an input file for simulating random forces.

The file contains the (x,y,z) of the forces, the affected joint, as well as the

maximum constraint iterations, error tolerance, and timestep. This tool

can be used independently to create force files for a single graph, or when

in testing mode, structGen will automatically call forceGen for every graph

it creates and will output the force files as well.

Constraint Solver

ConstraintSolver contains implementations of all our constraint satis-

faction techniques and is used by motionSim to order the constraints of

the structure after every force application, during the resolve phase.

4.2 Input, Output and Features

In this section we will describe the different ways that the user can

interact with the tool through input and output, along with the many

features that the tool supports.

42



4.2.1 Input

When running motionSim, there are many ways to input data each de-

pending on what the user wishes to utilize the tool for. To apply forces by

hand, the user must specify a specific XML graph file, generally one gener-

ated by StructGen, the constraint file path, the timestep, maximum con-

straint iterations, error tolerance, and especially the ordering and weight-

ing technique to be used for constraint satisfaction. If instead of applying

forces by hand (mouse drag), the user wishes to read in a file of random

forces created by forceGen, then it is not necessary to specify a timestep,

maximum constraint iterations, or error tolerance since it will be preset in

the force file.

Force Files

As briefly mentioned, motionSim can input and output force files. When

applying forces to a structure, the forces can be recorded and then could

be reused to reapply the same forces. This is useful when comparing the

same forces on the same structure, with different constraint satisfaction

techniques. The feature enables us to keep our experiments accurate and

consistent.

43



4.2.2 Output

By default, motionSim will output the frames of the structural motion

to a file, as well as record the number of constraint iterations required for

each force applied. The constraint iteration files are used when calculating

averages and for comparing the techniques while the structure files enable

the user to plot the motion of the structure that was simulated.

4.2.3 Features

MotionSim has many features such as:

• reading in force files generated by forceGen

• recording user applied forces to a readable force file

• accepting 2D or 3D forces. A typical mouse uses 2D, however, if

the tool were connected to a haptic device, as done in other motion

simulation systems, then 3D forces (as true vectors) could be applied

with minor software changes.

• either turning on or off seeing the breaks and constraint resolution

44



process as forces are applied to a structure

• zoom in and out of the structure

• change the background color

4.3 Implementation

The Model-View-Controller (MVC) architecture is a popular framework

used by software engineers to separate a program into logical sections. The

controller is responsible for handling input from the user interface, and con-

verting it to an understandable action for the model. The model section

contains information specific to the appearance and behaviors of the model

and reacts to input received from the controller. The view is constantly

querying the model and updating the graphics accordingly. In short, the

controller handles events and sends messages to the model which changes

accordingly and is visually updated by the view section.

MotionSim is utilizing a Model-View-Controller architecture, an

overview can be seen in Figure 4.7. Since the tasks MotionSim manages

are complex, it is required to have several controls and views. The view

is co-managed by viewGL and viewFormGL software components; viewGL

handles displaying the bar-and-joint structure, while viewFormGL han-

dles displaying any changes the user might make via the GUI; see Figure

45



Figure 4.7: The MVC architecture of the software tool.

4.8. There are also several controller classes, specifically, controllerGL, and

controllerFormGL. The controllerGL listens for events on the form seen in

Figure 4.8 left, where as controllerFormGL listens for events that happen

in the openGL window, specifically manipulation of the model; see Fig-

ure 4.8 right. With all components working in concert, we are able to

present an interactive tool to visualize bar-and-joint structures, and how

user-applied forces affect them, including how they distort, and possibly

break and repair; see Figure 4.9.

46



Figure 4.8: The Model-View-Controller separation of MotionSim.

Figure 4.9: The graphical user interface that the user interacts with.

47



Chapter 5

Techniques, Results and Anal-

ysis

In this chapter, we present various techniques developed for constraint

satisfaction. All the techniques have been generalized from the Ragdoll

physics method, and are implemented with each of the three different

weighting schemes, .5/.5, .75/.25, and 1/0. Throughout the rest of this

chapter the root joint will refer to the force-affected joint, which is the

joint where all our orderings begin.

Note that evaluation of our techniques is based on the number of

iterations required to resolve the structure, and that all comparisons will

be made to the results of Ragdoll physics, which employs random ordering

and .5/.5 weighting.

Our data is based on 20 graph files of each structure type, generated

randomly by structGen. Each structure has had 50 random forces applied

to it and the number of constraint iterations required to resolve the struc-

48



ture has been recorded and plotted for each technique. To ensure reliable

comparisons we evaluate each technique on the same structure with the

same random forces.

We will begin each section with a brief overview of the technique’s

approach, followed by a figure illustrating the ordering, and ending with

a discussion and analysis of the results. The reader should note that the

techniques we developed are a product of intuition we gained from initial

testing of base techniques on simple structures.

5.1 Techniques for Tree Structures

In this section we address the constraint satisfaction problem of tree

structures. We first introduce the techniques, we then evaluate the results

and, lastly, we compare and contrast the results to those of our own Rag-

doll implementation. Our statistical analysis is based on the calculated

mean, mode, and standard deviation of the data and histograms for vi-

sual representation. Our results discussion will based on the bar-charts in

Figure 5.1 for which the raw data can be found in Appendix C.

49



Figure 5.1: BFS tree and DFS tree tree graph results.

5.1.1 Tree

Two of the most common ways to search a tree are by using Breadth-

First Search and Depth-First Search. BFS searches layer by layer, while

DFS searches depth first. Since BFS and DFS are effective search algo-

rithms, we expect that BFS and DFS will provide an efficient and effective

approach for traversing trees, and solving their (broken) constraints. We

50



developed a 1/0 weighting scheme specifically for tree structures and with

BFS or DFS ordering, a tree can always be resolved in 1 iteration. It is

straightforward to prove.

Approach. Perform a Breadth-First Search or Depth-First Search from

the root joint. Refer back to Figure 2.2 for an example of BFS and DFS.

Results and Discussion. Our results after performing BFS tree and

DFS tree on tree graphs can be seen in the charts in Figures 5.1 which will

be compared to the results of a random ordering.

Looking at the means one can see that BFS tree and DFS tree with

a 1/0 weighting consistently solve the constraints in one iteration. Ragdoll

ordering with a 1/0 weighting is also very close to a mean of 1, however,

if we look at the raw data in Appendix C C.3, we can see that it does

not always solve the constraints in 1 iteration. Also, looking at the modes

and the standard deviations we can see the BFS tree, and DFS tree have

a standard deviation of 0 and a mode of 1, meaning they can be con-

sidered nearly completely consistent techniques, solving the constraints in

(essentially) 1 iteration. Random ordering with a 1/0 weighting also has a

very low standard deviation and mode.

Random with a .5/.5 weighting is the equivalent of Ragdoll physics.

So far we have found 3 techniques that outperform Ragdoll physics for

tree graphs. Our results so far show that weighting has a large impact

51



on the number of constraint iterations. The graphs show that weighting

gates ordering; an enhanced traversal-search is dependant on (can only ex-

cel in) a facilitative environment. Understanding why this is so may not be

entirely intuitive, since it is difficult to determine how deeply into a bar-

and-joint structure externally-applied forces may propagate, and therefore,

how extensively the structure’s constraints are damaged.

5.2 Techniques for 1-cycles and 2-cycles

This section will introduce the more complicated techniques we devel-

oped for 1-cycle and 2-cycle graphs. We will explain the ordering approach,

followed by an example, and end with a discussion and analysis of the re-

sults. As before, we will be comparing our techniques to our Ragdoll

implementation.

5.2.1 Cycle

BFS and DFS were very effective for constraint satisfaction of trees,

which influenced our choice to try a similar algorithm for graphs contain-

ing cycles. However, BFS and DFS produce a spanning tree, which will

not contain all the edges of the original graph. We must look at every

constraint in a structure, to ensure the entire structure can be satisfied.

52



Therefore we extended BFS tree and DFS tree to add additional edges to

the ordering.

Approach. Perform a Breadth-First Search or a Depth-First Search from

the root joint, however this time marking both the vertices and the edges.

By additionally marking the edges, we can guarantee that all constraints

are added to the ordering. See Figure 5.2 for an example. If a vertex is

reached that was previously marked, but its edge is not marked, we add

the edge to the ordering but assign it a .5/.5 weighting. These edges are

defined as problem constraints.

Figure 5.2: An example of a 2-cycle graph. BFS cycle or-
der produced from root a: {(a,b),(a,c),(a,f),(b,d),(c,e),(f,g),(d,e),(e,g)}.
Problem constraints:{(d,e),(e,g)}. DFS cycle order produced from
root a: {(a,b),(b,d),(d,e),(e,c),(c,a),(e,g),(g,f),(f,a)}. Problem con-
straints:{(c,a),(f,a)}.

Results and Discussion. Our results after performing BFS cycle and

DFS cycle on 1-cycle and 2-cycle graphs can be seen in the charts in Figures

5.4 and 5.3 which will be compared to the results of a random ordering.

First, looking at the means, observe that (1) BFS Cycle with a .5/.5

weighting outperforms all other technique and weighting combinations for

53



Figure 5.3: BFS cycle and DFS cycle 1-cycle graph results.

both 1-cycle graphs and 2-cycle graphs, (2) DFS Cycle performs best with

a .5/.5 weighting for both 1-cycles and 2-cycles, (3) Ragdoll also performs

best with a .5/.5 weighting for both 1-cycles and 2-cycles, which is the

original Ragdoll physics, (4) BFS cycle with a 1/0 weighting performs sig-

nificantly worse than any other weighting, and (5) both BFS cycle and

DFS cycle with a .5/.5 weighting perform at or better than Ragdoll for

1-cycles and 2-cycles. This chart seems to point out that .5/.5 weighting

54



Figure 5.4: BFS cycle and DFS cycle 2-cycle graph results.

is better than the other weighting schemes.

Next, focusing on the modes, we can see that (1) DFS cycle and

Ragdoll have an identical mode of 3 for all weightings on 1-cycle graphs,

(2) BFS cycle solves the constraints in the lowest number of iterations most

commonly, for all weighting techniques on 1-cycles and 2-cycles, and (3)

BFS cycle most commonly solves the constraint satisfaction problem in 1

iteration, for both 1-cycles and 2-cycles. From the means chart we saw

55



that BFS cycle with a 1/0 weighting had a significantly worse mean than

all the other techniques, however it most frequently solves the constraints

in 1 iteration. This suggests that BFS cycle with a 1/0 weighting has po-

tential for graphs with cycles.

Finally, examining the standard deviation, we can recognize that (1)

BFS cycle with 1/0 weighting is extremely high, which was suggested by

the high mean but low mode, (2) BFS cycle, DFS cycle,and Ragdoll with

a .5/.5 weighting all have very low, almost indifferent standard deviations,

suggesting that they are all very consistent techniques, and (3) BFS cycle

is inconsistent for both weightings .75/.25 and 1/0 on 1-cycles, and 1/0 for

2-cycles. This data implies that a .5/.5 weighting technique gives the most

consistent results and that 1/0 gives the least consistent results.

From this information, we concluded that the weighting has a large

impact on the efficiency of the algorithms, and that the ordering has a less

of an effect. We also see that BFS cycle has potential to outperform all

the other techniques since it most commonly solves the constraints in 1

iteration, which is the best that any technique can do.

5.2.2 Reverse

BFS cycle had inconsistent behavior with a weighting scheme of 1/0,

however during its high performance, it was at or near perfect, solving the

56



constraints most commonly in one iteration. This led us to believe that

the technique has great potential to be an extremely efficient algorithm.

DFS cycle was performing very consistent on a .5/.5 weighting method,

however its average is still too high to be superior to Ragdoll.

Since both of these algorithms show room for improvement, but

with BFS cycle with 1/0 weighting seeming the best candidate, we have

extended both methods further. We saw that there was oscillation in the

motion, and thought it might be caused by iterating over the constraints,

always in the same order. Thus we created a technique which traverses the

constraints forward, while doing repairs, and then reverses itself, if another

iteration is needed.

Figure 5.5: An example of a 1-cycle graph. BFS reverse order pro-
duced from root a: {(a,b),(a,c),(b,d),(c,b),(c,b),(b,d),(a,c),(a,b)}. Prob-
lem constraint:{(c,b)}. DFS reverse order produced from root a:
{(a,b),(b,d),(b,c),(c,a),(c,a),(b,c),(b,d),(a,b)}. Problem constraint:{(c,a)}.

Approach. First, perform either a BFS cycle or a DFS cycle, generating

a forward ordering, then reverse that returned ordering and concatenate it

to the end of the original (forward) ordering. See Figure 5.5 for an example.

57



Figure 5.6: BFS reverse and DFS reverse 1-cycle graph results.

Results and Discussion. Our results after performing BFS reverse and

DFS reverse on 1-cycle and 2-cycle graphs can be seen in the charts in Fig-

ures 5.6 and 5.7 which again will be compared to a Ragdoll and previous

orderings.

First, looking at the means, observe that BFS reverse, DFS reverse,

are performing very similarly to how BFS cycle and DFS cycle performed.

58



Figure 5.7: BFS reverse and DFS reverse 1-cycle graph results.

Also, note that BFS reverse with .5/.5 weighting outperforms the other

techniques, however, with a 1/0 weighting it performs much worse than

the other techniques. BFS cycle with a .5/.5 weighting is currently the

technique with the lowest mean for both 1-cycles and 2-cycles.

Next, focusing on the modes, we can see that (1) DFS reverse has

dropped to a mode of 2 for both 1-cycles, and 2-cycles for all weighting

schemes except .5/.5 for 2-cycles, (2) BFS reverse has dropped to a mode

59



of 2 for both 1-cycles and 2-cycles for weightings .5/.5 and .75/.25, and (3)

BFS reverse still most commonly solves the constraints in 1 iteration, but

also still has the worst mean. This suggests that BFS reverse with a 1/0

weighting is still inconsistent in the same way that BFS cycle was.

Finally, examining the standard deviations, we can recognize that

(1) BFS reverse with 1/0 weighting is extremely high, which was suggested

by the high mean but low mode, (2) BFS reverse and DFS reverse with

a .5/.5 weighting have even lower standard deviations, suggesting that

they are even more consistent than BFS cycle and DFS cycle, and (3)

BFS reverse, and DFS reverse are inconsistent for both weightings .75/.25

and 1/0 on 1-cycles and 2-cycles. This data empirically establishes that a

.5/.5 weighting technique gives the most consistent results, and that 1/0

gives the least consistent results for graphs containing cycles.

From this information, we have found a new (albeit nominally)

best technique, BFS reverse, which performs best for 1-cycles and 2-cycles.

Since BFS reverse performs well at these complexities, then as the number

of cycles in a graph increases, as in many real-world cases, BFS reverse

may do increasingly better.

60



5.3 Techniques unique to 1-cycles

In this section we will discuss our final constraint satisfaction tech-

niques which are unique to 1-cycles. These techniques were designed to be

adaptive in that they change the root joint during iteration. We will end

this section with an analysis of the results presented in Figure 5.9.

5.3.1 Adapt

The reverse techniques showed a large improvement over our previous

techniques, however, we would still like to improve upon them. We noticed

that techniques ordered with DFS have not been performing as well as

those with BFS, so for the rest of this chapter, we will be focusing only on

a BFS ordering.

During the iteration phase, changing the constraint ordering, as re-

verse techniques did, had a positive impact on the results. Therefore, we

have created an adaptive technique that will pseudo-learn where the break

is rather than doing the same ordering forward and then backward. We hy-

pothesised that the so-called problem constraint is where the break would

be after an iteration. Therefore we concluded we should start the next

iteration from the where the structure was last known to be broken, the

problem constraint.

61



Approach. The ordering begins by calling BFS cycle. However, the prob-

lem constraint is stored, and on the next iteration, rather than starting

from the same root joint, it starts from the problem constraint and calls

BFS cycle from there. See Figure 5.8 for an example.

Figure 5.8: An example of a 1-cycle graph. BFS adapt order produced
from root a: {(a,b),(a,c),(b,d),(c,b)}. Problem constraint:{(c,b)}.

Results and Discussion. Our results after performing BFS adapt on

1-cycle graphs can be seen in Figure 5.9 which will be compared to a ran-

dom and previous orderings.

Observing the charts in Figure 5.9, it is easy to see that BFS adapt

is much worse than previous techniques, including Ragdoll. BFS adapt has

a high mean, a high mode with the exception of a 1/0 weighting, and a high

standard deviation with the exception of a .5/.5 weighting. BFS adapt is

still getting similar results to the original BFS cycle in that it is very in-

consistent, sometimes performing exceptionally, and others very poorly.

BFS reverse is still the best technique, however we are surprised by

the results of BFS adapt, since adapting the root joint during iteration

62



Figure 5.9: BFS adapt and BFS random 1-cycle graph results.

worsened the results.

5.3.2 BFS Random

BFS adapt did not perform nearly as well as we had hypothesized.

Since both a random ordering and BFS ordering are performing well, the

next approach we developed combines the advantages of Ragdoll physics

and BFS cycle. We still believe our initial intuition that changing the root

63



joint during iteration will give the best results.

Approach. The ordering begins by calling BFS cycle. However, on the

next iteration, rather than starting from the same root joint, it starts from

a random joint in the graph. See Figure 5.10.

Figure 5.10: An example of a 2-cycle graph. BFS random order pro-
duced from root a: {(a,b),(a,c),(b,d),(c,b),(d,f),(c,d),(f,e)}. Problem con-
straints:{(c,b),(c,d)}.

Results and Discussion. Our results after performing BFS random on

1-cycle graphs can be seen in the charts in Figure 5.9 which will be com-

pared to a Ragdoll and previous orderings.

Examining Figure 5.9, we observed that BFS random was an im-

provement to BFS adapt, but is very similar to BFS cycle. BFS random

performed best with a .5/.5 weighting however, with a weighting of 1/0 it

still has a mode of 1.

BFS random is the better of our two techniques that try to learn

where the breaks in the structure are, however BFS reverse with a .5/.5

weighting is still the best technique overall for 1-cycles and 2-cycles.

64



Chapter 6

Conclusions

This thesis has striven to realize two main goals: 1) real-time motion

simulation of geometric constraint structures, and 2) efficient constraint

satisfaction after applied forces break the constraints of a structure.

The first problem has important applications to CAD, proteins, and

robotics. We approached it by utilizing geometric constraint structures,

specifically the bar-and-joint structure, to model structures and their inter-

actions. This allowed the extension of methodologies from Ragdoll physics

by incorporating classical search algorithms to develop new enhanced al-

gorithmic approaches to the second problem. By utilizing these new al-

gorithms in a motion simulation tool we developed, motionSim, we were

able to evaluate the methodologies to determine the most efficient con-

straint resolution techniques for each our of our classes of graphs. Our

analysis shows that BFS reverse consistently outperforms other constraint

satisfaction techniques, including Ragdoll physics, that the weighting of

the constraints has a larger impact on the number of iterations than the

65



ordering does, and that our techniques may have a potential to improve

motion simulation of molecular motion.

Future work would include (1) determining why BFS cycle per-

formed rather inconsistently, (2) experimenting further with constraint sat-

isfaction technique that adjust the root, trying to learn where the breaks in

the structure are, (3) validate our results on larger and more complex data

sets, (4) extend our constraint satisfaction techniques to other classes of

graphs, (5) compare the structure of proteins to our classes of structures to

determine the feasibility of our techniques for protein folding and flexibility,

and (6) develop and evaluate new constraint satisfaction techniques.

66



Appendix A

Physics Behind Verlet Integra-

tion

The Verlet Integration formula is Posnew= 2*Poscur - Posold+ A*dt*dt

and can be derived from Euler’s formulas along with common physics for-

mulas. Below are two derivations for the Verlet Integration formula.

Euler:

1a Velnew= Velcur + A*dt

1b Posnew= Poscur + Velnew *dt

Merge and simplify:

1c Posnew= Poscur + (Velcur + A*dt)*dt

1d Posnew= Poscur + Velcur*dt + A*dt*dt

Position Verlet: Assumes a constant acceleration and time step and con-

siders Velcur*dt to be approximated by (Poscur- Posold). Thus giving us:

1e Posnew= Poscur + (Poscur- Posold)+ A*dt*dt

OR

67



1f Posnew= 2*Poscur - Posold+ A*dt*dt

Using physics and holding the acceleration constant:

a(t)=a, v(t)=at+v, x(t)=0.5a*t2+v*t+x0.

Thus:

2a Poscur= 0.5A*dt*dt+Velold*dt+ Posold

2b Velcur=A*dt+Velold

2c Velold= Velcur -A*dt

Also:

3a Posnew= 0.5A*dt*dt+Velcur*dt+ Poscur and

3b Velnew=A*dt+Velcur and thus

3c Velcur= Velnew -A*dt

Following from (2a) we have:

2d Poscur- Posold = 0.5A*dt*dt+Velold*dt

Following from (3a) we have:

3d Posnew- Poscur = 0.5A*dt*dt+Velcur*dt

Plugging (2c) into (2d) we get:

2e Poscur- Posold = 0.5A*dt*dt+ (Velcur -A*dt) *dt

Simplifying we get:

2f Poscur- Posold = -0.5A*dt*dt+ Velcur*dt

Adding (A*dt*dt) to each side of (2f) we get:

2g Poscur- Posold +A*dt*dt=0.5A*dt*dt+ Velcur*dt

68



The right side of (2g) is equal to the right side of (3d), thus we get:

2h Poscur- Posold +A*dt*dt=Posnew- Poscur

Then (2h) becomes (1f) by combining terms:

1f and 2i: Posnew= 2*Poscur - Posold+ A*dt*dt

69



Appendix B

BFS and DFS Pseudo-Code

Figure B.1: Pseudo-code for the Breadth-First Search algorithm. Figure reproduced
from [8].

Figure B.2: Pseudo-code for the Depth-First Search algorithm. Figure reproduced
from [8].

70



Appendix C

Constraint Satisfaction Results

71



Figure C.1: BFS tree tree graph results.



Figure C.2: DFS tree tree graph results.



Figure C.3: Random tree graph results.



Figure C.4: BFS adapt 1-cycle graph results.



Figure C.5: BFS cycle 1-cycle graph results.



Figure C.6: DFS cycle 1-cycle graph results.



Figure C.7: BFS reverse 1-cycle graph results.



Figure C.8: DFS reverse 1-cycle graph results.



Figure C.9: BFS random 1-cycle graph results.



Figure C.10: Random 1-cycle graph results.



Figure C.11: BFS cycle 2-cycle graph results.



Figure C.12: DFS cycle 2-cycle graph results.



Figure C.13: BFS reverse 2-cycle graph results.



Figure C.14: DFS reverse 2-cycle graph results.



Figure C.15: Random 2-cycle graph results.



Bibliography

[1] Mechanical cad with multibody dynamic analysis based on modelica

simulation. Proceedings of the 44th Scandinavian Conference on Sim-

ulation and Modeling, September 2003.

[2] Understanding motion simulation. Technical report, SolidWorks,

2008.

[3] Put your designs in motion with event-based simulation. Technical

report, SolidWorks, 2009.

[4] J. E. Akin. Finite Element Analysis Concepts: Via Solidworks. World

Scientific Pub Co Inc, 2010.

[5] Mehmet Serkan Apaydin, Douglas L. Brutlag, Carlos Guestrin, David

Hsu, and Jean-Claude Latombe. Stochastic roadmap simulation: an

efficient representation and algorithm for analyzing molecular motion.

In Proceedings of the sixth annual international conference on Com-

putational biology, RECOMB ’02, pages 12–21, New York, NY, USA,

2002. ACM.

87



[6] Aude Bolopion, Barthélemy Cagneau, Stéphane Redon, and Stéphane

Régnier. Haptic feedback for molecular simulation, 2009.

[7] J. S Chabura. Development of instructional software for demonstrat-

ing cad/fea integration best practices. Master’s thesis, University of

Illinois at Urbana-Champaign, 2004.

[8] Thomaas Cormen, Charles Leiserson, Ronald Rivest, and Clifford

Stein. Introduction to Algorithms. The MIT Press, 3rd edition edition,

2009.

[9] Edgar Goodaire and Michael Parmenter. Discrete Mathematics with

Graph Theory. Prentice Hall, 2nd edition, 2002.

[10] Michael Gourlay. Fluid simulation for video games. Intel Software

Network, February 2010.

[11] R. W. Hockney and J. W. Eastwood. Computer Simulation Using

Particles. Taylor & Francis, January 1989.

[12] T. Jakobsen. Advanced character physics. Proc. Game Developer’s

Conf., 2001.

[13] Ales Krenek. Haptic rendering of molecular conformations, 2001.

88



[14] Audrey Lee. Geometric constraint systems with applications in CAD

and biology. PhD thesis, University of Massachusetts Amherst, May

2008.

[15] Audrey Lee, Ileana Streinu, and Oliver Brock. A methodology for effi-

ciently sampling the conformation space of molecular structures. Phys-

ical Biology 2, SPECIAL FOCUS: Flexibility in biomolecules, 2005.

[16] Audrey Lee-St John and Rittika Shamsuddin. The joint recognition

problem: From cad constraints to kinematic joints, 2010.

[17] L.Ros, F. Thomas, J. M. Porta, C. Torras, V. Ruiz de Angulo,

T. Creemers, J. Canto, F. Corcho, and A. Sabater. Geometric meth-

ods in robotics. First Worksop on Automation, Vision and Robotics,

2004.

[18] Prabhakar Raghavan and Rajeev Motwani. Randomized Algorithms.

Cambridge University Press, 2000.

[19] J. M. Selig. Geometrical Methods in Robotics. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1996.

[20] John E. Stone, Justin Gullingsrud, and Klaus Schulten. A system for

interactive molecular dynamics simulation. In Proceedings of the 2001

symposium on Interactive 3D graphics, I3D ’01, pages 191–194, New

York, NY, USA, 2001. ACM.

89



[21] John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schul-

ten. Gpu-accelerated molecular modeling coming of age. Journal of

Molecular Graphics and Modelling, 29(2):116 – 125, 2010.

[22] W. F. van Gunsteren, P. H. Hunenberger, A. E. Mark, P. E. Smith,

and I. G. Tironi. Computer simulation of protein motion. Computer

Physics Communications, 91(1-3):305–319, September 1995.

[23] Rachel Weinstein. Simulation and Control of Articulated Rigid Bodies.

PhD thesis, Stanford University, 2007.

[24] S. Wells, S. Menor, B. M. Hespenheide, and M. Thorpe. Constrained

geometric simulation of the diffusive motions in proteins. Physical

Biology, 2, 2005.

90


